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Nomenclature

The following nomenclature is used in this paper:

A, A'=amplitudes of rectangular and sinusoidal waves as the correlate signal,
respectively,

@, a1, a;=incremental step size of the input (in Chap. I1I), amplitude of triangular
input (in Chap. IV),

' =amplitude of sinusoidal wave approximating to the input,

¢ =allowable difference of the output (defined in Chap. IV),

E =amplitude of sinusoidal wave as the test signal,

Ey, E» =errors in ys/yn due to vy, and 3, respectively,

f(z) =probability density function of the statistical variable z,

Gi(s), Go(s) =transfer functions of the input and output linear groups, respectively,

gi(1), go(t) =weighting functions corresponding to Gi(s) and Gu(s), respectively,

H =hunting loss,

Hs, H, H,, H,=hunting losses of sinusoidal wave, triangular wave, rectangular
wave and random signal, respectively,

H., Hi, H., H. = dimensionless hunting losses Hs/kE®, Hi/ kE®, Hy/RE® and Hu/k¢u(0),

) iespectively,
j = \/“ 1 »
Kp=proportional sensitivity,
L =dead time,

k, ki, k.=characteristic constants of the controlled system,

m =number of input cycles over which the correlation process is carried out,

m!=T/rn=m corresponding to the case of random signal,

N =number of moves which is required for the output to reach within ¢%, when
the input starts from the maximum value %m,

n(t) =noise evaluated in the output of the controlled system,

7n(1) = time average of n(#),

mi, m=random signal as the test input and noise, respectively,

R =R3+Rn,

R, = cross-correlated value in case where the test input is a sinusoidal wave and
the correlate signal is a rectangular wave, '

R =cross-correlated value in case where both the test signal and correlate signal
are random signals,

Rn=cross-correlated value between #z(t) and 7(f),

Rs =cross-correlated value between y(#) except n(f) and 7(¢),

7(t) = correlate signal,

S =a/T (in Chap. III), input drive spped 2a/T (in Chap. IV),
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s =operator of Laplace transformation,

T =hunting period of y(#) (in Chap. 1V), period of x*(#) (in Chap. V),
Ts=length of time between steps, or sampling period,

Tsum= tor+ 7oz,

I =time,

t*=time instant when y becomes the maximum value,

% =normalized pseudo-input of the controlled system, or normalized output of G;(s),
x*=normalized input to Gi(s),

xn=normalized input applied to the controlled system at the sampling insant »#7s,
%m=maximum value of the normalized input,

Zmax=value of the normalized input corresponding to the extreme value,

Xo=1im xx,

N->x

4x=saturated value of variation of the normalized input,

Axn = Xn-1— Xn,

dx =test input with constant step size,

Y(s) =Laplace transform of y(#),

» =normalized output of Gy(s),

y¥=kx'=normalized input to Gi(s), or normalized pseudo-output of the controlled
system,

yn, ¥n=value and differential value of y at the sampling instant (#-+1)7s, respec-
tively,

ym=maximum value of |y|,

ym = kX =maximum value of y¥,

Yaoax = €Xtreme value of y,

ys=value of » at the instant x/S,

AYn =Yn-1—yn,

dy=variation of y corresponding to dx,

z =statistical variable (see Eq. (5.15)),

z =time average of z,

B =wnxo/S,

B' = xo/ Tsmns,

4 =hunting zone,

¢ =magnitude of allowable error represented by a percentage of y,,

¢ =damping ratio,

A, An=12%[%m and %, /x%na respectively,

2=afxm Or 8x/%m,

v = Toz/ To1,

o2 = variance of z,

v =time constant of ¢(#),

™, tz=time constants of ¢n(#) and ¢ (f), respectively,

<i, Ti,, Tiz=time constants of G;(s),

T, To, Tez=time constants of Gy(s),

&(w)=power spectrum of n(#),

¢ (1) =auto-correlation function of #n(?),

¢u(l), ¢2(¢)=auto-correlation functions of 7:(¢) and »:(#), respectively,

. 2
$2(0) = m(F)omlt) = nm-—lT—f m(H)no(2)dt,
-Tf2

T—>w»

¢i Qo Po, @i, @2, o =phase angles (rad),
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i, wo=angular frequencies of x*(f) and y(#) respectively; w; is always related to
w0 by wi=2wi,
or =natural angular frequency.

One prime and two primes added to x and y denote the dimensionless and
actual values of input and output, respectively; the follwoing relations hold be-
tween the quantities: ¥’ = 2, &' = Kpkx, ' = Kpky, 3" =y"wax+y and &/ = 8" pnox + 2.

Introduction

In order to maintain the output of any engineering system, such as the
efficiency of boiler plant, at a desired extreme value in spite of natural changes
in the environment ofi the system, it is necessary to apply an optimalizing
control.

There are two scientific methods in the schemes of such an optimalizing
control. One is “model method”, which is to determine an extreme value by
solving the mathematical model of the controlled system with a computor, and
the other is “direct method”, which is to find out an extreme value and hold
the output at it without using any mathematical model, but basing only on the
knowledge that the output of the controlled system has an extreme value. The
one is less practical than the other, since it is generally difficult to obtain an
exact analytical expression, or a mathematical model, relating the output to the
input of the controlled system in practice.

For these ten years, various kinds of control methods belonging to the class
of the direct method have been conceived and developed by several investigators.
In 1951, Draper and Li,% who proposed the original idea of the optimalizing con-
trol, devised “peak-holding method” which is little affected by noise interference,
and applied it to the optimum control of the internal combustion engine, in which
the consumption of fuel to produce the load torque at the specified speed was
minimized by adjusting the ignition timing. After that, the peak-holding method
was analyzed by Tien and his coworker.?® Another example of applications was
the cruise control of an airplane®; there, under the restriction of engine cruising
r.p.m. and assigned altitude, there is an optimum combination of trim setting and
engine throttle for maximum miles per gallon of fuel. Moreover, on the basis of
such an idea, several simple optimalizing controllers consisting of the elements
such as logic circuits have been constructed,”® but their applications to the actual
system have not been reported.

Draper and Li also tried “cross-correlation method”, which is to find out an
extreme value by intentionally injecting a test signal, such as a sinusoidal wave,
into the controlled system. The application of this method to the optimum con-
trol of the fuel consumption for maximum output in a Jet engine was discussed
by Vasu.”

Opcon has been developed by Westinghouse Co.* on the basis of another
operating principle of an optimalizing control. This is temporarily called “cut-
and-try method”, which is to find out an extreme value of the output by the
incremental change in the input. This method will be of great use in searching
out an extreme value of the output as a function of many inputs.

These three mentioned above are regarded as the practical optimalizing con-
trol schemes in the class of the direct method. These methods have been applied
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to a few engineering systems as mentioned above, but little has been discussed
theoretically as to the analysis and synthesis of these systems.

In this paper, we shall analize in detail the optimalizing control system with
one input in its theoretical aspect, choosing several of the practical methods from
the class of the direct method. As the result, we shall present many data and
clearer insight to the design of such optimalizing control systems.?~*

Chapter 1. General Views of the Optimalizing Control System
1. Fundamental problems

In order to design the optimalizing control system, which is also known as
“extremum control system”, we must, in general, take into account the following
items:

(1) The output of the controlled system has an extreme value, but its magni-
tude can not be exactly predicted in advance.

(2) There are the effects of the dynamics, usually existing between the input
and output of the controlled system, on the performance of the system.

(3) The performance of the system is also affected by noises in the system
or from the outside of the system.

(4) The extreme value of the output tends to change in its magnitude with
natural changes in the environment of the system.

(5) The optimalizing control methods which meet these requirements should
be invented, and the controllers which implement the methods are required to be
simple in construction and justifiable economically.

These items are somewhat interrelated each other. In short, the ultimate aim
of the optimalizing control is that the output of the system reaches an extreme
value as quickly as possible, and the system operates always as close to the
optimum state as possible or has the smallest hunting loss, and is not misled by
the noise interference.

2. Generalized optimalizing conirel system

In the engineering control system, for example, in the boiler plant, the
efficiency of boiler as the output of the controlled system has an extreme value
or maximum value at a certain value of the excess air ratio as a single controlled
input, hereafter referred to as the input. Furthermore, the maximum value
changes in its magnitude with the steam consumpticn as a disturbance.

For simplicity of the analytical treatment of the optimalizing control system,
it is assumed that the steady state characteristics relating the output to the input
can be approximated by a parabolic curve in the neighbourhood of the extreme
point, and that the disturbance is so slow to occur that we may neglect its effect
on the characteristics during the period in which a series of control actions takes
place. This fact permits us to normalize the characteristic curve, that is; the
input and output can be measured from their optimum point. Suppose the extreme
value exists at the input x;" and the output y.. This point is then chosen as the
origin of a new coordinate or normalized coordinate (x, ») and thus the extreme
value occures at the point x=y=0. The input and output in the normalized co-
ordinate are related to those in the actual coordinate by #"* ="+ /% and y" =
¥+ ¢, respectively.
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It is to be noted that the fundamental operation of the optimalizing control
should not be affected by such a transformation of the coordinate system; in other
words, the control operation by the direct method does not depend upon the
absolute values of the input and output, as will be shown in the subsequent
sections.

Figure 1.1 shows the block diagram of a generalized optimalizing control
system with a single controlled input. The relation that y*=kx? represents the
static performance characteristics of the controlled system with the normalized
input and output, as mentioned above. Gi(s) and Go(s) are the transfer functions
of the input and output linear groups of the controlled system respectively, and
Gi(0)=Gy(0) =1 is assumed to hold. Here, we shall not touch upon what these
transfer functions represent in the practical engineering systems. x* and y will
be refered to as the (actual) normalized input and output, and x and y* as the
normalized pseudo-input and -output respectively, if necessary. When the dynamic
effects are neglected, it is readily seen to be x*=x and y*=y.

M

LT Controlled system ===="1

| . a ¥ I

Optimalizing| % | — X 1 ¥ i + Y
ol G| YA GLS) L

controtier i 1+
| |

|

FIG. 1.1. Block diagram of ‘a general optimalizing control
system with a normalized controlled system.

Chapter II. Cut-and-Try Method

This control method is to find out an extreme value in a stepwise manner:
an incremental step in the input is given to the controlled system at constant
sampling periods, and the resulting variation of the output is measured, and then
the direction and size of a new incremental step in the input are determined on
the basis of these informations. In this method there are three main types, that
is, proportional-difference type, on-off type, and proportional-gradient type.

Part I. Proportional-difference type

1. Principle of operation

Figure 2.1 shows a typical control behavior for the proportional-differnce type
of the cut-and-try method. Figure 2.2 is a functional diagram of the optimalizing
controller for this control type at the sampling instant (n+1)7s. The upper left
part of Fig. 2.1 illustrates a static performance characteristics of the controlled
system, in which the output has different maxima for various levels of the distur-
bance.

Suppose the output is at its maximum value with the disturbance of the state
I then if the disturbance changes from the state I to II in Fig. 2.1, the output
will be decreased from y; to ' according to this static characteristics, where
the input is assumed to remain unchanged. Here, the optimalizing controller of
this control type is made to operate with a constant sampling period Ts, and con-
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FIG. 2.1. Typical control behavior by the proportional-difference
type of the cut-and-try method.

Qutpur " of Outpul memorized Present
conirolled system one sampling period - :'riput)
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hrougl pler "5;,/., Coattoient r-h changer A2, N
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¥ e L v L3y - 7
“ “f L. I 'XVH"
__________.-l b New input
Present Relay to controlied

output (A Xn >0 eeee =2 system
(ax;qm-:—a)
F1G. 2.2. Functional diagram of the optimalizing controller for the
proportional-difference type of the cut-and-try methed, at the sampling
instant (n+1)7%.

sists of a measuring device of the output, a memory unit and a simple logic
circuit and so on. The roll of the logic circuit is to decide the direction of the
input change, that is; whether it should be increaased or decreased. Now, the
output 3, is subtracted from the previous output »”;, which was memorized one
sampling period before, to give the variation 4y, ( =y, — ') of the output. Thus,
with the variation 4y, and the value x)' of the input at that time as the initial
conditions, the control operation starts to find out a new extreme value (xﬁ.,,, y,’,ﬁ,,

at the state I7 of the disturbance, as shown in Fig. 2.1. The subsequent control
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operation can be explained as follows, referring to Figs. 2.1 and 2.2. At the samp-
ling instant nTs, the input ¥, is applied to the controlled system, and the resulting
steady state value y, of the output is measured after a sufficiently long time mterval
Ts for the transient to die out. The value yn is compared with the value Y-,
which corresponds to the mput - g and has been stored in a memory unit. The
result gives the difference Ayn =41 —yu of the output The difference 4y is
multiplied by K, at the coefficient multlpher Kpdys. The sign of Kpdyy, that is,
the sign of the new variation dxho (=%, — x4.) is decided, as shown in Table
2.1, depending on the SIgn of the preceding input variation 4%, and the sign of
the present difference Ay,, The new variation Aan with the sign is subtracted
from the present input x,, to give the new input xy... Once the new input PN
is determined, the value y_, which has been stored during this period is elimi-
nated to store newly the present value y, of the output. The similar control
operation is repeated till the output reaches the maximum value with the distur-
bance at the state 71

TABLE 2.1. Sign of New Input Increment x}/,,

S1gn of x! ; Sign of y!/ . Sign of a2l
——————— —— ...“ e —— - ! e ———
+ - -
+ - +
— _{_ _{_

2. Amnalysis of the control system

As is seen in the previous section, the proportional-difference control type
depends upon the variations of the input and output, but not upon their absolute
values. Accordingly, the optimalizing system of this control type can be gener-
ally analyzed on the normalized controlled system shown in Fig. 1.1. Moreover,
if we choose the sampling period 7 so long as we can neglect the dynamic effects,
then we can deduce this control system to the form, shown in Fig. 2.3, with the
dimensionless input x' and output ', which satisfy the relation that Yy =x"

Dimensionless  Normalized Normalized Dimensionless
input input output
Optimalizing ;5’ v | Normalized pr OU?E/U t
—=] controller .i_ confrolied K,Z,fi E
o= | Kot sysfem ,
’ Y=fx
i J

FIG. 2.3. Block diagram of the optimalizing control system with
the proportional-difference type of the cut-and-try method, represented
by use of the dimensionless input and output.

Even when the dynamic effects are absent, the stability of the control be-
havior, the steady state deviation of the output from the extreme value, or offset,
and the time required for the output to reach the extreme value or quickness of
the response are affected by K, the proportional sensitivity, &, the characteristic



On Various Methods of Optimalizing Control 9

constant, and (x, 4y,), the initial conditions, which must be included because of
the non-linearity of the system.

2.1. Stability of the control behavior

Among the problems proposed in the last paragraph of Sec. 1 only the effect
of the initial condition can be discussed here because if the analysis of the con-
trolled system is treated with the dimensionless input #’ and output 3 shown in
Fig. 2.3, the effects of K, and %k become implicit.

Figures 2.4 (a) and (b) show the typical examples of stable control behavior
and unstable one due to the effects of the initial conditions. In general, it is
difficult to determine what initial conditions make the control behavior stable or
not. It is seen that the contrel behavior tends to be unstable with increase of
the value of the initial condition. In other words, even if the control behavior is
stable for a large value of initial condition, the output will oscillate many times
with large amplitudes around the extreme value before the output settles to it.

t/, o,
G 2 4 6 8,10 ¢ 2 ¢4 8
0 : 0
-02 oftset +
-04 03 04}
. -06 Initial condition L Initial condition
Y ( 7‘2?”] \, 0.8 F Xg =104
10 aY=025/ B Y= 15/
-1.2F
(@) Stable B B (b} Unstabie
T
-16F .
-20F
FooU

FiG. 2.4, Typical examples of control behavior depending
on the initial conditions.

Here, we are going to explain the fundamental control behaviors necessary
for the later analysis of the system. Starting from the assumption that the first
step in the input is positive and towards the optimum value (#'=0) corresponding
to the extreme value (y'=0), three different control behaviors are produced by
two following steps, as shown in Figs. 2.5 (1), (2) and (3).

The control behavior (1) is that when the input ' starts from an initial value

(3) (2) (1)
X X X5 peb
1['« 2y’ /ﬁ:

F1G. 2,5. Three fundamental control behaviors,
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%o, the new input % has the same sign as the input %), and the absolute value of
% is less than that of x;, and then the next step in the input is moved towards
the optimum value. The control behavior (2) is that since the input »' goes
beyond the optimum value, the input %, has an opposite sign to the input %, and
|x.] is less than |x¢l, and thus the new input x, goes further away from the opti-
mum value according to the principle of the control operation mentioned previ-
ously. The control behavior (3) is that in the similar manner to (2) the input
x, has an opposite sign to the input x, but |x!| is more than |x|, and thus the
new input x; comes closer to the optimum value. A careful inspection of the
control behavior shows that there exists an oscillation in which the output y' has
the amplitude 1 and the period 2 Ts, and the input x' has the amplitude 1 and the
period 4 Ts, as is readily obtained from the relation that y'=x" Therefore, in
order to determine the initial conditions giving the stable control behaviors, it is
convenient to consider the plane of the initial condition (%), 4y}), as shown in Fig.
2.6, and to divide the plane into two regions: one is the region in which both x}
and 4y, are less than 1, and the other is that in which both # and 4y, are more
than 1. (Since y' = »” is symmetric for the axis x; =0, we shall hereafter consider
only the case where both x; and 4y; are positive, and assume that the first step
in the input starts towards the optimum value.)

D
‘: 12 3 - Ist 5fabf regl
D45 €
77 B a .
20 8§  lth o /
g 5tk v
by B
5 yd
g ]
8 .
@ 4 / )
L
kS .// S /
I3 . /
£
= 10 ,Z e
- /
[«} /
S 3/ 2
= / /
2 K //
5 | / /
= K /
£ / !
[] A X A\ N

Initial value of dimensionless inpuf X

Fig. 2.6, Stable regions depending on the initial conditions,
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When the control behavior starts from any point (x5, 4y)) in the region that
both %} and 4y, are less than 1 in Fig. 2.6, it is understood that at the successive
instants T, 27T, . . ., the inputs %1, x5, ... and the corresponding variations of
the output 4yi, 4y, ... are all less than 1. Accordingly, the output may ap-
proach, nonoscillatory or oscillatory, the extreme value: the control behavior is
stable for the initial conditions in this region. This region is temporarily called
“the first stable region”. Let us next consider the region that the initial con-
dition (%), 4v), are both more than 1. Even if the control behavior starts from
a point (x4, 4vy) in this region, it is obviously stable if the next point (xi, 4y)),
[or the third point (x}, 4yi) for the case (2) in Fig. 2.5] falls within the first
region, or in other words if both x{ and 4y, are less than unity. Thus, the stable
control behaviors can also be attained in the region consisting of the initial con-
ditions (xj, 4v}) entering into the 1st stable region at the following sampling
instant or at the third sampling instant for the case of Fig. 2.5 (2). This region
is called the 2nd stable region.

We can again look for the initial conditions which are followed by a point in
the 2nd stable region in the region that xg, 4y;>1. This region is also tempora-
rely called the 3rd stable region; the control behavior, starting from the 3rd
stable region, enters into the 1lst stable region through the 2nd stable region.

On the basis of such an idea, we can extend the stable regions on the plane
(x5, 4y4). For example, Fig. 2.6 shows several stable regions determined by the
similar procedure. However, as will be seen in the subsequent sections, it is not
necessary for the design of the control system to determine all stable regions.

2.2. Deviation of the outpul from the extreme value (offset)

When the control behavior starts with any initial condition (a4, 4ys) in the
stable region determined in the previous section, questions arise as to what couse
the initial conditions (xf, 4y1), (%, 4y), ... at the successive sampling instants
are following on the plane of initial condition, before the output comes into the
vicinity of the extreme value, and also as to whether the output converges to the
extreme value or some other value, in
other words whether the output has an Inttial value of dimensicnless input X;
offset or not. XOO ‘ 0.2 DA 08 08 ),Ob

In order to track the control behavior AR ¢/ /c
easily, it is convenient to divide the 1Ist / :
stable region where %<1, 4y <0 accord- \
ing to the fundamental control behaviors.
Figure 2.7 shows only the 1st stable
region. In this figure, the regions corres-
ponding to three fundamental control be-
haviors (1), (2) and (3) are given by
Aaeb, dabc and dacj, respectively.

Now, assuming the output converges
to some value deviated from the extreme N e A
value with no overshoot, let us determine 4402 040506 08 ©
the relations to be satisfied among the FIG. 2.7. Diagram for estimating
successive initial conditions. Both x and the control behavior and offset depen-
4y} are assumed to be positive. Then, the  dent on the initial conditions,

i
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relations among the successive initial conditions (x!, 4y}), (x}, 4¥8), . . ., (xh, 4y},
according to the principle of operation, are given by

x;=x(,)_“y€,h x;=x{~4y{, “ . ey x;';=xn-1—dy;;_1, PRI | (2.1)
where Ayl =yl =9 (i=1), yi=x (=0).

By summing up each side of the Eq’s 2.1, we obtain the following relation between
%y and Ayy:

ti= = (m-L) +(x-1), (2.2)

where xl, is the final value to which the input converges, ie., lim %1, % - %&.
Nn—=+»
Especially when the output converges to the extreme value, we have

sy~ —(s-1)+ 1 (2.3)

by letting x% = 0 in Eq. (2.2).

Whenever the control behavior starts with the initial condition (%, 4y;) satisfying
Eq. (2.3), the output converges to the extreme value (y'=0). If x% is chosen not
zero but a finite positive value, the parabolic curve, Eq. (2.3 is shifted down
vertically along 4y, axis. For example, Fig. 2.7 shows the curve, ade, for x% =0
and the curve for x% =0.1. It is seen from this figure that the output, starting
with any initial conditions between two curves, has an offset of less than 0.1 as
evaluated in the input.

Now, the 1st stable region can be divided into two parts by the parabolic
curve ade. In the part under the curve ade, the control behavior has the succes-
sive initial conditions along a parabolic curve which is formed by shifting down
the curve ade along 4y axis until it goes through the first initial condition
(x5, 4y). Then, the output converges, without overshoot, to the square of x' at the
intersection of the new parabolic curve with xj axis. As the output starts with
the initial conditions underpositioned further from the curve ade, the output has
a larger offset. It is also seen from Eq. (2.2) that when x%=1/2, the parabolic
curve disappears from the plane in Fig. 2.7. Therefore, together with the con-
siderations mentioned later, it may be concluded that the offset is within 0.5 as
evaluated in the input.

Let us next consider the upper part of the curve ade. Starting with any initial
condition in the upper part, the output moves along a new parabolic curve, which
is formed by the similar procedure as before. After some sampling instant, the
output takes the initial conditions on the extension of the new curve either in
region (2) or (3), as is shown by the chain curve in Fig. 2.7.

Let us next consider the case where the control behavior starts with any
initial condition either in region (2) or (3). To what regions in the plane does
the following initial conditon, (i, 4y;) for the region (2) and (xi, 4y!) for the
region (3), move respectively? The detailed analysis is not shown here, but the
computation has revealed the following facts: the boundary line between the
regions (2) and (3) corresponds to the line @ in the region (1); the boundary
line @b between the regions (1) and (2) corresponds to the parabolic curve afdb
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in the region (1); the line ¢j in the region (3) or the line ¢b in the region (2)
corresponds to the line #b in the region (1), where the direction of the arrow
corresponds to each other. From this result, it is seen that at the following sampl-
ing instant any initial condition in the regions {2) and (3) goes into the sub-region
afdbi in the region (1) but does not go into the region (3) from (2) and wvice
versa. In order to inspect further the region, in the region afdbi we shall show
the curves (chain line and fine line) corresponding to 4y, = 0.2, 0.4, 0.5, 0.6 and 0.8,
where the direction of an arrow corresponds to that of increasing %, and the
region afdki corresponds to the region ahc'’c in (2) and gec'g in (3), in which the
input converges to any value between 0 and 0.5 with one over shoot. It is also
seen that when the output starts with other initial conditions in the stable regions,
the output may overshoot the extreme value more than once, as the initial con-
dition deviates larger towards the upper right part of the parabolic curve ade.

In order to make the offset smaller, we shall be able to devise the following
counterplans from the inspection of the control behavior on the plane of the
initial condition (), 4y}).

(1) One of the counterplans is to introduce the saturation to the dimensionless
input variation, 4x} ( = x4, —%},), as shown in Fig. 2.8. In other words, the input
must not be changed te more than a certain size. Here it is to be noted that when
Kp=1 as shown in Fig. 2.8, the variation 4z, is equal to the difference 4y,_;. By
this counterplan, it may be possible that the control behavior is stabilized and
that the output converges to some point near the extreme value, that is; the out-
put has a smaller offset.

Another advantage is found in this scheme in connection with the fact that
the approximation of the static characteristics by a parabolic curve y=k4? is more
likely to be valid around the extreme value than far away from it. In the system
with the limiter shown in Fig. 2.8, the input variation is proportional to the out-
put variation only in the neighbourhood of the extreme point, and it saturates
whenever the system is away off from the extreme point. Hence, it will be seen
that the control operation is little affected by the fact that the parabolic approxi-
mation deviates from the real static performance characteristics at the position
far away from the extreme value.

New input Limiter Present input

increment ved

” //:ég\ -
A Xy AXL( K,Ji} / I
__4 Slope=1 - Kas

New inpuf

Fig. 2.8. Limiter to add into the optimalizing controller
shown in Fig. 2.2, in order to obtain the stable control be-
havior and little offset.

(2) From the previously-mentioned fact that the offset is less than 0.5 as
evaluated in the dimensionless input &', the next counterplan is to extend the
initial condition to the unknown region, which may be an unstable region, on the
plane of the initial conditions by choosing the maximum value x); of the dimension-
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less input such that the allowable assigned error is above 0.5 in the dimensionless
input. Then, the offset is less than the allowable assigned error, i.e., the output
has no apparent value of offset. At first sight, it seems to be possible that the
maximum value of the normalized input, %, or the maximum value of the actual
input, x4, is chosen freely. However, it is to be noted that free choice of %1 does
not correspond to that of %, or %, but to that of K, because of the relation that
Kpkxm=%n Of couse, for this case, the requirement (1) must be met in order
that the control behavior is stable, even when starting with the initial conditions
in the unstable region.

(3) When x,; is chosen to be a small value near 1, and the control behavior
starts with near x, =05 and smaller 4y, the output has larger offset, that is, it
stops at the position far away from the extreme value. Then, it will be necessary
to apply another step change in the input in order that the output converges to
the extreme value whenever 4y, becomes less than a certain specified value.
Althuogh such additional step change may cause an desired oscillation around the
extreme value, but it is necessary for the counterplan to eliminate the offset.

The following problems for these counterplans should be resolved under the
considerations of quickness of the response, described in the next section:

What value should be chosen as the saturation value 4x of the dimensionless
input variation?

How much extention to unknown region should be permitted?

What would be the relation between the extention and the saturation value
Axh?

Whether is it necessary to apply additional step change in the input?

2. 8. Quick response problem

In this section, we shall consider how to choose the saturation value of 4«
if the control is satisfactory both in the offset and the quickness of the response.
Here, it is assumed that the deviation from the extreme value or the offset is
allowed up to ¢ % of the maximum value of the dimensionless output, yi.( = w).
Then, we shall determine the relation between 4xj, the dimensionless saturation
value, and N, the number of moves required for the output to converge to a point
within the allowable error. It is seen that the value of the allowable error be-
comes larger with increase in v, and the allowable error evaluated in the dimen-

sionless input &' is v¥/,e/100 = xh/e/10.

In order that the input converges to a point within the allowable error
% /10 as quickly as possible, we must adopt 4x; determined by the following
procedure.

(1) The quickest control behavior is that in which the input enters within
the region of allowable error without overshoot and all the steps from the initial
point to the final are saturated in size.

There are two kinds of such a control behavior.

(a) The last computed step size of the input before it enters within the region
of allowable error must be, for the first time, less than the saturation value.

(b) If the above mentioned input variation is equal to or greater than the
saturated value, it may be possible that the input overshoots and goes out of the
region. So the saturation value must be chosen such that this does not occur.

Now, suppose that the input enters first within the allowable error at the
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sampling instant #7s. According to the case (a) where the input %) at 7% is
within it, we obtain x) = x5 — (%5, — x5-1) = xh-V ¢ /10. It is also assumed that
the input, starting from the maximum value %, reaches first the optimum value
in IV steps, when the saturated value 4x; is used all the way: 4x} = x},/N. From
this assumption, the above expression becomes 4x}— [(2 4x}))* — (4x})*1<xmev ¢ /10.
Consequently,

1 Nye
h=a (1 —2Y 2 ),
dx1z4 (x o) (2.4)
Also, in this case, by the requirement that 4y%_, must be more than 4x;, we ob-
tain Ay = x5 — ¥, = dx].

Similarly, simplifying the above equation gives

42%1=0.2. (2.5)

According to the case (b), the first input variation after the input enters with-
in the allowable error, must be more than 4xj, we obtain 4y’,—, = 4x;. Accordingly,

Ax;g-,ol,—- (2.6)

It is clear that Eq. (2.6) is limited by Eq. (2.5). The value 4x/ is also required
to be less than the allowable error, since the input %), at n7% is zero, and x/y.; at
(n+1)7Ts is equal to 4x;. Hence, we obtain 4x}° < x// ¢ /10. Consequently,

4% =< Nl/fé—- (2.7)

Then, the saturation value 4x; satisfying Egs. (2.4), (2.5) and (2.7) at the
same time is to give the control behavior in which the output, starting from y.,,
converges to a point within the error of ¢ % of y: in IV steps.

(2) When the input starts from an arbitrary initial condition, it is possible
that the input has the offset, even if the saturation value meeting the above re-
quirement (1) is used. As mentioned in the previous section, the offset is always
less than 0.5 as evaluated in the dimensionless input x'. Accordingly, if 4x is so
chosen that the allowable error is more than 0.5, i.e., xny ¢ /10 =0.5, then the out-
put has apparently no offset. Hence,

4dx1=5/Ny . (2.8)

(3) The requirement described by Eq. (2.4) is to be satisfied only when the
input starts from the maximum value. In order to satisfy the requirement (1),
even when the input starts from any value xi, it is sufficient that x) = dx}. Ac-
cordingly,

/
N%x—"," (2.9)
Xo

(4) As x)» becomes larger or 4x] is chosen smaller, 4%} becemes less than the

allowable error assigned independently. In such a case, the controller does not
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need to have the coefficient multiplier shown in Fig. 2.2, but may have only an
on-off element. Thus, in order that the control mode is proportional-difference
type, the equation that 4x;=x/ ¢ /10 must be satisfied. Hence,

NVe=10 (2.10)

The shaded region satisfying Egs. (2.4), (2.5), (2.7), (2.8), (2.9) and (2.10),
as shown in Fig. 2.9 (where xi/x}, is chosen 0.1 in Eq. (2.9)), is that in which
the offset is apparently zero whenever the input x; starts from the value less than
one-tenth of x, and that the input does not overshoot the allowable error, and
that the control operation is the proportional-difference type with the saturation
value in the input variation. In this region, the quickest response time is obtained
by the point A, where 4x;=0.706 and N=10. If we consider the region where
all before-named Eq's except Eq. (2.8) are satisfyed, a quicker response time is
obtained by the points on the line DA. If Eq. (2.9) is also omitted, a quicker
response time is obtained by the points on the line BAE.

=05% / 4

<
08 + T‘L(";'—"U| in £q.12.9) p —

»

ax (= 8% Keh)

Schurated value of inpul variation

‘.J 1 1 1 1 L 1 1 1 1 1 L L
2 4 ) 8 10 1? id
Number of moves Ni(=Xa/ax)

Fig. 2.9. Regions satisfying various kinds of design conditions.

3. Design principle of the control system

According to the analysis discussed above, K}, the proportional sensitivity, and
dxY (= dx;), the saturation value of the actual input can be determined by the
aid of the expressions that xj, = 4% N = Kykx, and 4x;= Kpkdx;' (see Fig. 2.3),
when %, the maximum value of the normalized input, %, the characteristic con-
stant, and (4x}, N), a desirable point in Fig. 2.9 are specified.

Here we list a couple of remarks on how to select the system constants in-
volved in this design method.

(1) Maximum value of the normalized input, xm

%n may be determined from the static performance characteristics of the con-
trolled system. If the value x» is chosen larger, the maximum value of the nor-
malized output, v ( = kx%), corresponding to x, becomes larger, and then the
number of steps, N, in which the output enters within the allowable error, be-
comes larger. Then the proportional sensitivity, Kp ( = xm/kx»), becomes smaller,
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whereas dx; ( = dx)/ Kpk) becomes larger. Accordingly, the offset may be larger,
since the frequencies of having the normalized input variation greater than 4x)
get smaller.

(2) Characteristic constant, k

The static performance characteristics of the controlled system have many
curves corresponding to the states of the disturbance, as shown in Fig. 2.1. Ac-
cording to this design principle, those curves must be represented by a single
parabolic curve with a common characteristic constant %k around each extreme
value. Except the case where the forms of those curves around each extreme
value, are similar to each other, what value should be chosen as the characteristic
constant k°?

Let us consider its effect for the case where the characteristic constant % is
chosen to be either of the following extremities: (a) the least value % and (b)
the largest value %, of all those curves. In this case (b), on the curves with
smaller % the apparent value of the allowable error becomes larger, and hence it
appears as if the system had a quicker response, but the control behavior turns
out to have offset, since the proportional sensitivity K, becomes smaller. On the
contrary, in the case (a), the apparent value of the allowable error becomes
smaller, and then the response becomes slower on the curves with larger 2 In
general, the control behavior before the cutput reaches the extreme value suffers
little change, but after that it may have a few overshoots. Occasionally, it
happens that the output oscillates around the extreme value. This phenomenon
results from the fact that the apparent value of K, becomes larger. Supposing
the case where the proportional sensitivity K, and the saturation value 4x; are
designed based on the characteristic constant % and the system is trying to search
out the extreme value of the characteristic curve having the constant %, let us
inspect the control behavior near the extreme value, and then determine the re-
quirement under which the oscillation does not occur.

Soon after the output overshoots, for the first time, the extreme value, the
normalized output variation is k.dx}, since the previous output is zero.

In order for the output not to oscillate, the following equation must then hold:

Kb dxs < dxg. (2.11)
By using the relation that 4x = 4xj/Kpk; in Eq. (2.11), we obtain

ks 1
2 - .
k1 Ax?

(2.12)

According to Eq. (2.12), the ratio k/k of the characteristic constant is larger as
4x; is chosen smaller. This means that there is less danger of the oscillation.

-

For example, if 4x; =02, then %/k is equal to 5. In other words, even if the
characteristic constant is five times as large as that used in design, the oscillation
will not occur, although the response time may be longer.

(3) Maximum value of the dimensionless input, xm ( = Ndx})
As is clearly explained in the previous section, once xy, is chosen more than 7,
the apparent value of the offset becomes zero, though the response time is worse.
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Accordingly, a little excess of x}, may be allowed over 7. On the other hand, once
¥, is chosen less than 2 or between 2 and 7 giving priority to the quickness of
response, there is a danger of more overshoots, especially when the input starts
from smaller x. If the input starts always with smaller output variation near
small x, we shall have less overshoots, smaller offset, and quicker response time.

Part 2. On-off type

1. Principle of operation

In on-off control type, the size of input variation is constant irrespective of
the output variation. This type is a special case of the proportional-difference
type, and requires the largest number of moves of its type, as mentioned previ-
ously. Here, in order to improve the response time, we shall consider the on-off
type with several different incremental step sizes: larger sizes are used when the
output deviates largely from the extreme value and smaller sizes, when the out-
put approches it.

2. Design principle of the control system

The problems as to what value should be used as the size of different steps
and when they should be switched from one to the other will be considered for
an on-off type with two sizes. It is assumed that the smaller size is a: and the
larger one is @, First, in order that the error is within ¢ % of the output, a:
must satisfy the following relation:

aéx,,,-‘ég-- (2.18)

If @ is used within the range of ra: (7: positive integer) from the optimum value
(x=0), then a should be equal to ra:, because a» < ra: causes slower response while
a,>7ay, more overshoots. Then, the problems are reduced to choosing the best 7
so that the response time is minimum.

The improvement of the response time may be evaluated by the decrease of
the number of moves required for the output to converge to the extreme value.
The number of moves, NV, may be then given by

T, Xmo_ K i

Nee N + @ T+ o (2.14)

We may use the condition that dN/dr=0 in order to determine 7 such that N is
as small as possible. Then, Eq. (2.14) becomes

10 \'72
= (‘/e—) (2.15)
by use of Eq. (2.13).

Further, it is required in this type of control to have the control condition by
which the switching-over between a; and a is performed. If, for safety's sake,
the control condition is determined by the variation 4y for larger «, then we
obtain

14.22’ = #(2ra1)’ = \ra)’} =8 kra,.

a Ta:
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Consequently, the control conditions evaluated in terms of @, are as follows:

if dy=3krai, then a. is used,
Co s : (2.16)
if 4y <3kFkrai, then @, is used.

Example: If ¢e=05%, then a1/%n=0.07 from Eq. (2.13), and r=3.7 from Eq.
(2.15). The control condition can be then determined by Eq. (2.16). If 7 is ap-
proximately chosen 4, the number of moves N, by reference to Fig. 2.10, is 4
when the input starts from #x,, and the maximum number N... is 6, which occures
when the input starts from the point near 2 in Fig. 2.10. In both cases, it is
assumed that the smaller size a; is chosen as the first step of the input for safety’s
sake and that the number of moves is counted till the output first reaches the
region within the allowable error. When the number of moves is compared be-
tween this type with two sizes and the case of the point A in the proportional-
difference type (see Fig. 2.9), the difference due to the initial input value is very
small when x is less than w,./2, but for the initial input from /2 to ., the
number of moves N of the one is smaller than that of the other. In this control
type, however, it is a disadvantage that the controller becomes somewhat compli-
cated, since the additional control device is required to switch the step size,

A
t . N — o~ =

B i T T
m
a

o
&y

F1G. 2.10. Control behavior by the on-off type of the
cut-and-try method, with ¢=0.59.

Part 3. Proportional-gradient type

1. Principle of operation

The control operation by proportional-gradient type is as follows. After a
test input dx of a constant size is applied to the controiled system, the resulting
output variation dy is measured, and then the gradient at the state may be appro-
ximately calculated as dy/éx. The input variation 4x,, which is applied from the
controller to the controlled system, is chosen in proportion to the gradient; dx,=
Ky(8y/6x). - Such a control operation is repeated at constant periods, making the
output converge to the extreme value.

In this control type, it is of interest to note that in contrast to the proportional-
difference type the sign of both 4x, and 4y, are not necessary to determine the
direction of 4xx:,, since the input dx is always applied in the same direction, and
the resulting output variation is measured and thus dy/8x can indicate a right
direction of 4x..;. Because of no logic circuit, its controller becomes simpler as
compared with the proportional-difference type. However, the output oscillates
around the extreme value or has the hunting loss, since this operation is con-
stantly repeated even after the output converges to the extreme value. The magni-
tude of the hunting loss is thought to be about §x/2 as evaluated in the input.

In a different proportional-gradient type, once the gradient at some state is
determined, the input variation is applied in the same direction as determined
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then without checking the gradient at every sampling instant, until the output
variation changes its sign. When the sign of the output variation changes, the
gradient is measured afresh by injecting the test input o, and then the above-
mentioned control operation is continued. In such a type of control, the response
time is about a half in comparison with the previously mentioned type of control,
but the controller becomes more complicated. So, it will not be discussed further
in this part.

2. Analysis of the control system

2.1. The first construction

As shown in Fig. 2.11, let us consider an analog computor circuit of the opti-
malizing control system with the proportional-gradient tyre. In this figure, 7 is
the contact of a relay operating once in every constant sampling period Ts. Here,
Ts is assumed to be sufficiently long as compared with the time constants of the
controlled system, so the dynamics effects can be neglected.

FIG. 2. 11. Analog computor circuit
diagram for a simple but incomplete
Controlted optimalizing controller with the input
sysfem_ increment proportional to an approxi-
Y=l X" mate gradient (=dy/éx) of the output,
or with the proportional-gradient type

of the cut-and-try method.

[nitial
input
sefting

gl

At some initial input value w, the test input dx is applied to the controlled
system (y=kx?) when r is closed, and then the resulting output is charged into
the condenser Ci. The voltage of C: is equal to —k(—%s-+0%)* calculated in term
of the voltage in the input side of the integrator. At the following operation,
once 7; is opened, dx is removed and the input is returned to the initial value %
At the same time, the charge in C; is transfered in the condenser C of the inte-
grator through the resistor R, and thus the output of the integrator is equal to
%, subtracted the value proportional to the difference between the output voltage
of the controlled system and the voltage charged in G, the value approximately
proportional to the gradient at xn. Accordingly, if the decrement from %, is de-
noted as —dx,, the following relation holds at steady state for the cases of the
initial values Fx» (Hereafter the signs follow in the same order).

Cci[:i:(ﬁ:xn+8x)2$($xn$AXn)2]. (2.17)

Axn'-‘:k'

By using the dimensionless quantities, 4%u/%m = 4%x, Kol G = 4, 0%/ Xm = s kxm% =K,

we can also write Eq. (2.17) as follows:

Axn=~%[<2/1$?%)ﬂ:\/<2/1$%>2i K2 aps ) ) (?.18)

Figures 2.12 (a) and (b) illustrate Eq. (2.18) for the cases of F respectively.
Here it is to be noted that different units are being used for the ordinates of



On Various Methods of Optimalizing Control 21

Figs, 2.12 (a) and (b).
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FiG. 2.12. Sizes of the input increment and decrement versus the loop
gain in the cases where the input starts from a low-level side and a high-level
side of the optimum point, respectively, in the system shown in Fig. 2.11.

2.2. The second construction

Let us next consider the second analog computor circuit shown in Fig. 2.13.
In this figure, 7, 7. and 7; are the contacts of the relays, operating in this order
at a constant sampling period 7s. Although this circuit is more complicated than

that of Fig. 2.10, the control operation is more complete and clear to be under-
stood.

Coritrolled
Sysfem
'?,:;'%‘xé

.
initial
input
setiing

FIG. 2.13. Analog computor circuit diagram for a complicated but complete
optimalizing controller as compared with that shown in Fig. 2.11.

Since the time constant of the integrator is represented by' RC, the input
variation 4x. is given by

1 (%
Axn=-§550 Ayndt, (2,19

where, for ¥z,
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Ayy = & B( & %, + 0%)° T kxl. (2.20)

By substituting Eq. (2.19) into Eq. (2.20) and using the previously mentioned
dimensionless quantities, we obtain

A%, = K2 hp = 1), (2.21)

for Tx, where K,= »C

3. Design principle of the control system

Two control circuits have been proposed and analized theoretically. From the
result, it is seen that in the circuit of Fig. 2.11 the control behaviors are quite
different according as the input starts from the positive side or the negative side,
since in Fig. 2.12 (b), the input variation 4x» can always be no more than o,
while in (a) it attains to several tens of dx. Accordingly, if Kiis chosen suitably
small such that the output does not overshoot in the latter case, then the output
does not reach the extreme value in short time in the former case. Therefore,
K should be chosen larger so that the output reaches the extreme value as quickly
as possible for the former case, then, for the latter case the size of 4x, should be
limited as in the proportional-difference type. Because of the simplicity of the
construction, this circuit may be applicable to the controlled system, especially
in which the input starts more often from either of the two sides.

The circuit of Fig. 2.13 compensates the unsymmetrical character of Fig. 2.11,
but requires rather complicated programing and construction. When the input
starts from larger 2 as compared with x, and has no overshoots, the number of
moves, N, in the case of Fig. 2.13 is given by

Ax'():ZI{zM/Ko, d}(f1=2Kg,{,&/{1:2K2/,£X()(1“'2K2/1>, PN 1

(2.92)
Lty =2 Kopidn = 2 Kophal 1 — 2 Ko™, |

by neglecting the terms of pin Eq. (2.21).
From Eq. (2.22), the number of moves N

before A. (=x./%x) reaches a point within 20 .
/2 starting from any A becomes \‘ \ ‘[ ] |
16 A=
N =logu(n/22)/logn(l =2 Kop). (2.23) = [V
Figure 2.14 shows N as a function of loop é 12 T x\
gain X, for A,=10. In this figure, it is . \ \
clear that the values of K, for N<1 are g8
meaningless. 5
4 < N
Chapter III. Effects of Dynamics of ™
the Controlled System on the 0

0 2 4 6 8 10

Cut-and-Try Method Loop goin K,

When the cut-and-try method is adopted
in an optimalizing system, the waiting
interval or sampling period for the measure-

FIG. 2. 14. Relation between the

number of moves and the loop gain
in the system shown in Fig. 2.13,
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ment of the resulting output after the introduction of a change in the input is
usually assumed to be sufficiently long for the transient caused by the dynamics
of the controlled system to die out. Thus, it takes very long time for the system
to find an optimum state by this method, especially when the controlled system
has large time constants. So, the sampling period should be chosen as short as
possible for the output to reach an extreme value quickly.

How much shorter we can make the sampling period will be discussed under
various kinds of design conditions in this chapter.

1. Various kinds of design conditions

When the dynamics of the controlled system is nct negligible, several design
conditions to be taken further into account are the following:

(1) When the input is at a desired value which corresponds to the extreme
value of the output at steady state, the overshoot or undershoot of the output
should be limited in size. Otherwise, the system will search largely back and
forth through an extreme value, and have much hunting loss due to such an un-
desirable behavior.

(2) Initial conditions x, yo and j, are to be taken into account in order to
satisfy the condition (1), and if necessary, ¥, should be limited.

(3) By the noise interference, the control action is not to be misled near an
extreme value or on the way to the value.

(4) When the on-off type of the cut-and-try method is adopted, the hunting
loss exists inevitably due to the oscillation about an extreme value. From the
economical point of views, this value should be as small as possible.

(5) Other conditions: Once the reasonable size of the overshcot is determined,
the incremental size of the input should be chosen large enough to cancel the
overshoot and the initial velocity. Otherwise, unwanted subharmonic oscillations
are inclined to take place in the system.

Let us determine the relation between the incremental size a of the input and
the sampling period T to satisfy five design conditions mentioned above.

2. Effects of the dynamics of the contrelled system

In this chapter, the effects of the dynamics of the controlled system are dis-
cussed only for the case of the on-off type of the cut-and-try method, in which
the size of the incremental input is constant independently of the resulting vari-
ation of the output as shown in Fig. 3.8.

For simplicity of computation, it is assumed that the dynamics of the con-
trolled system exists only in Go(s), the transfer function of the output linear group
in the controlled system (see Fig. 1.1). The effect of Gi(s), the transfer fnnction
of the input linear group in the controlled system, will be discussed in a later
section.

The input x changes incrementally towards a desired value of the input cor-
responding to an extreme value of the output. Since it generally requires a great
deal of calculation to determine the output y for the incremental input x, the in-
cremental input is approximated by a ramp input with a constant slope S(=a/T5s),
and the approximate solution will be compared with an exact one in the sub-
sequent section. Now, in view of the condition (1) above, let us derive the re-
lation which must hold between the parameters of the dynamics and the slope S
so that the output »(=y;) does not exceed the assigned allowable overshoot or
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undershoot at t=1%/S, the moment when the input reaches the desired value, which

is, under the normalized coordinate (x, y), equal to zero.
If %, starting with negative initial value —x;, goes to zero giving an extreme
value with a positive slope S, an equation relating between x and y* is

9% = k(St — x0)°. (3.1)

Gols) is assumed to take either of the two forms:

Gals) wne” ™ 20

N 2 Coms + 0k .2a
e"'LS

~ (tos+1) (rues+1) (3.2Db)

If the initial conditions of y(#) are specified as yo and 3, Laplace transform
Y(s) of y(¢) for Eq. (8.2a) becomes

(,02 e—'LS ( 1
Y(s -———31—--—— -2 Skx B =
(s) = '+ 2 Cwus + o b5t i+ > )
N _ .3
(s+2¢Cwn)e " o e ™ . @
+ ST 2Cons+ b § 2 Cons + of Fo-

Then, the inverse Laplace transformation of Eq. (3.3) yields

() = kS A(£) =2 Skxg+ B(t) + {1 — C() )y + C(#) » 3o+ D(@) « 50, (3.4)

where
A = \/13-@ ¢St in (V1= Con (= L) +¢1) +- zw 1A=L) oy,
g SenE=E) ;
B(t) = P sm(\/l —Cop(t—L)+ @)+ (#—~L )"E’
“{:mn(t L)
Cct) = Ti CMSIH(\/ 1—Cwn(t — L) + @),
D(t):mi e sin({ =B onlt ~ 1)),
” -
and
aNI=C 4 -1 o212 eI
¢; = tan q Zo0=3"’ ¢, =tan oe=1 ¢;=tan —

Before proceeding further it is convenient in the present problem to introduce the
following dimensionless quantities:

A =x0/xm, ,uzd/f’Cm, B=wn(xo/S——L).

By using these dimensionless quantities, from Eq. (3.4) we have

3 -B'(ﬁ)+{1—1-<:'(B)}+C'(B)/12 = F Alz T SmoD'(B)

(8.5)

Kfi =5 S ANB) —
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where
A'(B) = \/Tzc—ze @ sin(VI=E8+ ) +2(4¢2 = 1) — 425+ B,
-=ép
B’(B)=\/i Czsm(\/l CR+¢)+8—2,
-¢p
C'(B)=——; ),
D(g) = Vi=¢
B =g svimes
Similarly, for Eq. (3.2b)
’ 2 “‘L:i)ﬂl 2 ~tvinp , 20+ w4 1)
AlB) = (1+y)2{ Ve +y2(y_1)e(+ns+ v y;;
2
__2(1/:2-1) P (v+1) B,z}

= _flil)y 1 - I
e A B U

(14v),,
O = 2o L,
r—1 v
(1+v),,
L2+ ¥s
g =_Y )= _ —(1+v)5’}
D'(g") D_l{e e ,

where
v = 702/701: B’ = (xO/S - L)/Tsum; Tsum = T + T02

Thus, from Eq. (3.5), 8 or ' can be calculated as a function of ¢ or » respec-
tively with y¢/2’y; as parameter. When the initial conditions are v =y and
$ =0, then B or f is shown in Fig. 3.1 (a) or (b) respectively, where ys/i*yn is
specified as 0.5, 1 or 5%

5] |
. e
L VAL ~ AT gen=05%
\ I — 1
.-ﬂf |16 \ /.[/ T ] I/U( 1
% B /1 A1 L <I:i — 0
N 5
Qg N —L2 8
Al !II)_ £
0 =0
0 02 04 05 08 IO 0 02 04 06 08 10
¢ v =",
(a) (b)

FIG. 3.1. f and # for different- values of { and v, respectively,
with ys/2%*=0.5, 1.0 and 5.09¢ as parameters,
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3. Effect of initial conditions
When the dynamics of the controlled system is negligible, only x; and 4y, have
been considered as the initial conditions, but further conditions y, and j must be

taken into account if the dynamics of the controlled system is to be approximated
by a 2nd order lag system.

3.1) Effect of inilial position y,
According to the fourth term in Eq. (3.5), for ¢<1, the error E; in ys/ym due
to the initial position is less than the following value:

Ey — S e s
M=y V1I-¢ ’

¥ 16 ‘

(3.6) %

Figure 3.2 gives E; in terms of ¢ with 2 i
as parameter. It is to be noted that £;
has a peak near £{=0.5. On the other ‘
hand, E is negligible for ¢=1, because # o =02 (|
8 for assigned value of ys/yn is sufficient- |\
ly large. If the error due to the initial “{¥s
velocity is taken into design conditions ;;
as given in the following part, then F, -
may be negligible even for ¢<1.

3.2) Effect of initial velocity
The effect of the initial velocity i, is 4 ——
evaluated from the fifth term in Eq. (3.5).
For ¢ =1, the error Es in ys/vs due to the
initial velocity is less than the following !

D N
05 |
value : 0 I 2
Es A E_gﬁ P ) 0 DZ
Whas= gy C<D
2 (8.7) FIG. 3.2. Error E: in ys/y} due to
= 7 Be " (C=1). the initial position yo.

Similarly to the case of the initial position y, the error E; for £>1 may be neglec-
ted for the value of 8 in Fig. 3.1 (b). As is clearly seen in Fig. 3.3, which is
obtained from Eq. (8.7), there is a peak near ¢ =05. Figure 3.4 gives wn(Ts/p— L)
in terms of ¢ and 2 for the cases where the effect of j» on »s/v is equal to 0.5,
1 and 5% respectively under the condition that j, equals kx,,S. It is to be noted
that if this condition has to be met even for smaller 4, it imposes a more severe
restriction on the system design than that discussed in Sec. 2, especially when ¢
is also small (see Fig. 3.1 (a)). If Ts/e in Figure 3.4 is taken as ‘the designed
value, it is necessary that the control action is stopped whenever ¥, exceeds kxmS.

4. Eifect of noise

The control action is misled by the interference of the noise existing in the
system or cntering from the outside of the system in the sign of the input rather
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FIG. 3.3. Error E» in ys/y¥ due to 10 ivz_ \ N
. . (A=1071"= S<o
the initial velocity jo. { ‘-":f~\ [ S |
LN \§\‘r:
than its size, so that the performance of B N B
the system may be unstabilized. As the ] Z e
variation of the output to an input change N ,
gets smaller, the control action may make v 5
. . 02 0 .
mistakes by the noise. : 04 08 4[]8 0
The smallest variation of the output T
takes place in the oscillation around an FIG. 3.4. Relation between “’"(';f'L)

extreme value. So, at first, let us deter- and ¢ obtained from Fig. 3.3, for the cases
mine the magnitude of the smallest one. where the effect of 3 on ys/y) is equal
Figure 3.5 shows a typical oscillating be- to 0.5, 1.0 and 50% of ys/y* under the
havior around an extreme value. Accord- condition that jo=FkxwS.

ing to the condition of the oscillation, the

following relations are to be satisfied =~
among the initial conditions at the points
0,1, 2 and 3:

2(Ts) =y1(0) = v(Ts) = v,(0),
M(Ts) = 2(0) = y3(Ts) = 2(0), -

) (3.8) =
yo(Ts) = 5’1(0) = 5’2(T3) =5’s(0),
_')'71(Ts) =J"2(0) ot _}’ls(Ts) = 5’0(0).

Also, at the intervals 0-1 and 0-2, -

2
sult) = {1 = COYEL 4 D(0)30(0) + C()30(0),

2
Yld) = —{1— C(t))le—g— + D(#)$:(0) + C($):(0). FIG. 3.5. Typical control
behavior around an extreme
(3.9) value,
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From Egs. (3.8) and (8.9), the variation 4¥um =3(Ts) —2:(7s) is determined as
follows :

Aymm=kaa{ 2 D(Ty) _1}’ 9100
14+ C(Ts) - C(Ts)m
where C(Ts)-—[dcm ton D(Ts) = dlzi(tt)],q ’

for Eq. (3.2 a),

Wne =Swn(Tg—L)

C(Ts) = =i sin{yI=Cwon(Ts— L)},
D =fwn(Tg—L) )
(Ts) = - —Vi—C—Sln{Jl < (Dn(Ts L- @y }:

for Eq. (3.2 b),

. B _(14v)  (Ps—1)

1 (e (VT L) Tgam) e v Tsum )
Toum
(Ts=L) 1 (1+\-).(Ts—L)}

{ —(14-\4)' Teom — o e—~—v~-~ Teum

, _1+»
C(To) =7+

D(Ts) = D+

=

Figure 3.6 (a) or (b) gives 4dy.m in terms of waZs or Ts/Tww with & or » as
parameter, respectively.

! /L\ I l
2
el AR
1.0 7= P ___\/*\_- 'JJOB =
08 - / o2 | S
* g 05 R A K (/
3 a - 04 1y/
04 % |
3 /4 ‘e / |
5 /] > / I
002 L 02 ¥ L]
3 o =12 N V0. / :
Q ﬂ'é ‘i DIB yARTIA
0.0 e 1.0 =% 008 /
006 BT — 9 008 2 /]
e ! |
004 / 0.04 i j
z.O'-,L
002 002 l
001 iR
oot TUo0) 02 04080810 2 4 6810
W 2 4 6810 20 40 0
wW,(T,-L) (T-L)/T,,

(a) (b)

FIG. 3.6. Magnitudes of dymin/z?y) for different values of w.Ts and
T's/ Tsam With ¢ and v as parameters, respectively.
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Let us next consider the effect of the noise on the control action. The pro-
bability with which the sign of 4y(#), defined by ¥(#) — (¢ — T%), is misled by the
noise #n(#) is equivalent to the probability of making z = 4y(#){dy(t) +n(¢) -
n(t— Ts)} negative. When the minimum value 4y, around an extreme value is
taken as 4y in the above expression, an average value Z and variance ot of a

statistical variable z are easily determined as follows:

Z =AY, (3.11)
ot = (2 = dym)? =2 4955 {0(0) — ¢(T) }, (3.12)

where ¢(#) is an autocorrelation function of #(#) and an average value #n(?) of
#n(t) is assumed to be zero.
From Egs. (3.11) and (3.12), we can deduce the following relation:

Den =g () 8D, (3.18)

e Ym

where ¢(#) = ¢(0)e™""* in Eq. (3.12).

Provided that we fix the quantities = and y¢(0) representing the statistical
property, an allowable probable error, and then Z/¢: assuming the probability
distribution of z to be Gaussian, we can calculate the minimum allowable value
of A/ Vi from Eq. (8.13). Figure 3.7 shows the
dimensionless noise level y ¢(0)/y% versus 4ymew/yin
with 7/t as parameter when an allowable pro-
bable error is taken as 0.5, 1 or 5%. By using
Figs. 3.6 (a), (b) and 3.7, we can determine the
minimum value of wx(Ts— L) and (Ts— L)/ Tsum
for z under the interference of the noise, respec-
tively.

5. Magnitude of hunting loss
When the on-off type is adopted, an oscillation ™
about an extreme value inevitably takes place. The ‘ P
. . . 0 001 092 003 004
magnitude of hunting loss is dependent on only MYy 4
Gi(s), regardless of Go(s). If Gi(s) is assumed to h
be negligible as mentioned above, the hunting loss
becomes simply k4°/2. The magnitude of hunting
loss for the case where G;(s) is not to be neglected
is presented in Sec. 2 of Chap. IV.

* ’
i s -
- i -.l
%i 1
0 & ,

FIG. 3.7. Diagram for de-
termining a limited value of

Ayu:in/y::'

6. Comparison between an approximate solution and the exact solution
Since the solution calculated hitherto in this chapter is an approximate one
with replacement of an incremental input by a ramp input for ease of calculation,
it is necessary to compare an approximate solution with the exact one.
Although the exact solution is complicated and troublesome in the numerical
calculation, it will be determined as follows.
The expressions corresponding to Egs. (3.3) and (3.5) are
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Y(s) = i: k(= 5+ pa)’ = i-ﬂs ’ s‘"’+20)2’ae);:s+ w3
-z -zs
* s(zsjzzciu:;)i w; ot 2+2§wns+wz g (3.3
y;%?‘ ~COnTy= L)+ 2 1),+(2n” 1)1,20(71Ts L-pT)
e 1),;_]pC(nTs L—pTs) +C(nTs—~L)-22- X’yi}‘,
ok kx,n(io/Ts) C o DT = L), (8.5)

where x)/a=n—1.
For Gy(s) of Eq. (3.2 a), the calculation of Eq. (3.5)' yields

y(nTy) _ o, 1,
Aym C(?‘lTs L)+( )g+C(ﬂTs L))zy;, 1 kxm(a/Ts) (DnTsD (”Ts L)
2n—1 K . ntl .
+ [wsin(A + B) — w™*'sin{(n+1)A + B}

(n—1)2" (I—-2wcos A+u?)
2 K

(n—1)* (1—2wcos A+u?)?

[wsin(A + B) —w’sin(A—B) — (n+1)w"" ' sin{(n+1)A+ B} +2(n+1D)w"**?
xsin(nA + B) +nw" P sin{(n+2)A+ B} — (n+ 1)w" *sin(n — 1) A cos B

+w " sin(nA + B) —w*sin B]—

+ (n—1Dw" " cos(n—1)A +sin B—2nw" ™ sin(n-+1)A4 cos B
+ nw™ *sin(nA + B) — 2w’ sin B], (3.5a)
where K =g sl \TZ 2, w = e ST

A= '—\/l—Czwn(Ts"L), B=\/1T52wn(nTs—L)+993-

Similarly, for Eq. (3.2 b),

)’(nTs) 1 1
= —CnTls—-L e
pons (nTs )+ )2+C(nTs L)- Ty *+ 2 Tl TS
o« Lo, 1y 2n—1[Ko(l-2") Kou(l u")
T D'(nTs— L) + (n—1)? 1-v ]
w(l=2") _ w7\ _ L ju(l—u") nu"'
(n—l)lK‘{ (I=2)?  1-v } K{ (=u)? 1= H (3.5b)
where
K1 = Dl e-u.%)"(nf:t;f), [fz = 1 e_(1+wa17;:";L’
e »
(l-f'\‘) (Ts—L) -L
v=e v Tsam R U= e(l*\l)’lmm

Table 3.1 shows several examples of comparison between an approximate solution
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TABLE 3.1
[ £=10 £=05 | »=0
s/
g Tl es |10 | 80 0 | 10
(%) | =1 | o5 | o | 0% | 050
— ! | L
| a=2 | 005 | 00 | une o 0.25 0.43
= ubnparmonic .
01 | Aysio/3y; 0.75 ( 0.50 E oscillation | .40 0.60
| '
ymfkinS 67 | 104 | L 100 —
onTs | es | 25 | 11 as |l T/ Toom)
=y | 003 | o017 | 25 | 040 0.29
(y;) o i I ]
't (a=2) | 008 | 016 | 14 060 | 024
0.2 Bymin/ v i 4.0 ! 36 | 16 38 | 40
gmlkzas | 10 | 31 | 120 30 | —
onTs 70 | 50 { 2.2 [ a6 |1+ Taam)

and the exact one for ¢=1.0, ¢=0.5 and »=0 under the initial conditions y,= ;" and
¥ =0, when L=0. Figure 3.8 gives a few typical control behaviors. It is to be
noted that an unwanted oscillation is occuring about an extreme value in Fig. 3.8
(b), and that the control action is stopping when i, >kxxS in Fig. 3.8 (c).

General remarks from these comparisons are given as follows:

(1) The magnitudes of the overshoot or undershoot according to the exact
solution are smaller than those according to an approximate one. This trend be-
comes more obvious with increase of the incremental size u, and justifies the
design based on the approximate solution.

(2) Not being able to cancel the overshoot, smaller 2 is apt to cause an un-
wanted subharmonic oscillation, when a large overshoot is allowed. Therefore,
an allowable overshoot or undershoot is to be determined under consideration of
the size of u.

(3) The maximum value j. of y on the way to an extreme value becomes
smaller with decrease of x. This results from the increase in the apparent value
of mnTs.

7. Effect of Gi(s)

In this section the effect of Gi(s) on the design of the system will be con-
sidered.

Laplace transform X(s) of x(#) for an incremental input x™(#) is

—sTy

X(s) = Gi(s) - L=¢ "

i‘, (— % + pa)e s, (3.14)
S p=0

If Gi(s) is assumed to be approximately represented by a first order lag system
1/(1+ ws), from Eq. (8.14) with the initial condition % = %, the value x%(nTs) of
x(2) at the instant 275 is
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F1G. 3.8. Actual examples of control behavior with L=0.
x(nTs) _ p 1 _Ms
x,’l‘,-; -7 1 — ¢fsl™ L1—emwsl, (3.15)
. A 20 a
h x_°.= —1=v—~,z=—n and =
where a=" H Tom 3
Figure 3.9 shows the relation between r;/7s and the deviation of x(;:_Ts) from
m

the desired value x(n7T) = 0 for different values of /4. For instance, if A=1 and
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#=0.1, the undershoot in x(27Ts) reaches 10% of the maximum value x5 of x#™ at

7;/ T =1.44. Then, because x(#) is squared at
nonlinear element, which is assumed a parabo-
lic form, the size of y*(#) becomes 1% of yi.
So, if an allowable undershoot is 1% of 5%,
then w;/7T must be chosen, under consideration
of the additional effect of the time lag element
Go(s) which follows, so as to make /7 less
than 1.44.

8. Example of design

According to the design conditions dis-
cussed above, when the on-off type of the cut-
and-try method is adopted, a size u of incre-
mental input and a sampling period 7Ts can be
determined. And, when the proportional type
is adopted, only a sampling period Ts can be
determined after the determination of a size u,
since the size u is restrained by the conditions
described in Chap. II in this case.

An example of design is given to explain
the design principle for determing both T and

S /
12 L/

A
™~
P

|
I=)

*

W
oo

N

XnTy )/ y

0

A

0 o4 08 12 18 20
BP

F16. 3.9. x(nTs)/xj2 as a func-

tion of w:;/Ts with 2/y as parameter.

¢ so as to satisfy all design conditions. For instance, let us determine both T
and u, under the design conditions that ¢ is 0.5, L is 0, the hunting loss is below
19, the allowable overshoot is below 05% and the effect of the noise is 0.01 as

evaluated in terms of 4Vmwm/vm. The shaded
region in Fig. 3.10 satisfies all design con-
ditions, and the number bracketted corre-
sponds to the number of the design conditions
described above, and the arrows show the
favorable direction. In the design where 4
can be taken as large as possible, point 2 in
the desired region is supposed to have the
quickest response time.

Intersecting point 1 of the straight line
(4) and the chain line in Fig. 3.10 offers a
dimensionless time w,7Ts which is required
for an indicial response to reach 99% of the
steady state value with the size u corre-
sponding to point 1. If point 1 is assumed as
a design point in a conventional technique,
it is possible for the response time to be
speeded up by the factors of approximately
3 in the present design method.
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F1G. 3.10. Example of design
satisfying various kinds of design
conditions  that  ys/yX =0.59%,
AYmin/y=0.01 and H/yk=19%, with
{=0.5 and L=0.

Chapter 1V. Peak-Holding Method

The peak-holding method is characterized by its quicker response and by its
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simpler construction of the controller than other methods.

1. Principle of operation

A typical control behavior by the peak-holding method, when the dynamic
effects of the controlled system are neglected, and the functional diagram of the
optimalizing controller for this method are shown in Figs. 4.1 and 4.2, respectively.
In Fig. 4.1, suppose the input x" is below the desued value %iac, which corre-
sponds to the maximum value ymax of the output y". The input driving device is
then set to increase the input at a constant rate. At the time instant 1 (Fig. 4.1)
the input passes the desired value #/lsx. The output y” is thus the maximum value
¥/l at the time instant 1 and decreases after the instant 1. Now if the peak-
holding circuit, shown in Fig. 4.2, is so designed as to follow the output exactly
when the output is increasing, but hold to the maximum value after the maxi-
mum is passed and the output starts to decrease; then there will be a difference
49" between the output yj of this peak-holding circuit and the output y" itself
after the time instants 1. This dlfference is shown in Fig. 4.1 (d). When this
difference amounts to an assigned allowable value, denoted by ¢ in Fig. 4.1 (d),
at the time instant 2, the direction of the input drive is reversed, while keeping

E
, !
I T .3 —

X"

|
I
7
i

F1G. 4.1. Typical control behavior§by.the peak-holding method.

Signal
Yeset'rmg <—-——]
circuit f
|
” ) "
Output " of p—— Input (x5 fo

controlied system [ Peak % AY |davice vitnrate| CONTrolled system
— > holding —>(+ 8 reverscl when &=
| CIYCUIf _ Ay‘orﬁiy’deC

L 3

Ailowc:blei difference
sefting ¢

FIG. 4.2. Functional diagram of the optimalizing
controller for the peak-holding method.
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the driving speed the same as before. At the same time, the signal resetting
circuit shown in Fig. 4.2 is triggered and then the output ¥4 of the peak-holding
circuit is reset to the present output of the controlled system.

Here, instead of the difference 4y”, we may use the time integral of the differ-

ence, 5Ay”dt, to generate the drive-reversal signal. In this case, it is expected

that the direction of the input drive is less likely to be misled by the noise inter-
ference.

After the instant 2, the input decreases and the maximum output reaches
again at the time instant 3. From this instant, the difference between the output
of the peak-holding circuit and the output of the controlled system again starts
to increase. At the time instant 4, the difference reaches the allowable limit ¢
again, and the direction of the input drive is again reversed. At the time instant
5, the input becomes x%.; again and the output reaches ).

This way of generating the drive-reversal signal is less subject to the noise
interference as compared with the way of using the time derivative of output to
generate it.

The period of output variation is the time interval from the instant 1 to the
instant 3, and is called the hunting period 7. The period of input variation is
then 27. The extreme variation 4 of the output (Fig. 4.1 (c)) is called the
hunting zone. If ¢ is the amplitude of the triangular input (Fig. 4.1 (a)), then
4=Fka'. The difference between the maximum value and average value of the out-
put is called the hunting loss H (Fig. 4.1 (c)), because of the fact that the output
changes along a series of parabolic arcs, H = (%)A = (%)kcf.

It is then clear from this discussion that in order to reduce the hunting loss
for better efficiency of the system, we must try to reduce the amplitude of input
variation @ or the allowable difference c. However, in practical applications, these
values are limited by the undesirable effects of the dynamics of the controlled
system and the noise interference on the control operation of the input drive.

2. Effects of the dynamics of the controlled system

In the operation principle of the peak-holding method, it was indicated that the
control action was based only on the difference of the output. Accordingly, in the
analysis of the system, it is also convenient to refer the output and the input to
the optimum point, as discussed in Chap. II.

So, referring to the normalized optimalizing control system shown in Fig. 1.1,
we shall first determine the general relation between the normahzed input x* and
output y for the peak-holding method.

For the input x* specified as a triangular wave with the period 2 7 and the
amplitude @, the normalized pseudo input x is given by

_8a< (=" 1 ~(2n+ +1, [(2n+1) /2] wpt ) 2n+1. —[(2n+1)/2] ot
R (2n+1)2(2j)LG‘< f“"’>e ’ “Gl(" 5 Jwn)e °J’

(4.1)

where wy=2r/T.
Then, the output y is given as
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_16@2[3 © ® (_1)n+m 91
Y= ] ﬂ=0§0(2n+1)2(2m+1)2[G0{ (n+m+Djwt G < 5 ]wo> (———'2 ]a)o)
Xe<7z+nz+1)i¢uot_ Gol(n—m ]w0> G;( n+ 1_70)0) G < 2 ﬂ; +1. ) e myjwot
—Go{(m— n)jwe} G,\ n+1 ) ( ) — (n=m)fwet
7+ 2m

+G{ = (n+m+1)jwo)+ G;( 5 ]wo) G,( - 2+ 1] o)e‘("+m+1’j‘”°t ] (4.2)

The average of the output with respect to time, being here referred to the
optimum output (=0), gives directly the hunting loss H. Equation (4.2) shows
that this average value is the sum of terms with » = m from the second and the
third terms of that equation. Therefore, using Go(0) =1, we have

H =

2% 1 2n+1 @2n+1),
m n2=o(2n+1)4G’( 3 ]“’)G( ——‘2‘—]@0)- (4.3

This equation can be easily checked by observing that when the dynamic

effects are absent, Gi(s)=1, then the series can be easily summed H= (%—)kaz as

determined before. Equation (4.3) also shows that the average output and hence
the hunting loss are independent of the transfer function of the output linear
group.

Equations (4.1) to (4.3) fully determine the performance of the optimalizing
control system once the values of @, k and w, are specified and the transfer func-
tions Gi(jw) and Go(jw) are given. However, for various forms of Gi(s) and Gi(s),
it is not always possible to carry out the summantion in these equations. From
the practical considerations that the hunting period is usually small and these
transfer functions can be closely approximated by the first order or second order
lag system, we shall only consider the cases where these transfer functions are
combined as follows:

(a) Gi(s) =1/(zas+ D(ries+1), Go(s) =1, (4.4)
(b) Gi(S) =1, Go(S) =1/(T01S+1)(7023+1), (45)
(¢) Gi(s) =1/(zis+1), Go(s) =1/(res +1). (4.6)

Case (a):
By substituting Eq. (4.4) into Eq. (4.1), we obtain
aﬁ ( . l)n e[(znﬂ)/z]jmnt
= AL {1x @+ Dj(ora/2) b {1+ @n+ 1) j(wor/2)}
e—[(zn+1)/2j;«u0t ]

T 1= @ut D orri/2) 1Al — @ n+1)j(wora/2)}

(4.7)

The result of resolving Eq. (4.7) into partial fractions, carrying out the summation
and simplifying the expressions is
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—(—1Y b TiL | Ti (/T | Wb
_.( 1) ST{( T 1) ( T + T) (TII/T)"(‘.g‘)/T) COSh(T/ZT,'])
(&;2/ T) e"‘”"v)((‘ﬁ) iy
" (ea/T) = (zal T)  cosh(7/2 T,z)} (4.8)
1 t . 1
when ——2—s<—T—z)g_2_,
where i=0,1,2 ..

S(=2a/T) in this equation denotes the input drive speed.
The hunting loss given by Eq. (4.3) becomes

a1l + ()

(ti/ T)° T (ria/ T)° T
24 : g 1.1 . A A— L ) .9)
+ {(m/:mz e T G T T - (Tiz/T)ztanhZTiz}) (4.9)

Similarly, the output y is calculated as follows:

y=2k5‘21‘2[%(—;, —i)z— (%}4— ’;:’)(ftr—-,)
33+ F) + et (1-1) - (7))

“ {(131)2 -Hl’u)((f/ﬂ)—i) (5{2)2 -(T/ {3}(1/7)'1)}

T/ cosh(T/2 i) T/ cosh(T/27ti)
1 it L =20/ T ) ({2 =) i 4 e—(a'r/n-,)(«t/i':-f)
2{(f,,/T)—(r,,/T)>2{( ) “cosh*(T/2 ti1) r,;) (T) " coshi(T/2ti2)

_ 2(5’1) (m)z o~ UTImi) + (T 2T =1} }J (4.10)

T cosh(7/2zi)cosh(T/27iz)
1 t . 1
when _"Q‘S(‘—T"'Z)g'zf
where i=0,1, 2, .

From the principle of operation, it is seen that the most important quantity
to be assigned for its design is the allowable difference ¢. By definition, ¢ is_the
difference of the maximum value of the output » and the value of y at t/7'=1/2,
the time instant at which the input drive is reversed. If the instant correspond-
ing to the maximum value of the output is #* then the allowable differrence ¢ is
calculated as

c=9(1/2) —y(+*/T) (4.11)

by use of Eq. (4.10).

To determine t*, we may use the condition dy/dt=0 at Eq. (4.10). Then,
noting that the instant of the input drive reversal must come after the instant of
the maximum output, that is, #/7°<1/2, we obtain
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() (ca/ TV, e”Fw®in
T AT T (tir/ T) = (zia/ T) cosh(7/2 ti1)
_ (ria/ T)* . g~ (TImi) T _
T s T 17 .

This transcendental equation for /T may be solved by graph or iteration.

When #*/T is determined by Eq. (4.12), Eq. (4.11) gives c. Here, the specified
quantities of the system are k, the characteristic constant of the controlled system,
and 7i1, 7i2, the time constants of Gi(s). In consideration of the noise interference
and the quickness of the responce, ¢ and T must be chosen properly. Once the
values of %, zi1, ti2, T and ¢ are known, S, the input drive speed, and H, the hunt-
ing loss, can be determined. From Eg. (4.11),

_ L Jel 1 (mi, T (e T)® Rk
S—T}/ i3 (F+5F) (cir/ T)— (zaa] T) " cosh(T/2zir)
N5 o Y b I
e/ T) — (cea/ T) COSh‘(Ti'ZTi_J] 13

When S is determined, Eq. (4.9) then gives the hunting loss H.

Case (b):
By substituting Eq. (4.5) into Eq. (4.2), we obtain

4 TgS?k o ® ( — 1)71+7rx ejm»'rmﬂ)mot
rET T S Eo @n+1)*(2m+1)? { {14 (n4+m+1)jorap{l+(n+m+1)joere)
ej( n=1ywgt e—j(n—m)m,,t
B (1 + (72— m)jo)ofol}{1+ (n—m )]'a)ul’oz} - 7{1”""7 (ﬁ— m \jo)o%oi } {1 - (’)’l-;' ;Il)]'a)ofoz}
e—j(n+m+1)mnt
A= Gk me Djowta} (1= (e m+ jootn) I (4.1

By carrying out the summation in Eq. (4. 14) and simplifying the expressions, we
have

y=o s {1 (=) = (e (=) + () + (25)+ (1))

1{ (rm/T)z e—(r/-.m){(t/r)—x’) (roz/T)z e(r/r.g((t/r)—i) }] “ 45)

T o\l D) = o/ T sinh(T/27a) (/1) = (c/ T) ~ SIND(7T/2 702)
when 2 ><T Z)S 27
where i=0,1,2 ....

Through a similar procedure to the case (a), the instant ¢* can be determined
by the following equation :

ﬁ — (oL Te 1 (zor/T) g~ T/ Tad BN
(T) ( T + T) + 2 {(?ol/T)— (to2/ T) * sinh(7/2 7a1)
—_ (TOZ/T) e_(T/"oz)(“‘lT) 3
(t0r/ T) — (702/ T) *‘sinh(7/2 Toz)} =0. (4.16)
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And, the input drive speed S is given by

T«/k (7) + 1 +2(T 3)(3+3)

(TOI/T) 1
+ (tor/ T)— (Toz/T) Sil‘lh( T/27q) {e

=(T/zq) (24/T) - T/270))

-e

(Toz/T) 1 =(T)Tg) (E*[T) __ =14/2%q3)
(ea/ T) = (e T) " SIOR(T/Zem) \© ¢ ) (4.17)

When S is determined by Eq. (4. 17), a simple formula H =T1§IeSeT2 will give the
hunting loss H for this case.

Case (c):

In this case, we can readily obtain the input x and the hunting loss H by
putting 7> =0 in Eq. (4.8) and Eq. (4.9), respectively.

The output ¥ can be calculated by the insertion of Eq. (4.6) into Eq. (4.2).

yezars{=[3(7 =) = (F+3) (7= +3(7) + 7+ (P)]

1 (ro/ T)? 2( T) tanh - ( Z:) ¢~ T/ =D)
- —[ (vo/T)=(2i/T) | (1o _ 7i\(o7o 7\ | SIOh(Z/270)
(T EICE D)
_ {(*—%—i)ﬁ- : /:(lf),/T)z/T } 2(;1’,) PRl UL
To = (7i/T) {70 _
\7 )cosh(T/Z 7i)
(cif T)* , e~ H/romtein=n T
(25.0.. _51) " cosh!(T/2 v )Jl ’ (4.18)
T T
“}s(g-isl
where 1=0,1,2, ...
Similarly to the previous case, ¢* is determined by the following equation:
(t_*) ( T ‘!‘o) _1, (=/T) 2( T) tanh T N R
T T T 2 (v/T—vi/T) (%_;)(2?_ ;:) sinh (772 )
_ (It_) o~ BIROWT)
(- (D) - i, -
B (%- T)°°Sh(2j;,-)
@i\’ — 27/ ) (8%)T)
)< al (4.19)

(2 o ) cosh® ( "7:_’)
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And, the input drive speed S is given by

S= / LA R YA P (ze/ T)*
T [ + +2(T )(T T) (;2 T)smh(T/Zro)
i \*
2(7‘) tanh (7/27) _ 1L . (gt _ gmarrsoniay

(-2~ %)
+ -—2(%) ﬁ_"{(t_*_l_“_(r,-/T)z )e‘(l'/'-i)(f*/fl')_ (}+ (r,/T)“ )

(3= 5)commerrzen "1 (5 5) Y
Xe—('r/wm/z}_*_ (ci/ T)® (e —(TI-‘i)uh”')_e'(T/Tt)}]_l/z. 420}

(27;- - _T) cosh*(7T/2 zi)

3. Comparison of an approximate solution and the exact solution

For engineering analysis and synthesis it is far more preferable to work with
the simple equations which may be derived with the input approximated by a
sinusoid. So, it is assumed that the input x* can be approximated by a sinusoidal
wave with the amplitude ¢' and the period 7" as follows:

x¥ = @' sin wit, (4.21)
where wi=7/T.

Then, referring to Fig. 1.1, we obtain the output y corresponding to the input of
Eq. (4.21),

2
y= kg |Gi(Goi) {1 = | Go(j2 wi)| cos(2 wit + 2 ¢i+ ¢0) ), (4.22)
where 0= £Gi(jwi), ¢1=2LG(j2wi)

Through a similar procedure to the case of the exact solution, #*, the time
instant when the maximum output occurs, S, the input drive speed, and 7, the
hunting loss, for the case of the approximate solution are found to be

_f[_:___ ._i.( ?i‘f‘i?s)’ (4.23)
ES -1/2

s=% [C B (Gt P 1G2an cos'z (£)] (4.24)

H=1 ka1 G =FE Gt jan (4.25)

By use of Egs. (4.24) to (4.26), we obtain the following results for the cases of
(a), (b) and (c):
for the case (a):



On Various Methods of Optimalizing Control

* 1 1 /¢ 1 1 -1
e e e e
T i
1+ (e2) 14 (=)
where ¢ = = {tan” (= 72) + tan” (= 22) },
for the case (b):
Tedenh s=3 /5
/1+ 21‘“‘ /1+
xcos2<~;~%>>‘“i #oITS,
where ¢h= — {tan(2258) + tan"(2252) .
for the case (c):
Fomalerrd) 9o 2\/_6“{1+(17f%>9./1+(12n%)2
1N ET*S’ 1
xcos(cp, w{,} . H= 71°2 ,1+(ﬁ%)2
0.09
008
. 007 \\ %:w
§ 0.06 ,U';
0.05 N
004
0,03~ .
o2 \§
0.01
0

0 0l 02 03 04 05 06 07
(Tt T2/ T

F1G. 4.3. Dimensionless hunting loss H/kT2S? in case of
Gi(s)=1/(zas+1)(zas+1).
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Now, we compare the approximate solution with the exact one under the condition
that the root mean squares, or effective values, of the inputs are equal between
these two cases. Accordingly, the amplitudes of a triangular wave ¢ and that of
a sinusoidal wave & must satisfy the following relation:

a= [/4a. (4.26)

As the result, it can be shown that the magnitudes of the hunting loss of the two
solutions agree with each other (Fig. 4.3). Figures 4.4 to 4.7 illustrate the com-
parisons of the two solutions for the input drive speed S and the relative hunting
loss H/c, respectively, of the cases (a), (b) and (c).

4. Design charts and discussions

Figures 4.3 to 4.7 are the design charts derived from the present analysis for
the peak-holding method. From Fig. 4.3, it is observed that the dimensionless
hunting loss becomes smaller with the increase of (vii+ 72)/ T, regardless of the
value of 7i/7i. Figures 4.6 and 4.7 show that the values of STYk/c and H/c are
almost constant for smaller (r;+ 7,)/7T, but have peaks for larger (v;+ 7o)/ T near
o/7i=1. Similar tendencies are observed in Figs. 4.4 and 4.5, too.

According to the present analysis, the necessary input drive speed S and the
hunting loss H are given for any specified hunting period 7, the assigned allow-
able difference ¢, and the time constants for the input linear group and the out-
put linear group. ¢ is fixed by considerations on the noise interference. As is
clearly shown in Figs. 4.5 and 4.7, whenever the hunting period T is relatively
short with respect to the time constants, the relative hunting loss H/¢ will be
large, especially when the time constants are nearly equal. This situation is quite
unfavorable, because even if ¢ is chosen sufficiently small for a better efficiency
of the system, the increase in A will prevent the desired purpose from being at-
tained. In order to avoid such a situation, we may choose T to be very large and
reduce H/c at the cost of the deteriorating response time, or alternatively we can
adjust the time constant of either input or output linear group by means of com-
pensation technique and make the two time constants differ sufficiently from each
other as required.

Chapter V. Cross-Correlation Method

The cross-correlation method is to search out an extreme value by use of a
test signal with relatively small amplitude, which is superimposed intentionally
on the controlled input. The distinct advantage of this control method is that the
control action is little affected by the noise interference, though its controller is
apt to be rather complicated.

1. Principle of operation
The principle of the cross-correlation method can be illustrated by Figs. 5.1
and 5.2 as follows. For simplicity, it is assumed that the test signal is a sinu-
soidal wave and the effects of the dynamics are absent.
~ As is shown in Fig. 5.1, if the test signal is superimposed on the controlled
input x}’ which is located on the low-input side of the optimum point, the com-
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FIG. 5.1. Steady-state output response to a sinusoidal
test signal on each level of the controlled input.

Ou’rpu’r'[y”_ of Inpust (X"
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lgencmfor

FIG. 5.2. TFunctional diagram of the optimalizing controller
for the cross-correlation method.

ponent of the output produced by this test signal will contain the fundamental
sinusoidal component which will always be in phase with the test signal, whereas
if the test signal is superimposed on the high-input-level side of the optimum
point, the fundamental output component will always be out of phase by 180 de-
grees with the test signal. Accordingly, phase relationships between the test signal
and the fundamental output component indicates whether the controlled input is
above or below the optimum value. In Fig. 5.1, the test signal is assumed to be
superimposed on the input at the optimum value. The corresponding output is
determined by the parabolic characteristic curve, which squares the sinusoidal
test signal. As the result, the output completes two cycles while the test signal
does one. In other words, the component having the same frequency as the test
signal will disappear from the output.

In priciple, the cross-correlation method is based on this simple fact. That
is, the output is cross-correlated with a sinusoidal wave, or correlate signal, having
the same frequency and phase as those of the test signal.

Here the following relations hold in general:

w
j sint ¢ cos mrdr =0
-

J" sin ¢ * sin mcdr = 0 (m=1)
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Accordingly only if the controlled input is at its optimum value, the cross-corre-
lation vanishes, otherwise it takes some non-zero value, either positive or negative,
and it is only the fundamental component of the output that does contribution to
the value.

From the above discussion, we can use any periodic signal as the test signal.
So, for easy generation in practice, the wave forms shown in Table 5.1 are con-
sidered as the test signal. Table 5.1 also gives an appropriate correlate signal
for each test signal. Here, the major reason why the random signal is selected
as the convenient test signal is that the random signal is not necessarily required
to be generated intentionally, but the noise which is inevitably introduced into the
system and disturbs it, can be utilized for the test purpose. In a similar manner
to the case of other test signals, we can detect the deviation of the controlled
input from the optimum value in this case, too.

TABLE 5.1
Test signal Correlate signal
H
Sinusoidal wave Sinusoidal or rectangular wave
Rectangular or triangular wave | Sinusoidal wave

i

Random signal with the same statistical

Random signal properties as the test signal

2. Analysis of the control system

2.1. The case where the test signal is a sinusoid

When a sinusoidal wave is chosen as the test signal, we can use, as the cor-
relate signal, any periodic signal with the same frequency as that of the test
signal. Since a square (or rectangular) wave used as the correlate signal permits
a simple construction of the controller, we are going to calculate the cross-cor-
relation for this case.

Now, let it be assumed that the controlled input is at the value of %y and the
sinusoidal test signal has the amplitude E and the angular frequency w;, then the
total input to the controlled system is given by

(x*) = Esin wit + %!. (5.2)

From this expression together with the consideration of the dynamic effects
of the controlled system, the output y” of the controlled system is found to be

2
y” = gax + k[(.‘a’t’)' - xgax)z =+ % l Gl(-?w’) ]2

+2 E(x) — 2.0 1Gi(Go) |+ 1 Go( o) |sin(wit + @i+ ¢o)
- %:] Giljoi) 1*+ | Go(72 wi) | cos(2 wit + 2 ¢; + ¢o) } (5.8)
where 0= /Giljui), $o= LG(jwi), ¢3=LGj2wi).

The third term in Eq. (5.3) gives the time average of the deviation of the output
from its extreme, or the hunting loss. Figure 5.3 gives the magnitude of the
hunting loss for various test signals when Gi(jw;)=1/ (1+jwri). Here, Hs, Hy and



46 Seizo Fujii

S
9'/70/

—_—
08 10 12 14
T/1 . G/,
FIG. 5.3. Dimensionless hunting loss for different test
signals in case of Gi(s)=1/(ws+1).

H; are the hunting losses corresponding to the sinusoidal, rectangular and trian-
gular wave respectively. They are evaluated by use of the following expressions
obtained from Eq. (4.3) in Chap. IV:
HS = ”%“kEz '“’“—’MLTQL'
2 1

Hy = kEZ{l - 4(;%)tanh (7};—;) },

)b

H = kEZ{% - 16(1,_;4)2 + 64(%?-)3tanh( i

where T=27rnlw.
At cross-correlator, the output y" is correlated with a rectangular wave with
the amplitude A and the frequency w;. According to Eq. (5.1), only the funda-

mental component of the rectangular wave comes into the picture in the calcu-
lation of the cross-correlation. Acordingly,

R = _Z%f'_ﬁy"m -%sin(rwo)dr, (5.4)

where r = wit and 0, is the phase shift between the test signal and the fundamental
component of the correlate signal.
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By substituting Eq. (5.3) into Eq. (5.4) and simplifying the expressions, we
obtain

_4 BA(xl — xf,"ax)E‘
i

Ry Gi(Gwi) |+ | Goljw:) | cos( @i+ @ — O). (5.5)

Here, if 6, is chosen to be @i+ ¢, then Eq. (5.5) becomes

"I
R, = LEA(R . Ymax) B oG |+ | Goljeon) | (5.6)

It is observed from Eq. (5.6) that the cross-correlated value Ry is proportional
to the deviation of the input from the desired value %!, From this fact it follows
that any conventional controller, such as P.LD. controllers, can be used in tandem
with the cross-correlator. Consequently, the output can be brought to the extreme
value by use of a cross-correlator combined with signal generators, and a con-
ventional controller.

In design of the system, the amplitude E and the angular frequency w; of the
test signal must be determined so as to give a large signal to noise ratio in the
output of the cross-correlator. To do so, we must have sufficient knowledge about
the power spectrum of the noise. Moreover, £ and w; are related directly to the
hunting loss, which we desire to make small. Namely, as E or w; is chosen larger,
the hunting loss becomes larger, too. Consequently, we must make a good com-
promise between the two requirements.

2.2. The case where the test signal is random

A random signal is here assumed to be a stationary stochastic signal with
Gaussian distribution. For ease of expression, its time average is assumed to be
zero. To proceed with the discussion concisely, we shall consider hereafter the
normalized control system illustrated in Fig. 1.1.

If the weighting functions corresponding to Gi(s) and G(s) are specified as
gi(#) and g(#) respectively, then the output x(#) for the input x*(#) is given as

() =S:gi(r) « 5™ (t — r)dr. ' (5.7)

Since the input x*(¢) is equal to the sum of the random signal 7.(%) as the test
signal and the controlled input %, from the controller, Eq. (5.7) can be written as

#() = [ gi(0)= {zot mult =) ).

By use of the relations that jogf(t)dt=Gf(0) and Gi(0) = Gy(0) =1, the above

expression is simplified as follows:
x(t) =xo+50gi(r) et — v)dre. (5.8)

Then, the output () is given by
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»() =k{x§j go(T)dT‘i'z%j S dridrs gi(e1) go(ve) * m(t — w1 — 72)
0 0ve
+S S j dTidedfa‘gi(‘l'l)g}'(z‘z)go(‘t's)'nl(t“ﬁ"Ts)'?’h(i’_Tz"Ts)}' (5.9)
0vovYgo

At cross-correlator, the output y(¢) is cross-correlated with the correlate signal
#n:(2) as follows:

T
Ru=lim=2{ 3(2)  m(t)at. (5.10)
T—-)mz T -7

By substituting Eq. (5.9) into Eq. (5.10) and using the assumption that #i(Z) =0,

we have

Ry =2xk dridrs s gi(r1)  go(zs) © ¢+ 72), (5.11)
0Jo

->®

T \
where ¢u(r; + 72)< =Tlim Q"ITS . mt— 71— 15 nl(t)dt) is the auto-correlation fun-
ction of 7:(#). ‘
The hunting loss is derived from Eq. (5.9) as follows:
Hy=3(1) = kSO SO dridey* (1) * gi(e) pua(r1 — ). (5.12)

It is of interest to note that Eq. (5.12) corresponds to Eq. (4.3).
As an example, when Gi(s) =1/(1+ws), Gils) =1/(1+1rs) and ¢, (r) =
¢u(0)e™ """, we can calculate Ry and H, from Egs. (5.11) and (5.12) as follows :

2 kxop11(0) ku(0)
Rnl = ’ Hn = oee—— .
T 70 Ti (Flg. 5.3).
(1+ )+ ) 1+

3. A method for eliminating the noise interference

When the noise n(f), evaluated on the output of the controlled system as
shown in Fig. 1.1, is assumed to be superimposed on the output y(#) which cor-
responds to the input x(f), the cross-correlated value, defined in the previous
section, consists of the following two parts:

R=Rs+ Ru, (5.13)

where Rs=cross-correlated value between the output y(¢) and the correlate signal
7(1),
Ru=cross-correlated value between the noise #(¢) and the correlate signal
r(1).

If the correlation process is carried out over a sufficiently long time interval,
it is clear that R. tends to zero and thus R becomes equal to Rs. In view of
quick response, however, it is desired to reduce the time required to compute the
cross-correlated value. Therefore, R becomes inevitably an cross-correlated value
containing unwanted cross-correlated value B, due to the noise interference. Thus,
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for small value of R the control action may be misled with a certain probable
error associated with the value of R.

It is conceivable that the error occurs both in the magnitude and the algebraic
sign of R. Error in the algebraic sign is more serious than in the magnitude,
since the controlled input is moved in the wrong direction. So, whenever R is
less than certain limited value, it is preferable that the control action is stopped
so that the controlled input is left unchanged. In the following sections, the
limited value of R for a given value of the probable error will be determined for
different correlate signals, as shown in Table 5.1.

3.1. The case where the correlate signal is a rectangular wave
As was mentioned in the previous section, R, in Eq. (5.13) can be approxi-
mately written as
A - pTf2—98 1 -0 {(2m~1)/2)T~ M~ 6
Ro=-2] ()t = [nyat+ - - + | apat— | nit)at |
mTLJ - 7/2-8 (m—-17T~8 ((2m=1) /237~ -
where m is a positive integer and indicates the number of input cycles over which
the correlation process is carried out.

(2m~1)}

5 T, and simpli-

By changing the integration variable to # =7+ ~{
fying the expression, we obtain

m

T2
4._2 Al G=DT-01-4]

}} (5.14)

On the other hand, the probability with which the controlled input is moved in
the wrong direction is equivalent to the probability with which R.Rs becomes
negative. To compute the probability that R.Rs<0, the following statistical vari-
able is considered:

Z=R*R=R—Rs*R
© T/2
=R =R 23 {alt+ G-DT-01-4]

-0]jat ] (5.15)

From the assumption that the noise considered in this analysis is a stationary
random signal, the mean value z and the variance ¢% of the statistical variable z
are given as

m

R-H2 lSm{n[t—%(z—l)T 01— 1+ 22N g llar, (5.16)

m m

gz mT{{ IMSM T/zdtl dtz{n[h—i-(z-—l)fl‘ 61— n[t1+(2i;1)T..g]}

x{nlt+ G=DT = 01— n] o+ -(—2—’{—1)%0]}]

~[E e nte s G-vT-01-n[ 1+ 2D G

It can be expected that the time average of the noise #(¢) will vanish. Thus,
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letting 7(¢) =0 in Egs. (5.16) and (5.17), we obtain

i | (5.18)
gz = mT[‘ml: 51'125‘ dt; - dtz{n[h—i—(z——l)’f 61— n[t1+(22 T 0]}
x{n[t2+(j—l)T——ﬁ]_,,[tz_l_(Z] 1)T 0J}]1/z o

The cross-correlation functions of noise in the above expression are related to the
power spectrum of the noise, @(w), as follows:

ﬂ{t1+ (i— 1)T"‘ 6} M n{tz+ (]_ 1)T— 0} = 5:@(0)) COos w{tl- t2+ (i’“j)T}d(U,

]

a{ 1t EE=D7_g) et (=D T—0 = [ 0(wlcos ot = to+ (i =+ 5) T)do,

n{t1+(z'—1)T—ﬁ}-n{t2+ (2] 1)T ﬁ} jQ)(w)cos:u{tl—trl—(z—]———)T}dw,
n{ti—!—( 1)T ﬁ} { (2] 1)T 6} 5(I)(w)cosw{tl—tg+(z'——j)T}dw.

(5.20)

By substituting Eq. (5.20) into Eq. (5.19), and carrying out the integrations with
respect to t; and £, we have

o 4AR[1"‘1:”1 L coswti=j) T sin'(45 D)a J = ARgm, (5.21)
where gm = [:nl;nl O{w)e cosw(z-—])T sin (%T)dw]m.

Now, the statistical variable z is expected to be a stationary random signal.
If the probability distribution of z is assumed to be Gaussian, the probability
density function of z is given as

f(z) - \75717;8-((2—;)/%}2/2' (5.22)
4

Then, the probability that z<0 is simply given by
0
e=| s (5.23)

By the substitution of Eq. (5.22) into Eq. (5. 23), the probability e is computed
as follows:

= e *Pdz. (5.24)

Inspection of Eq. (5. 24) shows that e is a function of the quotient z/s. only as
given in Fig. 5.4.
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FIG. 5.4. Probability that z is less than zero, when probability
distribution of the statistical variable z is Gaussian.

In order to determine the limited value of R when the probable error is as-
signed and the statistical properties of the noise are known, we derive the follow-
ing expression from Egs. (5.8) and (5.21).

R (2N, . N9
AR (‘(’i‘) g?,n Hi TH, ? (5.25)
where Gn=gmn/N$(0) and H:=H/kE"

The limited value of R for a given value of the probable error can be calculated
from Eq. (5.25) when the following quantities are known: the amplitudes A and
E of the correlate signal and the test signal respectively, the dynamics of the
controlled system, and the power spectrum @(w), or auto-correlation function, of
the noise.

For example, if ¢(#) =¢(0)e”"*"", m=1 and Gi(jw) =1/(1+ jor:), then g} =
%7%; (27/wir+4e™ ™ =3 = 2 )2 and HL=1/2{1+47*(r;/T)?}, where the
test signal is assumed to be a sinusoidal wave. The quotient Z/s. is obtained
from Fig. 5.4 when the value of ¢, is assigned. For e;=0.5, 1 and 5%, the dimen-
sionless limited value R/kE*A as a function of the dimensionless noise level y¢(0)/Hs
is shown in Fig. 5.5, with =, the number of input cycles over which the corre-
lation process is carried out, as a parameter.

From this figure, it is observed that the limited value of R is linearly related
to the noise level; and that with increase in s the limited value R decreases, and
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‘thus the controlled input is less likely 0 T ) o
to move in the wrong direction; and may/ ‘// ,;/ | /
that when a larger value is assigned 08 s T

for the probable error, the limited value ;/ // // /

of R is allowed to be smaller, as ex-
pected.

M/ Hs

1 — A

04— R
3.2. The case where the correlate ”/// | - 5\
signal is a sinusoid 02 =7
Through a similar procedure to the
previous case, we can determine the 0 004 ooe 02 0 00 oM
limited value of R for the case where R/BAE?
the correlate signal is a sinusoid. In . . L
this case, however, we can attempt to FI1G. 5.5. Diagram for giving the limited
’ ’ value of R for wr=1, =/T=02 and ¢(r)=

. . .
. t'he varla.nce %z from'th(.a auto- $#(0)e~121/7, when the correlate signal is a
cor}'elatlon function of the noise instead rectangular wave and the test signal is a
of its power spectrum. sinusoid.

The expressions corresponding to
Egs. (5.4) and (5.20) can be written as

A, mr
Ry=750 n(¢) * sin wolt + 0)dt, (5.26)

T } /2
az=%u S dh'dtg'n(h)n(tz)sinwi(tz+0)sinwi(f2+9)J o (5.27)
0 0

where A’ denotes the amplitude of the sinusoidal correlate signal. Since #n(f1)#n(f)
is defined as ¢(#1—#), we can rewrite Eq. (5.27) as follows:

g (T HT 1/2
0o = BAN (0 e atee p(ti— ) sinantts+ ) sinona+0) | (5.28)

For example, if ¢(#) =¢(0)e” """ in Eq. (5.28), then gm, defined by Eq. (5.21),
is calculated as

1/2

_ \/Q)"('O‘) wiT . 1 1 22 a0 . 2 . —2mmlw;T I
gm_m .2nm{1+(w,r)2—%—n(mz_)(sm wif — (wiv)cos’wif ) (1—e™? )H .
(5.29)

Similarly to the previous case, Fig. 5.6 gives the relation of R/EE*A’ and V¢(0)/Hs,
where the test signal is also a sinusoidal wave.

When the limited value of R in Fig. 5.6 is compared with that in Fig. 5.5
under the condition that the effective value of the rectangular wave is equal to

that of the sinusoidal wave, ie.,, A'= \/ %A; then it is indicated that the latter

is about 1.7 times as large as the former irrespective of the values of m and the
assigned probable error. This difference is considered due to the correlated value
between the noise and the higher-order components of the rectangular wave.
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F1G, 5.6. Diagram for giving the limited value of R for
wir=1, 7:/T=0.2 and ¢(c)=¢(0)e~It/%, when both the correlate
signal and the test signal are sinusoidal waves.

3.3. The case where the correlate signal is random
When the correlate signal is a random signal, the expression corresponding to
Eq. (5.14) is given by

Vil
Ro=limLs [ () ma($)dt = ml (D) = ga(0), (5.30)
T—>x -7
where m(2) and n.(#) denote the correlate signal and the noise, respectively.

In general, it is expected that there is no correlation between 7:(#) and 7, (¢);
then ¢12(0) reduces to zero. In practical applications, however, we can not carry
out the correlation process over an infinite time interval, as shown in Eq. (5.30).
This fact is applied to the computation of Rs, where the time average of m(#) is
assumed to be zero. When the time average of (%) is taken over the time inter-
val from O to T, it can be proved that in order to make its standard deviation
from the mean value (=0) less than 10%, we must choose T more than 200 1,
where the auto-correlation function of the random signal is assumed to be
pu(0)e™ "1™ Accordingly, under the assumption that the correlation process is
carried out over a period larger than 200 tn, we proceed with the discussion as
follows. Equation (5.30) must be rewritten as

Ro= 5 m(d - m(pa. (5.31)

The noise #,(¢) is assumed to be a stationary stochastic signal, and its time average
m(t) is expected to vanish. Then, the mean value 3 and variance o3 of the sta-
tistical variable z are given by

Z=R

T A ] (5.32)
0‘; = —1721—[’5‘0 L dfi ° dtﬂh(fx) 711(t2) ’ﬂz(fz)%z(tx) ]
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auto-correlation function of the noise 7:(2), Eq. (5.82) can also be written as
z=FR’,

R (T (? -1/2
0z = 7[&) §0 dbdtspu(ly — to) * poalty — tz)] (5.33)

1/2

= %‘[ZS:(T—t)qbu(t)m(t)dt] .

Similarly to the previous case, the expression corresponding to Eq. (5. 25) can
be derived as follows:

- 5
s (5) e Hur Y2 (5.30

For example, choose that ¢u(%)= p(0)e” 1T, and  gea(2) = $:2(0)e” 117, then
_ _ -1/by\1/2 - — T1Ts2 . : 5.
gm=1{20(1—b+be ")} and Hx Hp/B$1(0), where b TCenten) Figure 5.7

illustrates the relation of Eq. (5.34) for tm/tu=1 and ri/tu=100. From this
figure, it is also observed that the limited value of R decreases with increase in
m'(=T/tu). In this case, we can expect that the effects of the noise interference
is eliminated, since =’ is chosen sufficiently large such that Eq. (5.11) holds, or
the correlation process is carried out over a sufficiently long time interval.

|

m 25 30 B Al
3/2

R/fl (0]

FIG. 5.7. Diagram for giving the limited value of R for za2/zu=1,
7i/r11=100, d11(z)=¢11(0)ef1/71 and paa(7) =¢n(0)e~181/722, when both
the correlate signal and the test signal are random.

Conclusions

In regard to the optimalizing control system with one input, various practical
control methods belonging to a class of the so-called “direct method” have been
proposed and then analyzed in detail in its theoretical aspect. As the result, many
data and clearer insight useful for the design of such systems have been obtained.

The control methods proposed in this paper are also applicable to the opti-
malizing system with many inputs. For example, in the cut-and-try method and
the peak-holding method, if each input is optimalized in turn, an extreme value as
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a function of many inputs will be found after all inputs are scanned; and in the
cross-correlation method if as many number of test signals as that of the inputs
are available and if none of their frequency is a round multiple of others, then
the deviation of each input from its optimum value will be determined simultane-
ously.

The merit or demerit of these control methods can be decided considering
such factors as the difficulty in the construction of the controller, the quickness
of the response of the system, and the susceptibility to the noise interference.
There is, however, no absolutely best control method, since each method has both
good points and weak points. Therefore, the ultimate control method would be
decided in views of the operating conditions of the particular system, the proper-
ties of the disturbance, and the economical demand for the system performance
and so on.

The following problems are left for future researches: the extension of this
theory to the optimalizing system with many inputs, the practical applications of
these presented control methods to the engineering system, and the solution of
various problems occuring there.
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