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§ 1. Preliminaries and Notations
The equation of longitudinal vibration of a thin rod under thermal stress,
the cross-sectional form of which is freely chosen, is expressed by

P oT
hop8=Egug—Eay,

where g is longitudinal displacement and 7T deviation of temperature. Other
notations used here are given at the end of this paragraph. Taking into account
the lateral motion of the material points of the rod under no influence of thermal
stress, the equation is modified into:®

- N 1+ 2(5, 20, 124, 104, 28)  &°
or 8 Lops— K oospsa8+ Ko 301 1yi(1,2)(3, 2) Por9a€ = O

where K is the radius of gyration of a cross-section about the central line.

In the present paper, starting from the equations of motion of elastic body,
the authors deduced the equation of longitudinal vibration of a circular cylinder
of radius @, in which case K* corresponds to «?/2, taking into account the higher
order deformations of the cross-sectional plane under thermal stress. The radius
of the cylinder being small, approximate calculation can be carried out succes-
sively. The result is given to the terms of order K% and agrees with the above
equation in case of no thermal stress.

Notations

7, 7, z: cylindrical coordinates,

oy, %9, %, . components of displacement,

p: density,

t: time,

A, p: Lamé’s constants,

T : deviation of temperature,

/(3442 u) . coefficient of linear thermal expansion,
x : coefficient of thermal conductivity.
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For the sake of simplicity, we shall write

(m, n) =mi+np,

(1, m, n) = IR+ miu + ny®, etc.
E=2(3,2)/(1,1): Young’s modulus,
s=2/{2(1,1)}: Poisson’s ratio.

We shall take the following abbreviations:

P >
[a, B1= onga + B85
o o
[“1 B: T] 0(9 t( + Bp atz azz + T azl’ etC.

§ 2. Fundamental Eguations and Longitudinal Vibration
of a Circular Cylinder under Thermal Stress

The equations of motion under thermal stress, when no body force exists, are
written as:

our a@ _ 2408, aw@
05 =(1, 2) =5 +2p - (3, Z)a
us 1 26 6cor awz _ a
0T =L DS 2n G 2 (3, 2)% a& (1)
auz 26 _ _ﬁ = _Z_u_a_cfz or
R T 2 az’
where
Lo _ o
20r="139 " oz’
~ ____a_fi;: - ouz
2, oz or’ @
~ o(rus)  Ouy
28: = r( or 829)
and

_ 1 a(ruy) , 1 2us_ Ouz
=% o Troes o (3)

The equation of conservation of energy is expressed by:?
0%¥= Ajjoij + £dT, (4)

where U is the internal energy per unit mass, A; components of stress, and oij
components of strain in rectangular coordinates.
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The expression of internal energy can be written as:¥Y?

U= CT + bijoij, (4, j=1,2,3) (5)

where C represents specific heat at constant volume. b;; measure the heat effect
of deformation of the material at isothermal state, and are seen to be positive in
an elastic solid body. If an elastic body undergoes infinitesimal deformation
adiabatically, U represents the work done by the surface force and is an infini-
tesimal small quantity of second order. The change in temperature T is deter-
mined by Usaapaic=0. For example, when we take volume dilatation @, and take
b=bi1=byn=Dbs, we have
b
T= — ol 6.

Taking 0 >0, we find by experiments that T <0. This results in the positive
value of b.

If we deal with the problem of the so-called “thermal shock”, two terms should
be taken into consideration. The first is the term containing b, which makes the
propagation of the change in temperature finite. The second is the temperature
rate with time 97/2t. Then the equation (4), neglecting terms of second order,
becomes

p—a%- (CT + bijaij) = x4T. (6)
In the present treatise, we put 6=0 in (6), i.e. in cylindrical coordinates the
energy equation takes the form:

TR R "

with 2% =«/(0C).
The equations (1) and (7) are the fundamental equations.

Let the cylinder occupy the region r<a, —co <z <+, and let us take no
surface traction acting on the peripheral surface. Considering the symmetric
properties of the displacement of the longitudinal vibration and the distribution
of temperature, which are finite at the central line =0, we put

wr = 2 fulz, t) o,

n=0

=)

s = 2 gulz, 1)+ 77,

n=0

- (8)
T= Zo Tn(Z, t) ° 7’271,

—— a —
uzs—O, W_O

Then, from (2) and (3), we obtain
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(’Er=wz=0

(l)ﬂ = 2[ 1 afn (71 + 1)gn+lJ .9,2n+l'

ne=q

[ﬂn+Dﬁ+ Jfﬁ

ne=0

The equations of motion and of conservation of energy become:

S %{,"r““ = 2[ 2(n+1)(1, 2){2(n +2)fmer 4 ag"“} ~

n=0 n=0

+ 0l 200+ 11— 53, 2)a(n + 1) T |24,

@

agn ”n & ofn agn
S eSir =3[ a2+ 124 28

¢ (9)
=200+ {22~ 20+ s} - (3, 2)allr ],
and
5% = B0 e+ D242 L] on J

Taking the coefficients of the same power of 7 in (9), we obtain a system of
equations as follows :

paa{," u%’g’;’+4(1,2)(n+1)(n+2)f,.+,+2(1,1)<n+1)?{g'g—‘-z(s,2)(n+1)aT,m.’

o2& = (1,078 1 4 pn + g + 2001, D(n+ L7~ (3, 20927,
and
T, > 20 1
= T2 Tl (01,23 J

(10)

The boundary conditions, that the cylinder is free from surface traction, are:
at r=a,

@+2pa“'— (3,2)aT =0,

ag, oz
oz T or

=0,
i.e.

0= 2[2(n+1 2n+ Vfn+ 2128 — (3, 2)aTs |,

(1)
0= Zr+20n+ g |a"

n=0
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§3. Approximate Procedures for Moderately Thick Bar

From (10) we obtain:

[1 A(1, 2)}
Forr= oo o (1, DI, —(1,2)] ogn
2(L,2)(n+1)(n+2)"" 22(1,2)(n+1)(n+2) 0z
_ (3,2) BzTn_]_ (3, 2)a oT»
Pan+1)i(nt2) 02 291, 2)(n+ 1) (n+2) Of
_L -2l (1) 9, (8,2 T,
1= "or, a1y 877 T u(n+1) 0z | Zu(n+1)? oz
T = 1 oTw_ 1 T
7n+1 N YR RV ICYS P YD BV Y

T o (n+1)? ot 2%(m+1)t o7
introduce a new variable

_ A_o&,_(3,2)a
¢=lt5a 122 21, 1)

T,

(12)

and take operators tx, G, Gn, G, Fu, Fn, and Fj, which are defined successively
as follows:

Tn = taTh,
gn = Gngo -+ G:z‘;” -+ —énTo,
fn=Fngo+ Fn(,a + ?nTDa

Inserting (13) into (11), we obtain

0=9¢+ gtcngo + Cpo + CuTold™",

0=[1, —Elg+ Hy+ LT,+ Z_l[Dngo + D¢ + DaTolad",

with
Cn:(n—i—zi,Zl?)H-l) Pt 2(]:1’ 1)_%@“
CRNCES N LES P S ¥
Co= G Pt gl 1 O 1y
D, = _21%772“1, ;511’2)]-”’
and

(13)

(14)

(15)
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where
= —9,;9 = ExS
H= 2/182 and L—Eaaz-

Some of the explicit expressions of the operators in (13) and (14), are as follows:

colh=24] ~__ALDB = _

du T T ou oz’

1 (3,7 (1 1) 1,3) 12
Gz“iﬁﬁ[l’—”(l L } G = L2y - ”JE'
= _ (8, 2)ap aa_+ (3,2)a o

27 T 25,(1,2) ooz T 2%%(1, 2) ozot’

[1 A1, 2)]
po L1381, ~(1,2)a( Dls I S
= 2iu(1, 1), 2) 2z’ T2y
_~[ (3, 2)a _(3,2><x]+ (3,2)a o
241, 1,2 21, 1) 24%(1,2) of

— 1 (1y 5) 8’ 3) — 2 ’ 8
= “3.27(1 DEowl @y - THE 109, #0262 |5
— (L41)  (1,2)(2,1)
Fa=g7 25(1, 2)[(1 2y 7 ]
= _[ (3,2)a B2, -1 (83,2

13V, 1)1, 2)* 3.27(1, 1)(L, 2) 3.27(1, 1)

(3, 2)a _ (3,2 (3,2)aa o
+[3-27(1,2)2»2’ 271)2(1,2)]“”’“’*'3 27 (1, 2) of

_1ls_ 12 12 1 8 132"
T anr T o2 T 90 T 25,t0toF | 28 ozt

___ 1 1673 _ 2 = 1 723
Ci= 2‘(1,1)2[. 1,2 e 3)}82" C=mamlaey XJ

(3,2)puax 2

=_ (32« _ _ 2
Cl—m""—“‘—‘[(2> 3), /1(1) 2)] 241}2(1’ 1)(1’ 2) at’

24(1, 1)*(1, 2)

3 -1 (5,25,387,15) - > )
02_3.2,(1’1)2(1’2m[ S, — s, 44,23),2;;,(1,2)(6.5)]&,
= 1 (3,5) (5,14,5) _ )
CosEmnaHlay e "GP0
=, = (3,2)(3,5)a _ 321,585« (3, 2) pa ]
PTL8 27T, 1A, 2)F 3.27(1, DL, 2)” 3-2%(1, 1)
+[_“_(3,2)(3,5)a (3, 2)pa ]a_ (3, 2pa
32T, DL 2% 21, 1), 2)d0f T 3e2%A(T, 2)(1, 1) o

1 (4 13, 8)
D1—m[(1, l), - (1 2) TTTTTEN u(5 4)J

Di=— [(1,4,2), — a3, 2)(Q, 2)]58-,

1
4p(1,2)
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Di= - 2’:1(3i)2()f2)[1 “h 0. 5z T 2(2’(21)#;7323;‘

Di= “?F(I‘Ij(fizﬂ;[(l DE,2), - 953%%?%33333;3(9,31,20x - 4(1,2)(7,6) |-
Dy= -5 .25,412(1, 2) [(1’(61’,122)’ 6), -2p(2,8,5), #(1,2)(5, 4)]%,

D=3 25;(31”21))“(1, gl = (1,42, 2122 D, #0121,

(3, 2) (3, 2pa P
+guan, 2yr 3 2)]ataz 3. 95,4(1, 2) 9Pz

§4. Approximate Calculations

In the following, ¢,(# =0, 1, 2) means the value of ¢ in the -th approxination.

1. Zero-th order approximation
The radius of the bar being small compared with the wave-length of the
longitudinal wave in the bar, we find, neglecting the terms of 0(a*) in (14):
900:0:
and

(16)

0=[1, - Elg+ Ea 000,

which is nothing but the usual equation for a thin rod or bar.

I1. First order approximation
Inserting (16) into the terms of 0(a°) of (14), and neglecting the terms of 0(a*),

we obtain
¢1= = (Cigo+ ﬁ1Tu)GZ» ‘ }

_ — 17)
0=[1, —E]go+LTo+(D1—HCL)goa2+ (Di\—HC.)Ty* a (

2
Replacing p%’ by the expression obtained from (16) into the terms of 0(a®) of
(17), we find

2

an a ago Ex (2,2, l)aaTo 2
FE S+ 2i(1, 1) oz ¢

ELZ aTo 2 Eoc 3:FO . 2
t5515r02% T B, 1) Paror ¢ (18)

0=I[1, -Elg+Ea

In case of vanishing 7T, the equation (18) coincides with the result taking into
account the lateral deformation in the cross-sectional plane of the bar.”

III. Second order approximation

Inserting (16) and (17) respectively into the terms of 0(a') and 0(a*) of (14),
we have
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go= — (Cir+ 51'110)632 —{(Cy— 5101),90 +(Co~CCOTu) - 04’
0="[1, = Elgy+ LTo+ (D1— HC:) g~ & + (D, — HC1) Tod* (19)
- {0131 + H(Cy— 5101) - Dz}go cat— {Ef(i -+ H(fz - (_31?5) - ﬁz}Todﬁ

2 &
Putting paa—f}’ and pz%f} obtained from (18) into the terms of 0(&*) of (19) and

6 4 2
putting p‘"‘%g—", Pz%fro and p%f} obtained from (16), into the terms of 0(a'), we

find, after some complicated calculations:

=[1 — o7,
0=[1, —Elgy+ Ex 5z
of 20 Ex(2,2,1)0°Ty_ Ea  *Ty | Ead’Th
+K{ B it a1 e 2L 1) ooz T 22v28taz}

. K4<,uaz( —2, 13, 56, 52, 14) o°go | Ea(6, 12,5, 14, 11, 2) &°T

3221, 1L, 2) 22 T 3.241, DL, 2) o7
Ea Ty , Ea(5,14,12,4) &7y Ea(3,8,8) 3Ty
3001505z T 20 (1, )AL, 2) 2002 3.2%a(L, 1)(1, 2)° oFoz

_a(3,2)(14,69, 119, 82, 24) T, +a:<3,2><4, 13,18, 12) , &°Ty)\ (20)
3.20(1, D1, 2)  PareR T 3.2%u(1, D3I, 2) ° otz

-+

where K =ah 2 is the radius of gyration of the cross-section of the bar around
the central line.

In case of no thermal stress, the equation (20) agrees with the result for a
thick bar® taking into account the terms of K%
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