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Formerly we" showed that the nuclear spin-lattice relaxation time 7% is not
due to Waller’s process but to the following mechanisms:

1) Intramolecular dipole-dipole interaction.

2) Spin-orbit coupling.

3) Diffusion near the melting point.

Moriya-Motizuki® calculated the relaxation time T by the same ideas. In the
present paper we dealt with this problem by the different way of calculating. The
result agreed with experimental values.

§ 1. Introduction

Solid hydrogen has many interesting problems, for example, the rotational
transition®% at 1.6°K (in the case of 75% ortho-concentration), the anomalous
specific heat®® (especially A-type anomaly at the transition temperature), the
ortho-para conversion® and the nuclear magnetic resonance?.

Many authors” studied the nuclear magnetic relaxation both experimentally
and theoretically. In particular, Sugawara investigated the temperature dependence
and the ortho-concentration of nuclear spin-lattice relaxation time 7% and he got
the value 107'~10* sec. It is very short time in comparison with that of Waller’s
theory® (10"®~10Y sec in the region of solid hydrogen). He observed also the
line shape above the transition point and the magnitude of the line width was
larger than the expected values given by the intermolecular dipole-dipole inter-
action. He found the reason that even above the transition point there is the
local ordering and the side peak of the line width affects the magnitude of the
line width. Rollin-Watson” showed experimentally that the magnitude of the line
width is almost constantly 5.5 gauss in the region 1.5~9°K. But 3.5 gauss is the
expected value from the intermolecular dipole-dipole interaction and this inter-
action will change it according to temperatures. '

The present work will show that the nuclear spin-lattice relaxation time T
is due to the intramolecular dipole-dipole interaction in the region between the
transition point and the below melting point as we showed before.? We shall
deal them by some different way of calculating from the one before® and Moriya-
Motizuki's work?.

§2. Intramolecular Dipole-Dipole Interaction

We assume an uniform distribution of the ortho-molecules although the distri-
bution will be actually random, and also assume the free rotation of the ortho-
molecules.
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The interactions between the spin system and the rotational system are the
intramolecular dipole-dipole interaction and the spin-orbit interaction. The Ha-
miltonian is
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1 is the nuclear spin the k-th proton, J. the rotational angular momentum, a and
¢ respectively the magnetic dipole-dipole interaction between the two protons in
the molecule and the spin-orbit interaction, d the distance between the two pro-
tons in the molecule, 7 the magneto-mechanical ratio in a proton.

Our consideration is only for the ortho-molecules. The rotational degeneracy
temperature of hydrogen molecule is 86°K, and is sufficiently higher than the
temperature of solid hydrogen. Therefore, the rotational state of ortho-molecule
is almost in J=I1=1.

We may rewrite Eq. (1) as
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Here we take the z-axis in the direction of the static magnetic field. The rotational
system is a heat bath (on account of very large specific heat) and the energy
dissipate to the rotational system through Eq. (1).

§3. The Hamiltonian of the Rotational System

Nakamura® found the intermolecular interactions in solid hydrogen by the
analysis of the anomalous specific heat above the transition point.

Let us confine our consideration to the interactions between two nearest neigh-
bouring molecules, the rotational orientaticn-dependent part of the intermolecular
interaction is
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where 7, is the distance between two neighbouring molecules. In Egs. (3a) and
(3b) the terms of 44 Ve™™'* and 413Ve "¥® represent the valence forces, 7, ° and
77% the van der Waals forces, and »~° the quadrupole-quadrupole interactions. The
index % in Eq. (3a) runs over all the nearest neighbours irrespectively of para-
or ortho-molecule, and (3% —2)r means that the quantization axis is along the
line connecting 7 and 7 molecules. But the indices 7 and 7 in Eq. (3b) run over
all the pairs of ortho-molecules neighbouring each other.
The numerical values in Egs. (3a) and (3b) are as follows:

4 22 Ve """ =143 10 % erg,
428Ve ™" =014x 10 ®erg,

Q -
= 2.72x10 " erg,

R o 077x10 erg,
70
2 2
3€r _ 982%10  erg,
47
1o =0.11%10""* cm?,

70=3.75x10"% cm.

Therefore we shall find that the quadrupole-quadrupole interaction is exclusively
responsible for the quenching of the rotational states.

§4. Relaxation Time

Our consideration is for the temperature region above the transition point and
below about 10° K (above 10° K diffusion occurs), and we assume an uniform dis-
tribution and the free rotation of the ortho-molecules as stated above.

The expression of the relaxation time T} is given by Kubo-Tomita’s theory"'.
The unperturbed Hamiltonian %5 is

Sy = e+ Sy, (4)
= —rrszglkF —hwzglkz, (42a)

where H is the static magnetic field. Nuclear spin system is affected by the -7
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through .#". We transform «":
() = exp (it 0/T) 7 exp ( — it 20/ 1)

a;_‘, exp(iawst) 7 L(1), (5)
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=§ﬂ2a.

The relaxation time 73 is

exp (iaw.t)dt, (6)
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where < > means the statistical average:
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The temperature range of our consideration is high, therefore we can put e™"**=1.
Now we shall calculate Eqgs. (6a) and (6b), and expand Eq. (5a) as a power
series of #, and we may get

o’?ia(t) =ﬂ£a(o) +t¢_)7/’-¢(0) +”2:<}y/’—¢(0)+ Ty, (7)
then
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On the other hand,
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because .5 <. then & =~ 7.
Similarly
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We then get
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§5. Calculation of the Relaxation Time

We shall now calculate the relaxation time represented by Eq. (13). In the
considered high temperature region, the anomalous specific heat per molecule, Cr,
is

d{E) _ d Tre "*'. 4,
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where {E) is the internal energy, 7" the absolute temperature, 2 Boltzmann con-
stant. According to Nakamura's analysis” we may get

= 9—'k£~1.1c+ 15.7 % (15)

where ¢ is the ortho-concentration. Then we have
K}y =L v )t = CvkT* = KT (16)
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From Reif-Purcell’s theory” we can consider that
L (0) 7 L0) >~ (hwp)’ = (27Ra)* = 1.46 X 10 P erg?, (17)

and considering high temperature (w#: < kT)
1
= (o (E 3 1) = 2 (hos (18)
Iz=—~1

Now we may approximately rewrite Eq. (13), considering afiw: << 47>,

1.1 [z (hw) S 2 S a0 4(0) { 1 P } (19
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Substituting Egs. (16), (17) and (18) into Eq. (19), and taking <.#7>°~(2.82x
107%)% erg®, we have

T =530x10°NT exP‘éfﬁ (20)
where
s —Q%Z‘f ~11c+157¢%
Then we get
T:=0.2sec (for ¢ =0.74, 3<T<9°K), (21)

and we shall also show the curves for 7Ty versus 7.
14
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The theoretical values agreed with the experimental values given by Hatton-Rollin”.

The writer wishes to express his cordial thanks to Dr. Sugihara for his valuable dis-
cussion.
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