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§ 0. Preliminaries

The solution of the one-dimensional Schrédinger equation with a potential
composed of a number of square-well potentials of the same form, was presented
by Oshida? in 1951. He has also given a brief comment about the generalization
of his method to the case of one-dimensional potentials which are functions of
coordinate.

The aim of this paper is to present a method to solve the three-dimensional
Schriodinger equation with ‘a potential composed of a finite number of potentials
of the same form. The generalization to the n-dimensional case and to the case
of differential equations of higher order, is also given. The application of this
method to branched molecules is also briefly mentioned.

§I. Matrix Representation of the Solution of the
Schrodinger Equation

If the time-independent Schrédinger equation:
HY7 = EY, 1)

with Hamiltonian operator H, is separable in the three-dimensional space, one can
write in a suitable orthogonal coordinate-system (v, ¥s, ¥s),

HPED () =EPE(p,  (#=1,29) } (2)

Ty, yo, ¥3) = E‘”(y:)ﬁ"“(ya) 5(3)(3’3),

with constants E'? and three differential operators H® of order 2. Further, let
us consider a case where the differential equations (2) can be solved in each
subspace. We shall now define

£P(y,) = if—i%ﬁ- (p=1, 2,3) (3)

and take a set of independent fundamental solutions which satisfy the following
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conditions on the surfaces y, = vp, respectively.
Special solutions of type I: £ (y;) satisfy

299 =1 and £P(33) =0, (p=1,23)
Special solutions of type II: E%'(»,) satisfy (4)
EP(33)=0 and 22(3) =1  (p=1,23)

Then, the solutions which satisfy the conditions on the surfaces y,=y5:

E(ﬁ)( 2 = E(,ﬁ),
( Yp (o } )
g (y3) = &7, (p=1,23)
are written as follows:
EP(y,) = B« 2P (yp) + &7 ER(95). (p=1,2,3) (6)
Accordingly, we obtain
EP(yp) = BT« BP (9p) + &P+ ER (9p), (7N
where the prime ' represents the differentiation with respect to the argument.
Let us take a column vector of six components:
X(yi, y2, 3) = {2V, £7(o1), EP(3), £2(3), (), 8% ()},
then the expressions (6) and (7) are written as
X(¥1, ¥2, ¥3) = P(y1, y2, y3) » X(0, 0, 0), (8)
with a column vector
X(0, 0, 0) ={&", &Y, B, &7, 27, &V} /
and a matrix P of order 6. This matrix is quasi-diagonal and is found to be
: [ i
P o
li i
P - “ Pz Ei > (9)
| i
1o P,
with
() 2R ()
po| 20 B (i=1,2, 3) (10)
| 25 () i (i)

Thus we can find the value of a vector X(h, &, ) (ie. the solution of the
Schridinger equation) on the surfaces y,=Ip (=1, 2, 3) from a vector X(0, 0, 0)
on the surfaces yp, =93 (p=1, 2, 3), by means of the transformation matrices
P:(y1, 2, ;) whose determinants are Wronskian determinants of the differential
equations (2),
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When the potentials in the subspaces are composed of the same form appear-
ing n times in each subspace, we have the transformation equations of the type:

X(Lly LZ’ L3) = { tt RQP}” . X(O, 0, 0), }

Ly=n-l,, (=12 3) =

where Q, R etc. represent the matrices similar to P.
One can simplify the matrix {- - - RQP}” by means of Sylvester’s theorem,”

if one knows the eigen-values of the matrix {- - - RQP}. The theorem states:

If 4 (s=1,2,..., g are the different eigen-values (non-degenerate case) of the

matrix Z of order ¢, then one has

2 (Z"‘XII) se AL — Xk-1I)(Z - }\k—HI) tc (Z“ XqI)

Z71= Z

n
T =) =) U= Akan) - h = A N (12)

In the degenerate case, however, one can have another expression for Z” not very
much different from (12).

It should be mentioned that the calculation of {- - - RQP}” is more simplified,
if one takes into account that the matrices P, Q, R etc. are all quasi-diagonal.
Then, we find

;i {-- ‘R, Q, P} ’ 0 ,
{--- RQP}n=ﬁ {+- ‘R, Q. Ps}" !

l!

,3 0 { ° ~R3Q3P3}" |

Accordingly, it is quite sufficient to calculate each sub-matrix separately, without
treating the original matrix (13) as a whole.

Moreover, it should be worth mentioning that the determinants of the trans-
formation matrices (10) are not very complicated, because the matrices (10) corre-
spond to the Wronskian determinants of (2).

By performing the calculation of the matrix (13), one can obtain the solution
of equation (1) with a potential composed of a finite number of potentials of the
same form connected in series in the three-dimensional configuration space.

The method presented here is very similar to the treatment in the circuit
theory of four terminal networks.

1
{ (13)
I

$11. Boundary Conditions

At the both ends of the potential, which appears in the Hamiltonian operator,
we must take some boundary conditions for wave function. We shall consider
two cases, as examples of the illustration of the boundary condition.

Case a. Infinitely high potential at the both ends.
Let us take a potential of the form:

W=o0 for y,<0 and L,<ys (14)
then, we have

ZP(93) =0 and EP(L,) =0. (p=1,2 3 (15)

These lead us to the conditions that the element in the first low and second
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column of each matrix {- - - R;Q;P;}” should vanish, whatever £%(y}) and £#'(L,)
they may be. Accordingly, the three equations

[{- - RiQiPi}"J2=0, (i=1, 2, 3) (165
determine the eigen-values of the equations (2) under the conditions (14).

Case b. Potential of finite depth at the ends.
As for the potential

W=U,< o for vy, <0 and Lp< Ly, (17

we have somewhat complicated conditions, which involve the limiting operations
yp—> oo, and we can not practically evaluate the sub-matrices. On the other
hand, we can sometimes determine equations which give eigen-values, starting
from the values of the functions on the surfaces y»=v5, and demanding the con-
ditions that F#(y,) and £?’(y,) should remain finite on the surfaces y,— *=ow. An
example of such cases has been given by Oshida® for square-well potential.

§II1. Potential of Cylindrical or Spherical Symmetry

If any of the separated differential equations (2) has no singular point in the
finite space, one can proceed by the method cited above. In some cases, however,
such as the equations with a potential of cylindrical symmetry or spherical symme-
try, we should avoid the singular point of the solutions, if necessary, by taking
initial values of the wave functions not at the origin of the coordinates (in the
case of the potential of spherical symmetry) or at the center-axis of the cylindrical
coordinates (in the case of the potential of cylindrical symmetry), but at the point

somewhat apart from the origin or on the surface somewhat apart from the center-
axis.

§IV. Potential in Power-Series and W.K.B.-Method

If the potential is expressed in power series or if the potential extends com-
paratively small length, one can obtain the approximate solution of wave equation
in power series. For the potential of linear function of coordinates, the solution
is expressed by Bessel function of order 1/3. The eigen-values of energy have
been calculated by Sugiyama?® after the method presented by Oshida. If the po-
tential is of quadratic function of the coordinate, then one obtains, as is well
known, Hermitian function, corresponding to the solution for the linear harmonic
oscillator.

If the potential varies very slightly with regard to the coordinate, one can
use W.B.K.-method in order to obtain the approximate solution for the wave func-
tions.

§ V. Generalization to the #-Dimensional Case and Appli-
cation to Differential Equations of Higher Order

The method presented in §I can be conveniently extended to the »-dimensional
partial differential equations of second order, such as wave equation, diffusion
equation etc. In these cases, one should take the 2n-dimensional transformation
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matrix as in the case of the circuit theory of 2n terminal networks. Naturally,
the idea presented here is also applied to the differential equations of higher order.
More generally, one can treat the solutions of linear functional equation, such as
differential equations, integral equations, difference equations etc., in a manner
similar to the method presented in §1. In these cases, however, the smooth con-
tinuation (or the linear boundary condition) for the individual solutions at the
boundarys between the individual sub-potentials is demanded.

§ VI. Application to 7-Electrons in Branched Organic Molecules

The matrix representation of the solution of Schrédinger equation presented
in §1, can be conveniently applied to some branched molecules such as cata-
condensed hydrocarbons, graphite etc.

In some molecules composed of four-valenced atoms, such as carbon, siliconium,
germanium etc., their electronic state s*p* is hybridized, the promoted electrons
forming valence bond. For example, in a cata-condensed hydrocarbon, we take o-
electrons and =-electrons of carbon atoms into account, the latter being considered
as free electrons running along the molecular skeleton. At the branching point,
we have linear conditions® for the continuation of the wave functions lying on
each line connecting the atoms. Accordingly, we can apply the idea presented in
§1, to continuate the wave functions. In such a case, the transformation matrix
similar to P is called a branching matrix ( Verzweigungsmatrix), and a constant
which represents the ratio of mixing of two wave functions (or more precisely,
derivatives of two wave functions) in the branching matrix, is named a mixing
parameter (Mischungsparameter).

In graphite, one treats the transformation matrix of higher order, and the
column vector which includes wave functions and their derivatives is multi-
dimensional. The calculation of the transformation matrix is very complicated,
but the individual process of decomposing and finding the final form of the matrix
is quite similar to the method presented in §L
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