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Synopsis

The one-dimensional Schrédinger equation with a potential of saw-toothed or
roof-shaped form is solved in the finite space. After the method presented by
Oshida," the matrix representation of the wave function and the method analo-
gous to the circuit theory of the four terminal network are employed.

The low eigenvalues of energy are tabulated with the number of repetition of
the individual potentials. Their comparison with the eigenvalues for the periodic
square-well potential is also given.

§ I. Introduction

In case of the one-dimensional Schrédinger equation with a square-well po-
tential varying periodically, OshidaV has presented a method to obtain its solution
by making use of the transformation matrix of order 2 and obtained the equation
which determines the eigenvalues of energy under some boundary conditions.
Recently, Takizawa?® has extended the method to solve the three-dimensional
wave equation under some restricted conditions. Further, he has tried to gener-
alize Oshida’s method to the solution of the equations of higher order and to that
in many dimensions.

Following to Oshida’s method, in this paper the author presents eigenvalues
of energy associated with the saw-toothed or with the roof-shaped potential, re-
spectively. The calculation of the eigenvalues is carried out graphically, and their
comparison with eigenvalues for the square-well potential is made in some detail.

The results obtained may find some applications to the energy state of free
electrons in metals and in organic compounds.

§$II. The Saw-Toothed Potential with Infinitely
High Barrier at the Both Ends

We shall consider the one-dimensional periodic potential field of the saw-
toothed form as shown in Fig. 1. U denotes the height of the saw-toothed po-
tential, and a its period. The one-dimensional Schrédinger equation in x-coordinate
is expressed by
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with the potential: 7t
V———z-g—x U for 0<zx<gq, (2) -
87" m . x

where B°= - R and E the eigenvalue of 0 / al/ 74

energy. m shows the mass of the particle (elec-
tron) and h the Planck constant. Writing

V 2na

FiG. 1. The saw-toothed
Z:—_ E+ U— ?_g.x, and );: P g;(g]_.zg"?" potentiaL ‘
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we obtain the solution of Eq. (1) with (2), if we know the (initial) values of the
wave function ¢(x) and its derivative £(x) at x= 0. In matrix form, we have
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=P [ 2] (3)

under the conditions ¢(0)= ¢, and &(0)=¢,, where {(x)= %%, A+ =\/V37/ a3 (E+ 05K

E,=E+U and J.(+)=], ( as LE+ U]3’2> . Bessel function of order ». If the
potential is repeated » times, we obtain from (3)
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Cna

where ¢ne = ¢(na), Cna=C¢(na), E-=E—U and J,( - )—]b( aB_ [E- U]m)

By applying Sylvester’s theorem® in matrix theory, the calculation of the
transformation matrix P” can be simplified by making use of the substitution

Py+ P
2

= i—g‘l[( =)+ )2]1/3[]2/3< 0 ia( =) + -zl + Y-y =)+

CosS 7 =
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T et =) Jao o s =) {01 e
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where P;; (z j=1, 2) represents the elements of matrix P, and (%) is an ab-

breviation of the expression aB(3U)""(E+ U)¥. Thus the matrix P” in the
above Eq. (4) reduces to

pr_ 1 Py esinnr—sin (n—-1)r Py« sin ny ] 6)

~ sinr Py - sin nr Py esinnr—sin (n—1)7

Considering boundary conditions $o=0 and ¢n.=0, ie. the potential barrier is
infinitely high at the both ends, eigenvalues of energy are determined by

[P"]p= Py .%1572;7: = 0.

For
Ellz
Ppy= m sl +)J-15( =) = J-1aC+ )il =)} %0,
we obtain

sin ny 0
sin 7 ’
ie.
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=G(-), (7)

taking into account of (5), with % and G

# integers (n>1, /% must not be an o

integer). 08
We calculate the right-hand side

of (7), say G(—), as a function of (=) 0.6 / \

04
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FI1G. 2. Py versus (—)= 3l%(E——U)m, FIG. 3. G(~) versus (—)= %(E—U)s/z,

n=1. n_>2.
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(cf. Fig. 3), by making use of the numerical table? of Bessel functions of order
+=1/3 and +=2/3.

Then, we draw straight lines cos-%—;r— =const. in Fig. 3 and find E from the points

of intersection of the straight lines and the curve G(-). The numerical values
used here are m = mass of electron, U=858¢eV and ¢=2A. The eigenvalues of
energy are listed in Table 1.

TABLE 1. The Eigenvalues of Energy E in eV (Saw-toothed)

n 1 2 ‘ 3 | 4 s
L9088 | 2137 | a7ae | 1534 13
| 3769 | 5901 | 2627 | 2137 18.80
5140 | 2899 ] 24.30
E 6630 | 47.92 30.45
| [ 59.01 ; 45.89
; s
| ! i ! | 63.51

#: The number of potentials repeated.

$III. The Roof-Shaped Potential with Infinitely
High Barrier at the Both Ends

As another form of the finitely extended potential field varying periodically,
we consider the case shown in Fig. 4. The
potential is expressed by V= —2~§]-x~ U for

vi
I e TR
x
The Schrodinger equations are written as OV&‘ i“/s_a\- v ' \}zna
aU -

2
»% +32{E—~-2-gx+U}¢=0, (8 |
and ., FIG. 4. The roof-shaped po-
d‘¢’ +B2{E+ 2Ux“‘8U}(/1:O (8) tential.
de a ] 2

in the two regions, respectively.

Solving the above two equations in the matrix form under the conditions:
¢(0) = ¢ and <(0) =¢; and connecting their solution at x=a, we obtain the follow-
ing wave function at x=2a:

tra | _ o
Caa J - Q[ G A
where
Q@=P(+) - P(-),
and
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m{]m( V() + Jaal = 1 J-1(+ )},
EEBA {T12C = WusC+ ) = Jupal = )V J-1a( + )}

P(+)= SE.
Eiy { T = )V JozpaCF ) = JoopgC = Vo +) 1,

Ef— {T-18C = ) J=2psC )+ Jual = Vo 4+ )}

. 12 -

BV, {Jern(+ )]1/3( =)+ JeanC ) T-1C =)0,
BE A {TusC ) -1 = ) = JeapsCH ) Tyl =)}
{J-oal A+ Won( =) = JosC 4+ ) J-os( =),

E%T {J-1s3C 4 ) =osC =) + JisC+ ) JorsC = )}

P(-)= o

EY* 4.

If the potential is repeated » times, we see that the wave function at x=2xna is
expressed by

o 1-918 ]
(J-13C4+ W -2aC =) + JusC + )V es( =)
X (JaraC 4+ M el =) + Joas(+ ) Jora( =)
1 A (JeopsC ) s =) = JepnC 4 I J-2ps( =)
Ad- X (JoainC = () = Jua =) T +)),
2BEYY o (Japs( = Vool + ) = JoapsC = V()

X JopaC A4 W uaC =)+ Tz + ) —1a( =)

o (s = JuaC+ ) + JoapC =) Jo1p(+))
X (J-1sC =V JisC ) = JusC = V-1 4+)), |
(J-oraC 4 ) JopsC = ) = Jopa( A+ ) J—2pp{ = ) { ¢°} (9)
X (]»1;3( - )]1/3( +) = Jus( = )f‘lla( +))

+ (Jora( + VWis(— ) + J-oa(+ )]—1/3( -))
X (JorsC = s+ ) + Joaia( = ) J-ya(+)) |

BEI/.‘%

where E,=E=+ U, Ai=\/v§/n- g?]Em and Ju( =) =], ( ab [E + U]3/2>

After calculating »nth power of the matrix @ under the conditions ¢, =0 and
¢ana = 0, we obtain the eigenvalues of energy by the equation:

0=Qr= BEWA i CTul ) JeraC = ) A JeapaC = Y-+ )1 %
X LT—1sC =) T+ ) = JusC = -1+ ] for n=1, (10)
and sin nr

- =0 for n>1,
sinz
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where
cosr= Qut @ ; Qe

=14 25 () (M a4 e =) = Tl +) Tl =)}
) X T-2r2C 4 ) Jesa( = ) = Jars( + )T -21s( =)},
ie.

cos BT~ 14 BE () (W )T =) = T )Tl = 0}
X AT+ ) el =) = Jos + )T =21s( = ) }
=G(-). (11)

Fig. 5 shows a plot of @ vs. (—) for n=1.
The graphical calculation is carried out in the similar manner as cited in $1I
(cf. Figs. 2 and 3), with numerical values U=858¢eV and a=1 A.
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FIG. 5. Qu versus (~), n=1. F1G6. 6. G(—) versus (—), n>2.

The eigenvalues of energy are listed in Table 2.

TABLE 2. The Eigenvalues of Energy E in eV (Roof-shaped)

n 1 2 ! 3 | 4 5
1273 | 2137 1783 | 1597 1508
3734 | 58.89 2619 2146  19.32
8510 | 51.37 | 2918 | 2413
E | 6716 | 47.82 | 3091
588 | 4570
| . 7138 | 5430
| 9880 | 6369
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By applying Oshida’s method we obtain graphically the eigenvalues of energy
associated with the square-well potential shown in Fig. 7. We make use of the
same values of m, ¢ and U as in §IilL

; "U e _Lﬂ s

FI1G. 7. The square-well potential.
Table 3 shows the eigenvalues associated with the square-well potential.

TABLE 3. The Eigenvalues of Energy E in eV (Square- well)

i T
no T 2 3 4 5
17.44 2233 1896 18.33 17.74
37.42 5799 | 27.03 22.33 20.26
£ 83.45 11768 | 50.09 2875 | 2539
15414 | 19273 6509 | 4761 30.54
23747 | 28401 10774 | 5799 4641
33822 | 39447 12389 | 6957 | 5528

The eigenvalue equations of energy are

0=cosap * sinag+sinap - {% (g - %) + %(ﬁ + %) cos aq}

= Ry for n=1, (12)

cosf:—;L =cosalp-+q)+ {1— %(%4— %)}sinap'sinaq

=G for =2, (13)

where p=BVE—-U and g=8VE+U.
Figs. 8 and 9 show plots of the right-hand side of the above equations vs. p.

§IV. Remarks

In Fig. 2 (saw-toothed, n=1), P, tends to infinity, when (E— U) approaches
towards zero. The lowest energy-level 9.08 eV in Table 1 corresponds to the most
left-sided intersection of this curve and the abscissa. The function G(—) in Fig. 3
(saw-toothed, n>2) tends to —1.11, when (E—U) approaches towards zero. While,
the function @y, (roof-shaped, #» =1) in Fig.5 is found to tend to infinity, if (E-U)
vanishes. The smallest value 12.73 eV of eigenvalue of energy for n=1 (roof-
shaped potential) in Table 2 is obtained from the most left-sided intersection of
the curve @i and the abscissa in Fig. 5, and corresponds to the symmetric wave
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FI1G. 8. Ru versus p=f~VE—U, n=1. FI16. 9. G versus p=8~E—U, n>2.

function as regard to x=ga (even wave function), while the other higher eigen-
values come from the antisymmetric functions. In Figs. 8 and 9, it should be
also noted that R —1.36 for p—0, and G— —1.43 for p—0.

The figures 9.08 eV (saw-toothed, n=1) and 12.73 eV (roof-shaped, n=1) seem
to be quite reasonable, if one considers that the lowest energy level for square-

TABLE 4. Energy Difference Corresponding to Type of Potentials

[

7 Type of potential Energy difference
Saw-toothed ' 2861 |
1 Roof-shaped | 2461 | 4776
} Square-well . 1998 f 46.08 70.69 83.33 | 100.75
| Saw-toothed | 37.64
2 Roof-shaped . 3782
Square-well . 3566 59.69 75.05 91.28 11046
 Saw-toothed | 911 | 2513 14.90
3 Roof-shaped | 836 | 2518 15.79
Square-well : 8.07 | 2306 15.00 42.65 16.15
Saw-toothed 6.03 762 1893 | 11.09
4 Root-shaped 5.49 7.72 1864 | 11.07 1249 | 2742
Square-well 400 642 18.86 | 10.38 1158
Saw-toothed 467 550 | 615 | 1544 8.53 9.09
5 Roof-shaped 424 481 678 | 1479 8.60 9.39
Square-well 252 513 515 | 1587 8.87
l — i L ! —
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well potential (z=1) finds itself at 17.44 eV (cf. Table 3). As for the higher
levels, the energy eigenvalues are not much different from each other with regard
to the three types of potentials cited above. For reference, the energy differences
are also listed in Table 4.

Hayashi and co-workers® have treated the Schrodinger wave equations with
square-well or roof-shaped potential which has a defect and is extended infinitely
in the one-dimensional space. They have also given the widths of forbidden band
and eigenvalues of energy. The present author, however, treats the case of finitely
extended potential in the one-dimensional space, and the detailed comparison with
their results can not be given.

o In concluding this paper, the author expresses sincere thanks to Profs. I. Imachi and
E. I. Takizawa for their reading the manuscript.
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