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I. Introduction

The electronic computers based on 2-valued logic (Boolean algebra) have
been largely developed up to the present. Some researches for many valued logic
and logical machine were attempted,”’~® but it appears that this subject is still
left unexploited. In this paper, we shall deliberate on the basic theory of many
valued logical machines with view-points different from the studies above-mentioned.
The results obtained in this paper are essentially the generalizations of 2-valued
logic.

I1. Conventions

Let propositional variables in n-valued logic be Xi, . .., Xm (where » is not
necessarily prime but any positive integer). The set of » ordered truth values,
o, . .., tao1 On which Xi, . . ., X, are defined is represented by 7.

T={t}, i=0,1...,n—1

In the subsequent descriptions, the following basic logical operators are used:
The binary operators; the disjunction V, the conjunction -, the implication - and
the equivalence ~. The monomial operators; the negations of the first kind
(cyclic permutation)

X2y, I=i®k (modm), 4 k=01, ..., (n=1), (D-1)
the negations of the second kind (7, is simply complementary operation)

X 21 X2y, 1= (n=1DGE®EkD1), (mod n), (D-2)

where 2 denotes equality by definition and we assume that X; isin #. In the
2-valued logic, the above two negations degenerate into the single complement X.

III. Fundamental Laws in n-valued Logic

The commutative, associative, distributive and absorption laws are also valid
in »-valued logic as in 2-valued logic.
Generalized complementary law: We have

n—=1703

SV Xi~tp,

=0 i=7

p=n-1DGo1D), (mod #n), 7j=0...,n—1 (F-1)

n—-1idHj

E H —liX1"*fp,

i=0d=¢
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where S or IT implies the disjunction or the conjunction of finite number of
terms or factors.
Multiple negation law: We have

{UXY Vi~ XY 1=iDiOk, (F-2.1)

1 xXI~LxXE, lok=i9] (F-2.2)
; . L. (mod »)

{1 X~XY I=i0i®(n-1)k (F-2.3)

XY ~1X, 1=i®ij®(n—1Dk (F-2.4)

Generalized recurrence law: We have

{xYV~X, i@jek=0, ‘ (F-3.1)
; .o (mod )
1L X ~%, i®j®(n—-1k=0. (F-3.2)
De Morgan’s law: This law is also valid in #-valued logic,

TV X)) ~T1X: s 1o X, (F-4.1)
10(X1 ° Xz)’VWgXl V ‘EQX2. (F-4.2)

Generalization of De Morgan’s law: We have

TAXENV X~ {1 %) « (1 X) 0 EeD) (F-5.1)
T X~ (LX) V(1 36) o hkeD, (F5.2)

Proof: Inl=i®;j®(n—1)k of (F-2.3), let i=j=0, and if the two sides of
this equality is multiplied by (2 —1), the following relation is obtained because
of (n—1)"=1, (mod #).

(X5 XD~ T {To( XAV XD ~ T { 1o X5 ToX%), by (F-4.2),
~Ti-ne{ i X1 ¢ 1; Xe}, by (D-2),
TAXEY X~ T ey {1 X0 0 1 X}
~ {1 Xy - 1 X 0IeR by (F-2.3).

(F-5.2) is also proved analogously.

1V. The Principal Canonical Forms of n-valued
Logical Polynomials

There exist #” m-ary logical functions in n-valued logic and they are pre-
scribed uniquely by their truth-tables. To each function, many logical polynomials
equivalent to it correspond. The principal canonical form of polynomial implies
that every function is represented uniquely in that form of polynomial, that is,
the different polynomials in the principal canonical form should constitute the
different logical functions.

Lemma 1: The following monomial logical funtion (m. 1 £) £,(X) is in fp-
of the maximum element in 7' if and only if Xi~#,, and always when X;+7,,
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is in #, of the minimum element in 7.

n=1
Ly (X)) ~ {t « XTI~ X

=0
where >.% denotes the disjunction with respect to = (n—1){1S1).
Proof: Let Xi be in #. By (D-1), X{""" ~t;, I=k® (n—1w. Therefore,

(1o, k=um
te X§”‘”‘“~{ ’

t, k=
Again using (D-1), we have
tn-—l k =V

{tl R Xl{n—l)n}n—lm{
o K EXIE

a1 .
The analogous proof is possible as to { > X§)
wi=0
Theorem 1: Any m-ary function in z-valued logic is represented uniquely in
the following principal disjunctive canonical form (p.d.c.f.) only using °, vV and
the negation of the first kind:

n-1 n-—1
SH(XI, c ey Xm) -~ Z A 2 Qi(fvu PP tvm) ° %v_\-“vm(Xla R Xm), (1)
Yi=0 Vin =0

%y, (T o oo, X)) ~ T15, (X)),

k=1

Proof: By lemma 1, it is trivial that %0, (X, .. 0 X)) is in 25— if and
only if Xi~%y, ..., Xm~t, and otherwise, is in #,. Let us prove (1) by in-
duction on the number m of variables.

Basis: m=1. %U(X)) is expanded as follows:
n=1
(X)) ~ ‘E—OC% o 3y, (X1). (2)
By lemma 1, Cy,~A(£,), 21=0, ..., n—1 is easily seen. Then, A(X) is re-
presented uniquely by (2).

Induciion step: m> 1. By (2),
n—1

Q((Xl, . . .,Xm) o 2 m(}{h e e e, Xm—-1, 'tvm) ° 3;»,,1(}{712).

v =10

Now, by the hypothesis of the induction,

n—1 n-1 m—1
WXy o v e s Xty Byy) ™~ EO R Za%‘((tyl, ey ) sngk(Xk),
vi= v = =

Therefore, we have



120 Research Reports

n—=1 n—1

QI(Xh ey Xm) ~ 2 A Z ?I(tw, ey tym) "Egyk(Xk).

v1=0 v =0

Lemma 2: The necessary and sufficient condition for a m.1.f. %(X) to be
homomorphic is that the following relation is valid:

RO) > R(1) » -+« > R(n-1), for homomorphic,

(3)
-1 - Rn-2)-» - > R0, for dual homomorphic.

Proof: Let X1~k and Xi; ~ k» (hereafter #;, is abbreviated as k).

Sufficient condition: Assume that (3) is valid.
Case 1): ki=b,.
m(}ﬁ \% Xz) ~ ?R(kl) ~ m(kz)’
m(XO V gl\(Xz) ~ %(kx) v m(kz) ~ m(kﬂ ~ gR(kz)

Case 2): RBixbh, (Bi> k)

R(XLV X5) ~ Rk,

RXD) V RX) ~ TR V R ~ R(Ey).
Then,

RV X)) ~ R(XD VR,
similarly,

ER(Xl o Xp) ~ m(}ﬁ) ° M(Xz)

If (3) is satisfied for the case of dual homomorphic, then we have analogously,
8?(X; ° Xe) ~ 8%(X1) \Y fR(Xz)
m(Xz \% Xz) ~ m(Xﬂ ° ER(XZ)

Necessary condition: If (3) is not valid, then we can easily see that there
exists at least one pair of truth values (%, k) which can’t satisfy the case 2.

Theorem 1—Corollary 1: The p.d.c.f. (1) in n-valued logic can be written
in the following reduced form:

-1

91(X1, c e ey Xm) ~ Eo 9115(7/1, e e ey ym) ° %p(Xb . e ay Xm),
p=

m (4)
Ep~ {1 23X
i=1
where p =y 4+ van + v37’12+ cee T/m%m_l.
If Aplos, ooy wm) ~Up (i, . .., vy), then the reduction of terms in (4) is
possible. That is,
Wp = %5 V Aps » Xpr ~ ApDp,
(3

Spp ~ {1 . (ZXi(n—-l)vi) ° (‘S\E‘Xén—l)v’i)}n*l'
i=1 i=
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Proof: In (1), #™%,,....,, are contained and we denote these by X5, »=0, ...,
n"—1. p is the conversion to decimal number of zn-ary number wmws - * * vm. It
is easily seen that

to(Xp) ~ {1+ X",

5(0) ~n—1, 1o{1) ~5(2) ~ - =+ el —1) ~0.
Therefore, 2(Xz) is dual homomorphic and also we have
3 (Xp) ~ 2d XFTE

Then, by lemma 2, (4) is proved as follows:
(X o v vy Xon) ~ kI—Ilgvk(Xk) ~ o {kElX}zn_mk}. (6)

Analogously, since %, ~ U’ and ¥ is also dual homomorphic by (6), it follows
that Up+ X V Up » Xpr ~ WUp * {Xp V Xp} and

%p V Xp ~ Dp ~ p{ X - (DX
=1 i=1
Then, (5) is proved.

V. The Duality Principle in #-valued Logic

A {B(X)} is called the functional multiplication and written as AP, and further,
if A~ W, is named the power of function and written as

Definition 3: We call the following the polynomials of depth 1 and 2 respec-
tively.
C1'X§VCQ'X%\/"', depthl,

Ci  XiVCyo{Cs X5}V - -+,  depth 2.

Generally speaking, the greatest number of successive times at which reversible
monomial operators are used in construction of partial formula of a polynomial
is named the depth of it.

Theorem 2: Let any m-ary function § be constructed with constants, variables,
., V and reversible monomial logical function (r.m.l.f.). We can get 1,9 as
follows. First, all « and vV which are contained in £, are interchanged mutually.
Then, in the partial formulas of depth 1 in §, constants and r.m.Lf. are replaced
with their Jo-negations. Further, we should substitute for partial formulas of more
than depth 2 their conjugate functions with respect to To—7 transformation.

Proof: If any m-ary function is represented by the principal cononical form,
as seen from theorem 1, it is constructed with constants, variables, V, - and the
negations of first kind or second kind. This is extended so that #! r.m.l.f. may
be contained in © generally. Let  be the logical formula of depth Z  Apply
(F-4) to 9. As for the partial formulas of depth 1, we should interchange - and
V each other and substitute 1; X for X. Let one of the partial formulas of depth %
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in § be Je. Then, we replace & with To3%. Next, let the conjugate function of
3% with respect to T1o—T, transformation be 3%. Then, Sr~To3%Te. Therefore,
we have To3e~3%To because L L X~X  If Su~ASs-:, where A is a r.m.L£. of
depth 1, then 37 ~U* Jp-1. Therefore, 3% To~A™{1oS%-1}. As for ToSs-1, we should
repeat analogous operations until we get 1,31 Finally, (F-4) is applied to ToGu
Since the same arguments can be made for other partial formulas of more than
depth 2, the theorem can be proved.

Theorem 3 (Generalized duality principle): Let any two me-ary functions be
® and . Assume that both & and $ are constructed with constants, r.m.L £, V
and -. [If the proposition &~ 9 is tautology (in #,.:), a proposition that is ob-
tained as follows, is also tautology. That is, all « and V should be interchanged
each other and constants should be T-negated in the two sides of the equivalent
formula simultaneously. Moreover, all r.m.1.f. of every depth (up to depth 1)
should be replaced with their conjugate functions with respect to To—T, transfor-
mation.

Proof: Let the equivalent formula that is obtained by Te-negating the tow
sides of @~ 9 simultaneously be & ~&'. Then, & ~9' is still tautology. To
obtain &'~ ', according to theorem 2, all - and V should be interchanged each
other and the partial formulas of more than depth 2 should be replaced with the
conjugate functions with respect to Tlo—7y transformation. Moreover, constants
and the partial formulas of depth 1 should be Ty-negated, that is, truth values i
and X' are replaced with (n—1)(i1) and ;X respectively. Next, if we make
the substitutions of ToXi~¢, etc., then we have ;X ~&""Y, Xi~T, i, etc.
Let the equivalent formula which was subjected to the above substitution be @
~9". §'"~9" is of course still tautology. In G~ H", the partial formulas of
every depth (even the depth 1 by the above substitution) in its two sides are re-
placed with their conjugate functions in consquence.
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