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ABSTRACT

In this paper we describe a space charge theory developed on the basis of hydro-
dynamics, treating many thermal electrons in vacuum diode tube as fluid. We solve
the problem under the two conditions. Under condition (1), as usual in hydro-
dynamics, the temperature changes adiabatically. Under condition (2) the tempera-
ture is nearly constant in the system. We call these conditions “adiabatic” and
“constant temperature” approximations respectively.

‘With constant temperature, the results under condition (2) are in good agreement
with those of the space charge theories of Fry and Langmuir based on the assumption
that electrons are emitted from a hot cathode with the Maxwllian velocity distri-
bution. With the adiabatic approximation, the results are in poor agreement with
experimental results for a weak electric current, because in this case the tempera-
ture may be constant due to the large thermal conductivity of the electron gas. This
approximation is valid under the conditions which we discuss in more detail in part II.

I. Introduction

It is well known that the current-voltage characteristics of a hot cathode
vacuum diode tube show negative anode voltage when the electric current is
small compared with the saturated current. To explain this phenomenon, Fry?
and Langmuir®?® proposed a space charge theory in which electrons are con-
sidered to be emitted from the cathode with the Maxwellian velocity distribution.
Langmuir’s theory was found to be in agreement with experimental results, pro-
vided that the well-known Boltzmann density distribution is valid,

7 = My €XP (%) (1)

where V =electric potential, z=the number density of electrons and = the
density for V=0, k=the Boltzmann constant and —e=the electron charge.
However, if the velocity of flow, or the mean velocity (hereafter referred to only
as “velocity”) is not equal to zero, Eq. (1) does not apply. Furthermore, Lang-
muir’s equation for the electric current, Eq. (57), which is similar in form to Eq.
(1), does not satisfy the continuity of electric current.

Meanwhile Jaffe® proposed a theory based on the consideration that all the
emitted electrons have the same velocity. According to his theory, however, the
strength of electric field at the cathode is too complicated to be determined easily.

Both theories treated the phenomenon as an effect that modifiers the velocity
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distribution of electron at the cathode on the basis of the dynamics of one particle.
From a macroscopic point of view, the motion of thermal electrons can not always
be expressed by the dynamic equation of one particle. As we shall see later.
The dynamic equation of one particle is valid only when the velocity is smaller
than the mean thermal velocity. If this is not the case, Euler’s hydrodynamic
equation might be used.

We treat the motion of an electron gas on the basis of the hydrodynamics.
It may be reasonable to assume that the electron temperature of the electron gas
changes adiabatically an approximation usually adopted in hydrodynamics of com-
pressible fluids. We call this assumption the “adiabatic approximation”. However,
if the electron temperature is kept nearly constant in the system, we can then
obtain equations similar to those of Langmuir’s theory. It is found desirable to
adopt an approximation of constant temperature if we are to obtain good agree-
ment with experimental results. This is called the “constant temperature approxi-
mation”. We deal with these two extreme cases independently.

In Sec. 2 we describe a set of fundamental equations and in Sec. 3 they are
reduced to practical ones suitable to a steady one-dimensional system. The equa-
tions are solved for two extreme cases in Secs. 4 and 5. Section 6 contains dis-
cussions on the results.

IT. Fundamental Equations

1. Conservation of mass. We denote the mass density and the velocity by o
and v respectively. The equation of continuity, expressed by the conservation of
mass, is then

-‘fg- = —pdive, (2)

where d/dt =9/ot + (v « grad).

2. Conservation of momentum. We denote the force per unit mass and the
pressure by K and p respectively. The equation of motion is given by the Euler
equation;

- = K — grad p. (3)

For charged particles in an electric field, by ignoring the force associated with
the magnetic field caused by the electric current, X becomes

= — €= (4)

Here —e and m are the charge and the mass of electron respectively; E is the
electric field strength. Equation (3) holds only for a non viscous fluid.

3. Equation of state. The pressure is connected with the density » and the
temperature T in the equation of state as

D =nkT, (5)

where % is the Boltzmann constant. As described in the preceding section, we



Research Reports 93
assume the following two extreme cases for temperature variations:
(1) In the adiabatic approximation, the temperature is
T=ccn’™?, (6)

where 7, ratio of the specific heat of constant pressure to the specific heat of con-
stant volume, is given by

T=(+2)/f,

where f is the degree of freedom.
(2) In the constant temperature approximation, the temperature is

T = Ty = const. ]

4. Poissow's equation. We have described fundamental equations in hydrody-
namics; let us now consider basic equations in electromagnetism. There is a
connection between the electric field strength in Eq. (4) and the charge density
g through Poisson’s equation, namely

divE =4ngq, (8)

where ¢ is equal to —en.
When we neglect the displacement current, the current density is

= qv. (9)

1II. Some Expression for a Steady One-dimensional System

In a steady one-dimensional system, the five equations (9), (3), (6), (7) and
(8) in the preceding section become, respectively

env = J, (10)
mnv%%= — neE — gi, (10
P =nkT < n’, (12)
p=kTyn, (13)
gg = —dren. (14)

Here j=—i is a constant and use has been made of f=1 (namely r=3) for one-
dimensional compression. Furthermore, we introduce the electric potential V by

E=-S- (15)

1. Conservation of energy. Combining Egs. (11), (12) and (15) and integrating
the result, we obtain

Do =

mo= eV = ST + Kia, (16)
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where Ki, is a constant of integration. For the constant temperature approxi-
mation, using Eq. (13) instead of Eq. (12), we obtain

% mt=eV—-kTylnn - Kis, (17

where Ky is another constant of integration. If v is equal to zero, Boltzmann's
density distribution, Eq. (1), can be obtained from Eq. (17). If v is not equal to
zero, from Eq. (17) we get

7 = 1y €Xp [-.{eV— —%‘m(vz - i) } /kTo], (18)

where v is the velocity at the point for V'=0. When the temperature is nearly
constant in the system, Eq. (18) is more general than Eq. (1).

2. Equation of stress. Inserting Eq. (10) into the left-hand side of Eq. (11) and
eliminating » on the right-hand side of Eq. (11) by using Eq. (14) and integrating
the result, we have the following equation

mjv’ 1

. .. P 2 —

e Sn E°—p+ K, (19)
where K; is a constant of integration. This stress equation is valid for two ap-
proximations. When E?/8z> p — K,, the velocity is given by

eE”
v =

= S’ (20)

Equation (20) is the most interesting when it is compared with the velocity of
charged particles in an atomic or molecular gas at high pressure, in which by
neglecting diffusion and thermo-diffusion, the velocity equation is such as

v=0E or v=0bEY"
where b, and b, are constants depending on the kind of gas.®

3. Condition under which dynamics of one particle holds. Let us assume that
the temperature is nearly constant. When we substitute Eq. (13) for Eq. (11)
and make use of Eq. (10), then Eq. (11) can be rewritten

mm){l - (—%)z}% = —nek

where v, equals (Tv/m)¥% If the condition that
> ok (21)

be satisfied, the pressure gradient on the right-hand side of Eq. (11) can be neg-
lected and dynamic equation of one particle can be used. For the adiabatic ap-
proximation, we have a similar condition. Therefore, if Eq. (21) be not satisfied,
Euler’s hydrodynamic equation must be used.
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1V. Constant Temperature Approximation

In the first place, we calculate the constant temperature approximation because
the results are in good agreement with those of Fry and Langmuir theory and
we have no need of numerical integration.

1. Initial velocity. We take the cathode surface as the origin of our coordinate
system and, at this point, the electric potential is taken as zero. There is a contact
potential difference which consists of the work functions of anode and cathode
material, and therefore an external potential difference between anode and cathode
contains the contact potential difference. In this paper, however, V is used to
express the potential difference which contains no contact potential difference.

At the cathode surface, the density of electrons emitted from the cathode,
denoted by s, is given by the following equation:

720=jo/82)e (22)

where 7, is the saturated current density and v, = (ETy/m)Y*. Since #» is a constant
in so far as the cathode temperature 7% is constant, the initial velocity is

ve = ol j/ jo) (23)

2. Dimensionless equations and determination of the field strength at cathode
surface. To avoid a complicated calculation, we introduce dimensionless equation
with the following new quantities:

N=n/m U=v/ve

E=x /x:) Xo = (kTo/S?T?Z()ez)l/Z (24)
C=E/Eo E0=kTo/€?Co

= V/V Vo=FkT,/e
7 o 0 ' 0 0 ¥ (25)
J=17l7 Jo=emovo

Quantities 7, o, %, Eo and V, can be calculated when 7, and 7, are given.

Since n, v and V at the cathode are equal to 7., ¥ and zero respectively, Kip
in Eq. (17) can be determined by using Eq. (23). The dimensionless electric po-
tential 4 can be written as follows:

1

7= L (L ~1)-mn, (20

using J = NU. In the same way, dimensionless electric field ¢ is given by

g-ci=p (5 -1)-1-M, (27)
where ¢ is the electric field strength at the cathode and is theoretically determined
as follows:

Equations (26) and (27) are plotted in Fig. 1 and Fig. 2 respectively. The
straight-line in Fig. 1 shows the Boltzmann distribution, »iz. Eq. (1). Both 7 and
¢ — ¢ have minimum values at the same value of N. Differentiating Eq. (26) and
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distribution, Eq. (1).

Eq. (27) with respect to N and setting them equal to zero, we get the value of N
corresponding to the minimum as given by the following equation:

(N)min:'-]' (28)
Because ¢ is a function of N alone, we can rewrite Eq. (15) as follows,

dn _ _dy_, aN (29)

‘= aT T uN &

Since dy/d¢ =0 for N=], ¢ must be zero for N=J. Thus, ¢ is given by

Ce=x=(1-)) (30)
and then Eq. (27) becomes
¢= = (N-J)/N" (31)

Plus and minus signs in Egs. (30) and (31) are to be physically determined,
ie. the dimensionless velocity U is monotonously increased as £ and N are mo-
notonously decreased. Therefore, dN/dt is always negative and ¢ is positive when
7 is decreased with decreasing N. Thus from Fig. 1 we can determine that we
should take the plus sign.

3. Solution and results. Since » and ¢ can be expressed as functions of N
alone, from Eq. (29) ¢ can be related to N by the following integration,

N
e= - dgldN gy (32)
1 ¢

Using Eq. (26) and Eq. (31), Eq. (32) becomes

¢=2(5im — 1)+ 2 (5 ~1)- (33)
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From the above, we can deduce the following:
(1) From Eq. (33), which is an algebraical equation of the third order with
respect to N~Y%, the distance dependency of the density is

s

A1 _m T on?
N = n —-4].0 sinh® 4, (34)
where
crmpe 3 (I (1 % .
sinh 36 = 3 (jo) (1+ i, T 2x0)' (35)

(2) The density and the velocity at a point where the electric potential ¢ is
minimum can be given by

)= 5 o ()= @

respectively.
(3) The distance dependency of electric potential is obtained by eliminating

N from Egs. (26) and (34), as

Vv . 214 __1_ iz__ jO 32
~VO-—851nh0 2<j0> ln47~smh 6. (37)

(4) The current dependency of the minimum electric potential Vi, substituting

Eq. (37) for Eq. (26), is given by

_goﬂ zln_%jué{l_(%)a}. (38)

(5) The distance corresponding to the minimum electric potential x» by in-
serting Eq. (37) into Eq. (33), is

=S - TG @

If the bracket on the right-hand side of Eq. (39) is nearly equal to 1, then we

have
- TV
%m=3.24%10 ‘*7,—2—- .

where j and 7, are measured in units of A/em* and °K, respectively.

(6) When j/j, is limited to zero, the electric potential becomes

Vz=-—2Voln(1+~2~§o—)- (40)

(7) The field strength and the pressure gradient at the cathode surface are

% =(1- EJE) (41)
and
s 1
(- ). )
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respectively, where po=mkTy. For j/ji=1, E. is zero but the pressure gradient
is finite. Therefore, the electrons emitted from the cathode are accelerated only
by the pressure gradient.

V. The Adiabatic Approximation

In the preceding section, we concerned with the constant temperature approxi-
mation. Electrons accelerated by a high voltage lose the character of the gas, i.e.
lose the thermal random motion when separated from the hot cathode, and are
oriented in the direction of the electric field. To better describe such behavior,
it is reasonable to assume that the electron temperature decreases adiabatically.
The procedure of calculation here is the same as in Sec. 4, except that we use
P o< »® instead of p o« ;.

The density of electrons at the cathode is

__J
oa = eVoa ’ (43)
where
1/2
va = (220 ELZ ) (44)

Here the quantities j, and T, are respectively the saturated current density and
the cathode temperature. The velocity at the cathode surface, i.e. the initial ve-
locity, is

Vea = 2)0(1“".7— . (45}
Jo

Determining the Ki, in Eq. (16) and K, in Eq. (19), the dimensionless electric
potential and the dimensionless electric field are respectively given by

1= o7(-5 -1)- 2a-m (46)

and

¢ —Cha=3]" (5 —1) = (1= ND), (47)

where g = E/Evwa, Eve=kTo/exva, %a= (ETo/8nmae?)'?, No=n/m, and where &, is
the dimensionless electric field at the cathode.
Both % and ¢ —¢%, have minimum values at

(Na) min — ]1/2 (48)
and ¢, can be determined in the same way as in Sec. 4. Equation (47) becomes
Ca= (Ns—3]J" = 4] Na) "Nz, (49)

In the same way as in the preceding section, £,(=x/%.) is connected with N, by
the following integration:

Sd”/dN“ dN,. (50)
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Let us now introduce the following new quantities, viz.,
y=No/JP” 3,=1/J"* and Z==&/3]" (51)
Using these quantities, Eq. (50) becomes

Z=2s+ Zs, (52)
where

z. :Syv Y+ +y+1 dy
T B4y 2y

7, = _Syititg_iiﬂ,
B8 1 (3+y2+2y)1/2 y5/2

The result of the numerical integration of Z, is plotted in Fig. 3. Since N.=1
expresses the density at which the electric potential equals zero, Z, is a measure
of the distance between the cathode and the point of the minimum electric po-
tential. The distance corresponding to Z,, denoted by %n, is given by
%m = 3] %00 Za. (53)
If y0> 1, then Z, becomes
Z. = y¥/2. (54)
The straight-line A — A’ in Fig. 3 shows Eq. (54).
The result of the numerical integration of Z; is shown in Fig. 4. Here Z; is

a measure of the distance between the point of the minimum electric potential
and an arbitrary position towards the anode. If y <1, then Z; becomes

Z, = 2/(3y)%. (55)

The straight-line A — A’ in Fig. 4 shows Eq. (55).
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From the above, we can deduce the following and describe a method to find
the anode potential V for J =] and £,=%,.

(1) As J: is given, we can find Z;; which corresponds to yu=/J7"* in Fig. 3.
The distance between cathode and minimum electric potential can be calculated
by Eq. (53).

(2) Substituting Eq. (48) for Eq. (45), the minimum electric potential is

O AL

If j/jo<1, then V= —3Vy/2.
(3) Denoting Z by Z: where £, equals &4, we can find y; which corresponds
to Z1— Z,: in Fig. 4. Because 7 is rewritten from Eq. (46) as follows,

= =3 qame (e L
1=~ 5 U+ + 5T(5"+ 55),

we can calculate the electric potential V for J=]: and £, = &,1.

VI. Discussions

We have dealt with the adiabatic approximation in the preceding section. Let
us now discuss our theory qualitatively and quantitatively. ,

1. In Jaffe’s theory, where he considered all emitted electrons to have the same
velocity, the field strength at the cathode can not be easily determined. The diffi-
culty lies in his assumption that the equation of the motion of a particle is valid.
From a macroscopic point of view, however, this assumption is not true unless
the condition (21) can be satisfied. Unfortunately, the initial velocity Eq. (23) or
Eq. (45) does not satisfy this condition. In our theory, when we use Euler's hydro-
dynamic equation, the field strength at the cathode can be easily determined.

2. In Langmuir’s theory, the determination of minimum electric potential is
based on the following equation:

Jljo=exp (eV/kTy) (57)

When Eq. (57) is differentiated with respect to x, we find that the current density
does not satisfy the equation of continuity unless the field strength equals zero.
In our theory, multiplying v by Eq. (18) and setting j=env and ji=enmwv, we
have

J eV m(st— ) }’

s v ° —
jo - Vo eXp{kTo 2kT, (58)

where v in Eq. (18) equals ». for the present case. If v=uw, the difference
between Eq. (57) and Eg. (58) is only kinetic energy term m(»®—%)/2 in the
bracket. The velocity where the electric potential is minimum is equal to v, so
that using Eq. (23) for v Eq. (58) becomes

Lol - 1= 2)

If v is not equal to v, d.e. if the position of the anode differs from the position of
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the minimum electric potential, Eq. (53) must be used. In this paragraph we are
concerned with the constant temperature approximation.

3. In Fig. 5 the current dependency of the anode voltages is shown under the
following set of conditions: jo =0.16 A/cm?, T =2,400°K and the distance between
the anode and the cathode equals 0.5 cm. In addition, we tabulate the current
dependency of the minimum electric potential and the distance from the cathode
to the position of the minimum electric potentail in Table 1. We can conclude
that with the adiabatic approximation the results are in poor agreement with those
of Langmuir’s theory for j/j; <1 because the heat conduction which is neglected
in the adiabatic approximation is large, as discussed in part II, and thus the tem-
perature is nearly constant for j/ji<1. For j/jo>~1, we can find no appreciable
difference between the two approximations except for temperature variation, be-

cause under the above set of conditions,

167 ‘ d/x is very large (d/x%=10°) and the
b pressure gradient does not play an im-
3 \ - portant role.
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F1G. 5. The anode voltage, V, versus j/j, for jo=0.16 Afem?, To=2,400°K and d=0.5 cm.
Curves @, b and ¢ show calculated results by Langmuir’s theory, constant temperature
approxi. and adiabatic approxi. ‘

F1G. 6. Potential distribution, for j/jo=10"%, jo=0.16 A/em?, To=2,400°K and d=0.5 cm
and the direction of forces. :

TABLE 1. The Minimum Electric Potential Vi and the Disténce from the
Cathode to the Point of the Minimum Electric Potential xm.

( a) Vm (b ) Xm
log j/jo L t CT.A. | AA. logwj/io | L | CTA. 1 AA.
i !
0 o | o 0 0 ‘ 0 0 0

-1 0.48 0.40 0.25 —1 | 619x107% | 6.65x1073 | 4.38x10-3
—2 0.96 0.85 0.31 —2 | 225x1077 | 2.58x1072 | 6.14x 103
—3 1.44 1.33 1" -3 ‘ 751x107% | 861x1072 | 7.0 x10-3
—4 1.91 1.80 P —4 | 2383%10-1 | 2791071 | 7.63%10~3
—5 2.38 2.28 " ~5 | 753x10-1| 882x107! | 8.08x10-
—6 286 | 275 " -6 | 239 279 | 876107
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4. With the constant temperature approximation, an electric potential distri-
bution is shown in Fig.6 under the same set of conditions as in the paragraph 3.
In the same figure, the acting direction of forces is indicated. In the region
between the position of the minimum electric potential and the cathode, fe. in a
« region, the electric force and the pressure gradient are oriented in opposite
directions. In a residual region, .. in a 8 region, both forces are oriented in the
same direction. :

If j/jo=1, the electrons on the cathode surface can be accelerated only by the
pressure gradient. If j/j, <1, the electrons overflow towards the anode unless they
are decelerated by the retarding electric field. For j/j, <1, therefore, the retard-
ing electric field must be near the cathode. The pressure gradient, however, be-
comes smaller with further separation from cathode, so that the electrons must
be transported to the anode by the electric field as well as by the pressure gradi-
ent. Now the direction of electric field is reversed.

5. Finally, as the last stage, we dis-

cuss the relation between V/V, and x/%
for j/jo=1. The simple 3/2 power’s law 5 //
is shown by the curve a in Fig. 7. Using e A
the constant temperature approximation, . %
the curve ¢ shows the calculated result. 1‘; 7/
When the pressure gradient in Eq. (11) 5 /,
is neglected, under the conditions that 3 /
the initial velocity and the electric field . 7/
at cathode respectively are equal to w, 10 b a'—*é/ A
and zero, the solution becomes . /B
o 7
e 2 i
% =8<3€~) sin? ¢ + (sinh® 0 4 )+ (59) g 0 // /
where sinh 36 =3x/4%. The curve b in l: 4
Fig. 7 shows the calculated result using 5 /
Eq. (59). The difference between the s/
curves b and ¢ is associated with the 2 ,/
pressure gradient. The curve b coincides L
with the results calculated by Langmuir’s 1 23 57 10 2 3 57 10" 2%
approximate equation %/,
e " F1G. 7. V/Vu ws. x/x, for jljo=1.
_ _1_(1{) (V4 Vi) Curves a, b, ¢ and d show ’calculated
97 \ m (% — %m) results by simple 3/2 power’s law, Eq.
12 (60) neglected pressure gr.adient, con-
% {1—}—2.66(—[/‘;—) }, (60) sb;atrlxs ;;Ir)xl‘;;ix;?ture approxi. and adia-

where x» and Vi are both equal to zero for j/jo=1. The difference between the
curves ¢ and the result by Eq. (60) is quantitatively associated with the difference
in the initial velocity at cathode, viz., vy = (2kTo/nm)'* in Langmuir’s theory; but
in our theory v, = (To/m)*. The curve d shows the result of adiabatic approxi-
mation. The difference between the curves d and ¢ and the difference between
the curves d and b are not always small. For large x/x all the curves in Fig. 7
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coincide because the effects of the pressure gradient and the initial velocity dis-
appear.

VII. Conclusion

In this paper, we have developed a space charge theory in vacuum diode tube
on the basis of hydrodynamics. From the macroscopic point of view, the motion
of many thermal electrons can be described by equation of the motion of a particle
only if the velocity of flow is very much larger than the thermal velocity. The
initial velocity, however, does not satisfy the condition that the equation of the
motion of a particle is applicable. Consequently Euler’s hydrodynamic equation
must be used.

With a hydrodynamic interpretation of space charge, we can remove the diffi-
culty in Jaffe’s theory, 7.e. that the field strength at cathode is not easily determined,
and then Boltzmann’s density distribution and Langmuir’s electric current distri-
bution can be made general.

Under the two extreme conditions that temperature is nearly constant in the
system and that temperature changes adiabatically, we have solved the space charge
problem. Using the constant temperature approximation, the results are in good
agreement with those of Langmuir’s theory. With the adiabatic approximation,
however, the results for currents maller than the saturated current are not good,
because under this condition the temperature may be constant due to the large
thermal conductivity of electron gas. We have carried out numerical integrations
in as much as adiabatic approximation is valid under such conditions as will be
dicussed in the part II. The conditions where the above approximations are ap-
plicable, also will be discussed in the part II on the basis of thermodynamics.
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