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Nomenelature

. distance from the diffuser entrance

: distance from the wall

¢ x component velocity in boundary layer
: y component velocity

: velocity outside the boundary layer

: cross-sectional mean velocity

SEICEER

#' : root mean square value of velocity fluctuation in x direction
gs = dynamic pressure of surface pitot-tube

0 : boundary layer thickness

0% : displacement thickness

0 : momentum thickness

0% : energy thickness

H=10%/60, H* = 0%/0
K = (ﬂ/U)y:o
7y ¢ frictional stress on wall

w. =Vro/p, Cr= To/% U’

D : pressure

h, b: height and width of rectangular cross-section respectively
7 : inner radius of pipe

I : mixing length, length of approach pipe

A : cross-sectional area

Ry=Ub/v, Ry = Ux/v

¢ =(w/pU")RY', I'= - (6/pU*)R; " dp/dx

X=inertia term in Eq. (4.23)

Introduction

The diffuser is used to convert high velocity energy into pressure energy, as,

for instance, in pipes discharging fluid from turbines, pump and blower.

The energy loss in the diffuser is often the greatest loss in the fluid mechanical

machines equiped with a diffuser and depends on the behavior of boundary layer
flow which is generally in the state of turbulent in as much as the flow becomes
separate from the wall through adverse pressure gradient.
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Contributions to experimental data on the energy loss in the diffuser and on
flow in the diffuser are Gibson," Andres,” Lyons, Peters,? Viiller,” Shogenji,”
Fujimoto” and others who describe either the energy loss in the diffuser or the
pressure recovery performance of the diffuser for various diffuser forms and for
various angle of diffusers. Hochschild,® Kréner,” Dénch,” Nikuradse™ described
velocity distributions in some types of diffusers and N ikuradse described a condition
for flow separation in some types.

We used some of these experimental results when we designed a diffuser for
the purpose of estimating the energy loss. It is not possible, however, to apply
the data for one diffuser to a proposed diffuser unless the condition of the latter
is much the same as that of the former.

On the other hand, investigations of the behavior of turbulent boundary layers
have been conspicuous and a number of empirical formulae have been suggested
within the last fifteen years. Gruschwitz,™® Buri,*® Kehl,'* Doenhoff and Tetervin,™
Garner,”® Rotta,”” Truckenbrodt,® Fujimoto,” Schuh®” present semi-empirical
formulae for calculating turbulent boundary layers under the influence of adverse
pressure gradient.

These formulae may be helpful for diffuser flow, but they have proved unsatis-
factory when the approach to the flow separation point is considered.

Thus a theoretical procedure for estimating the energy loss in the diffuser has
not yet been established.

This paper is concerned with experiments and theory on flow in diffusers,
especially on the condition of flow separation.

Chapter I. Boundary Layer Thicknesses and
Diffuser Performances

1. Flow condition and diffuser form

Attention is directed in this paper to steady noncompressible flow in diffusers
of simple form having smooth wall sufaces. In as much as the radius of curvature
of flow stream-line is large as compared with the boundary layer thickness, ex-
cepting in the diffuser entrance, pressure can be considered constant within cross-
sections of the diffuser.

We consider a diffuser having two-dimentional or circular or rectangular cross-
sections with small diverging angles.

The diffuser boundary layer is usually considered to be in a turbulent state
starting from the entrance of the diffuser. The flow outside the boundary layer
consists of frictionless flow, the velocity of which can be assumed to be uniform
within cross-sections of the diffuser excepting in the entrance. These assumptions
can be used even for an extreme case where the boundary layer increases to the
center line of the diffuser which occurs when the flow passes through a long pipe
before approaching the diffuser.

In this paper we treat mainly with the two-dimentional diffuser but we also
include flow in conical and rectangular diffuser which are not two-dimentional.

2. Relation between layer thickness and diffuser characteristics

To determine behavior of the flow in each cross-section of the diffuser as well
as to note the flow separation, in our calculation we used characteristic thicknesses
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of boundary layer and velocity outside the layer instead of cross-sectional mean
velocity and mean energy which prevail in hydraulics.

The characteristic thicknesses of the boundary layer in two-dimentional diffuser
and in conical diffuser respectively are defined by

0% : displacement thickness :
(6(1 - Jt—)afy (two-dimentional) and jﬂs(l—— 7—") r—a‘y (conical) (1.1)
Jo U 0 U/ r

f: momentum thickness :

So%(l— ’(uf’)dy and f: 3(1— ;})-fo-dy (1.2)
0%: energy thickness:
[ap-(a ) ma P2b-(2120  as

where u is velocity in the boundary layer, U velocity outside the layer, 7, radius
of circular cross-section of conical diffuser.

For symmetrical two-dimentional diffuser and conical diffuser respectively, the
equation of continuity gives

total flow/unit width: Uh= Uh(1 — 24*/k) = constant

77,2 2 (1.4)
total flow: Ury= Ury(1 — 26%/7,) = constant

where U is cross-sectional mean velocity and % is distance between two diverging
walls in cross-sections of two-dimentional diffuser.

From Eq. (1.4), we get the relation between &/ and U/ and Bernouilli’s equation
holds in the potential flow outside the layer, viz,

P+ g— U’ = constant (1.5)

then pressure p along the flow can be determined by the displacement thickness.
By using momentum thickness (1.2), total momentum of flow at a cross-section
can be expressed respectively for two-dimentional diffuser and for conical diffuser as

j or’dA = pUzA(l - 2—6;;-—0) (two-dimentional)
A

and = pU 2A( 1-2 _f'):'_'_;i‘l?,_) (conical) (1.6)
' 0

where A is cross-sectional area.

In the same manner, total kinetic energy of flow at a cross-section respectively
of both these diffusers is

Lg-uadA=~—2p—~U"’A(1—2—6f‘%vQ*) and =£§£ (1-2-‘3-*;*0—"*)- (1.7)

The loss of head between two cross-sections of the two-dimentional diffuser
can be expressed by
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(Pt +ar UL/28) = (/7 +as U3/28) (1.8)
where subscripts 1 and 2 designate characteristics in the initial cross-section and

on the final cross-section respectively and the velocity profile coefficients a; and a:
are defined by

w={ Yodaly o0t w={ jedaal; T (1.9)
By the use of Egs. (1.4) and (1.7), these coefficients are rewritten as follows:

wm (1= O (150 (1o 6&*2@)/(1_2%)3 (1.10)

Egs. (1.8), (1.10) also be used for the conical diffuser when radius 7, is used
instead of distance , as in Eqgs. given below.

Following Peters,®?" the diffuser efficiency of pressure recovery 7 is defined by

y = (po— 1) UA )
- 1 4. (1 s (1.11)
Ll o U dA Sh 5 PU dA
From Egs. (1.4) and (1.5), we obtain
PR Y . 2 R S
pe-pi= § U1 () - (1.12)

O R )

By the use of Egs. (1.9) and (1.12), Eq. (1.11) is rewritten as

O free T R e ST LREe

) ) (1-2 i

As shown in these equations, diffuser performance can be determined by the
characteristic thickness of the boundary layer. In these calculations, we assumed
the flow to be symmetrical about the center axis of the diffuser. ‘When the flow
separates from the wall, however, it is no longer symmetrical®™ and the above
equations can not hold after flow separation.

3. Relations of boundary layey thicknesses

As shown in the previous section, characteristic thicknesses of boundary layer
are determined by the velocity profile in the boundary layer. It is found that all
velocity profiles in turbulent boundary layers when expressed in non-dimentional
form as #/U versus y/f are arranged as a single group of curves as will be ex-
plained in Chapter III. Therefore, when we take the ratio of these boundary layer
thicknesses as H = 0%/0, H* = §%/0, two parameters H and H* can be determined
in a fixed relation.

The experimental values of H* are plotted against the values of H in Fig. 1.1
where the dotted line shows a empirical formula by others.”” Here, the full line
shows the result of calculations in which it is assumed that the velocity profile in
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the boundary layer can be expressed by

a power relation of the form 20

u/U= (y/o)" resulting in g
H*=4H/(3H-1). (1.14) \

As shown in Fig. 1.1, the value of H* /8 &’zf
is determined by the value of A }\

From these fact, we can conclude 4 2 — HE4EA3H-1)
- that the diffuser performance is deter- 7 B
mined by one thickness of the layers and O
one parameter H or by two thicknesses 16 <
0 and §*. ST

Because momentum thickness ¢ can P ) 3\
be determined theoretically by the mo- ~

mentum equation of the form?’

e 1269H/(H-0379)

/ 2 3

ag _ T _ b du 1.1
= (H+2) T dr FIG. 1.

dx — U?

where 7, is friction stress of flow on the wall, then the theories for parameter H
(or for displacement thickness 6%) and for friction r, are needed in order to calcu-
late flow in and performance of the diffuser.

Chapter II. Experimental Equipment and Techniques

1. Equipment for measuring velocity profile in boundary layer

As the velocity distribution in boundary layer of diffuser can not be determined
theoretically, we can decide it only by experiment. Here we carry out experiments
on velocity distribution and on shearing stress in the diffuser.

Fig. 2.1 is the schematic arrangement of equipment used in this experiment.
This test diffuser consists of four smooth brass plates, two placed parallel vertically
to form the side walls, the other horizontally at a divergent angle to form the top
and lower wall, making a rectangular section. Measurements are carried out on
the lower wall g the center line where the flow is nearly two-dimentional.
Two-dimentionality of the flow will be discussed later in Chapter V under the
“Effect of aspect ratio of rectangular diffuser on two-dimentionality of flow.”

Range of thickness of boundary layer ¢ is from 8 mm to 50 mm (Ud/v =2 x 10*
~1.3x10%). Mean velocity is measured with a pitot-tube which has an opening
of 0.6 mm and can be moved by micrometer giving accuracy of 0.02 mm. Pressure
along the flow is controlled by form and position of upper wall, as shown in
Fig. 2.2 where No. in each test diffuser refers to No. of test.

To prevent separation of flow at the upper wall and to get greater pressure
gradient, the boundary layer flow on upper wall is forced to go out through slits
in the wall (No. 8 in Fig. 2.2). To increase boundary layer, an approach leading
to the diffuser is partially covered by a corrugated plate laid 155 mm away from
inlet section (test No.9-10 in Fig. 2.2).
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To measure fluctuation of velocity in the boundary layer, a platinium hot-wire
anemometer is used. Anemometer arrangement is shown in Fig. 2.3. To compen-
sate for thermal lag on the hot-wire, a C-R coupling amplifier is used whereby the
time constant (M= CR) can be conveniently changed by changing the capacity
in the amplifier.

The time constant is calibrated by using square wave electric current to heat
the wire.

2. Equipment for measuring shearing stress*"

To obtain detailed information on flow in turbulent boundary layer, it is neces-
sary to know the amount of surface friction on the wall.

To measure surface friction, surface pitot-tube of Stanton type®*’ is used, but
measuring with the surface-tube presents some experimental difficulties; for in-
stance, the uncertaincy of measurement and the effect of pressure gradient of flow
on the measurement. Neither of these difficulties have yet been resolved.

Our experimental program is initiated to clarify these difficulties by finding the
characteristics of the surface-tube.

The surface-tube and test channel used for one of these calibrations are pic-
tured in Fig. 2.4 where dimentions of channel and tube are given. Flow in the
channel is two-dimentional laminar flow. A smooth brass circular tube of 29.1 mm
diameter is also used to calibrate the same tube. Flow in the pipe is turbulent.
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Measurements are made by changing both air velocity and tube opening to
obtain both shearing stress of flow on the wall 7o and dynamic pressure in the
surface-tube ¢;. These results are shown in Fig. 2.5 (@), (b). Fig. 2.5 (@) shows
calibration of the tube in laminar flow and Fig. 2.5 (b) calibration of the same
tube in turbulent flow. Both calibration curves are nearly the same and can be
expressed by

(]saof'(;l (2.1)

where » changes from 1.36 to 1.5 depending upon the tube opening.

We tested the effect of pressure gradient by changing clearance between two
walls of channel as in Fig. 2.4, because positive pressure gradient dp/dx along the
flow is in inverse proportion to the clearance of the channel k as expressed by

1/t dp/ds=—2/h. (2.2)

The results are shown in Fig. 2.6 where the different symbols refer to different
clearance. As seen here, the effect of pressure gradient is not easily recognized
as being within the error of the measurement. Because the condition of tube
opening is not exactly the same in each test after readjusting the tube, we found
that the condition is responsible for the error.

Another type of surface tube is made by placing a small (10 mmx13 mm) thin
(0.75 mm thick) steel plate having one sharp edge fixed on the center line of test
wall. As shown on Fig. 2.7, the effect of pressure gradient still can not be recog-
nized although the error of measurement is decreased. After several testing, a
plate having an opening of 0.175 mm was found to be most convenient and efficient
for measuring shearing stress in diffuser experiments.

When the plate is fixed on the test diffuser wall, as shown in Fig. 2.8, dynamic
pressure in the tube is calibrated by wall shearing force which is derived from
change of momentum thickness along the flow by keeping constant pressure along
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the flow (Fig. 2.9). This result shows (Fig. 2.10) that
7o = 0.0776 g™ (2.3)

which is nearly equal to the result for the same opening condition in Fig. 2.5.

Chapter III. Results of Experiments

1. Velocity profile in turbulent boundary layer in diffuser®™
In the test diffuser described in Fig. 2.2, we measure the pressure dlstrlbutlon
along the flow. The results are shown in Fig. 3.1 (a), (b) where the dynamic

pressure of potential flow in any section %pU2 devided by that in the inlet section

é oU3, is shown against x (x: distance from the inlet section).
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where the velocity ratio #/U is shown %7;2 AN e

against logy (y: distance from the wall, 08+ f s Noio 70 4\ 7
S

U': velocity outside the boundary layer). W

When the velocity curves are ex- 07 = ST
pressed in non-dimentional form u/U A@%i\
versus v/0 (#: momentum thickness), as a6 i 1
shown in Fig. 3.3, all velocity curves | — Xm T
are, on the whole, found to be regularly R R T
arranged in single group of curves, as Fic. 3.1(b)

described by Gruschwitz®® and others.”® ‘

There is, however, a slight irregularity in arrangement of curves near the wall.
The velocity ratio #«/U in the downstream part of the diffuser, 7.e. in high Reynolds
number, is slightly larger than that in the upstream part, 7.e. than in lower Reynolds
number. An example of the difference in curves caused b by Reynolds number is
shown in Fig. 3.4,
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Comparing our result on velocity curves with those of Nikuradse'” and
Gruschwitz,”?' agreement is good on the whole being within an error of 2-3%, and
we found a slight irregularity near the wall on curves of lower Reynolds number
in Gruschwitz experiments (Fig. 3.5).

Fig. 3.6 shows the value of #/U at y =0 (later denoted as ) against the value
of the parameter of velocity curve H=d*/§. Here plots of our experiments and
those of Nikuradse are given in a single curve. From this we found that velocity
curves in the diffuser within some range of Reynolds number are decided by a
single parameter X or &,
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Next, we examine the relation between the form parameter H in any corss-
1 dp

section and Buri’s’™ non-dimentional pressure gradient "= —0R3“W7x— at the

same point. While some relation might be anticipated, our results indicates that
there is no direct relation between H and I" as shown in Fig. 3.7.

Using the mixing length of Prandtl’” is a convenient way to trace velocity
distribution in boundary layer. By plotting the curves of total head versus x along
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the flow for each stream-line, and by finding the rate of change of total head along
the flow, and by calculating the shearing stress distribution at several points (Fig.
3.8), we obtain the mixing length distribution from the shearing stress and the
velocity distribution. The results are given in Fig. 3.9.

Here the curve of the mixing length tends to flatten as the pressure gradient
becomes steeper, but the curve nearest the wall is found to remain nearly constant.

2. Velocity fluctuation in boundary layer

To properly discuss flow near the separation point, knowledge of velocity
fluctuation in boundary layer is essential.

We measure velocity fluctuation along flow in boundary layer as the flow is
approaching the separation point; turbulence intensity #' (#': intensity of velocity
fluctuation in x direction) distribution in
boundary layer is measured in a cross-

>

section of the test diffuser by varying 40 N

the diverging angles from 0 to 10 degree, i 5

with velocity remaining constant at the L % . 30
entrance (21 m/s). An example of t AN /
measurements is given in Fig. 3.10. The 20 Py N _ Ynlsg
relative values for turbulence #'/# and {W’H\e\\e%

#' /U are shown in upper graph of Fig. ’;»( e X 10
3.10. Time mean velocity «/U is given & %?N

. . /1 = J AN

in lower graph of Fig. 3.10. As the i D =}
diverging angle increases, or as the value Ty o //5/

of the parameter H increases, the value 08 ;f - ' 1

of relative turbulence #'/# near the wall / Wy Uy H
increases greatly although the value of 05 eBm—— 4]
#'/U increases little. When the value of —-0--—0— /.70
relative turbulence #'/# near the wall 04 1 --@--—O— [.32
increases greater than 30-40%, where the /

flow is considered to have instantly re- 0.2

versed even though the flow in the time FIG. 3.10

mean values has not yet reversed.

Oscillographic records showing time mean variation of the velocity for 0, 4 and
8 degree of diverging angle in these experiments are given in Fig. 3.11 showing
that the degree and mode of velocity fluctuation vary gradually untill the instant
the reverse flow occurs.

Since the point of instant reverse flow is before the point where time-mean
reverse flow occurs, the writer calls the condition of the former “Initial state of
separation.”

3. Wall friction and universal velocity distribution®?

Ludwieg and Tillmann?® and also Sandborn?’ measured wall friction of flow
indirectly by heat transference from the wall. These results are applicable to
diffuser flow except for flow near the separation point. On the other hand, it is
said that parameter H of velocity profile at the separation point is 1.8 to 2.8, but
there are no exact experimental resuits to decide this value.
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We measured wall friction of diffuser flow by using the surface pitot-tube
mentioned in Chapter II.2. Results of our experiments are shown in Fig. 3.12
where the coefficient of wall friction ¢ = (ro/pU?) Ri* is plotted against the form
parameter H.

B=(T,/PURE

20

75 N\

10 F N

Rv=,‘ AN 3

0.5 N
\
~— ]
™~
H
12 /4 16 78 2.0 22 2.4 2.4
FiG. 3.12

Comparing these values with the formula of Ludwieg-Tillmann,
1 .. —0.678H 15—0.268
fo/(pr ) = 0246 x 107" R; (3.1)

we know that as a whole the agreement is good, but when the parameter H is
greater than 1.8, the values of ¢ in our experiments are somewhat larger than
those of the L-T formula.

Here we will discuss velocity distribution in the form #/u.,. versus u,v/» where
#y =V7o/p is shearing velocity derived from results of wall friction. By using ex-
perimental results of wall friction, velocity distribution in boundary layer can be
expressed in the form: w/u, vs. u.y/v.

Because wall friction and velocity are both measured in the same way with
the pitot-tube, error of measurement will be canceled out in the ratio of #/u.

QOur results are shown in Figs. 3.13, 14, 15. Fig. 3.13 shows that the velocity
distributions in boundary layer with no pressure gradient have universal form
regardless of Reynolds number. Fig. 3.14 shows that the velocity profile changes as
the diverging angle increases but regardless of the diverging angle, the form near
the wall does not change and can be expressed by

u/uy, = 4.4 45.75 logi (20.9/v). (3.2)

However, in Fig. 3.15 we see that when the adverse pressure gradient —I" increases
further and the value of parameter H increases to greater than 1.8, the velocity
form cannot hold the above equation even near the wall. The condition in which
the velocity distribution near the wall cannot hold Eq. (3.2), is found to be nearly
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the same as that of initial state of flow separation described in III.2. Then we
know that the initial flow separation occurs when H= 1.8.

The value of this condition (H=1.8) is condiderably smaller than that of
complete flow separation were H is 2.4-2.8.

Chapter IV. Empirical Formulae and Theories®™

1. Empirical formulae for velocity profile near the wall of diffuser

As mentioned in Chapter III, all velocity profiles near the wall in diffusers
when expressed in non-dimentional form u/u, vs. u.y/v, i.e. wall-law, irrespective
of pressure gradient, are practically the same except near the separation point and
are expressed by

wluy = ao+ a1 logun (#.y /). (4.1)

The values of these coefficients a; and a; determined by our experiments are
shown in Table 4.1 and compared with values obtained by others for various
turbulent boundary layers.

TABLE 4.1
ao a1 Author , } Condition of experiment
440 | 575 | Present author Eq. (3.2) | Diffuser flow
Two-dimentional boundary layer with
31 L
4.90 l 5.60 ] Clauser adverse pressure gradient
5.1 I 5.75 Coles®® } "

Two-dimentional boundary layer with-
- 33 :

407 | 598 Schultz-Grunow * out pressure gradient
5.5 r 5.75 i

5.87

|
Prandt]3® [ Pipe flow

As seen here, the values in our dif- Ufops = o (Y™ 5
fuser are nearly the same as those in ol /

other turbulent boundary layers. o -
We can substitute for Eq. (4.1) the :

approximation 70 : N
g
u/uy = a(uey/v)" (4.2) @/

g
where the values « and % are obtained ‘V
from Egs. (4.1), (4.2) and are constant 8 o
only within some range of Reynolds %“/S'//
number u,v/v as shown in Fig. 4.1. ‘)3“/
When the Reynolds number u,y/v is 7 n
smaller than 200, the values of « and » ) 5 7 3 7 70
are 8.26 and 1/7 respectively and using FIG. 4.1
these values, the velocity profile near

the wall is satisfactorily expressed by Eq. (4.2) as shown in Fig. 4.2.
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As the momentum thickness ¢ is 1/10-2/10 of the whole thickness of the layer,
we can assume that Egs. (4.1) and (4.2) hold in the value of y ranging from the
outside of laminar sublayer to the momentum thickness. Thus, rewriting Eq. (4.2)
to get the relation between #/U and y/0, we obtain the empirical formula for
velocity profile near the wall

ulU=k(y/0)" (4.3)

where r denote the value of #/U at the point ¥y =6 and is suitable parameter for
shape of the velocity profile.

The relation between Gruschwitz’s parameter'® % and our parameter £ is
expressed by ne=1~— .

2. Parameter for the shape of wvelocity profile

In this paper we use the value k= (#/U)y.0 as the parameter for velocity
profile because this value can be determined by experiments on velocity profile in
spite of the unfavorable condition that the value changes very slowly with Reynolds
number even when the pressure along the flow is constant.

We calculate the value of the parameter when the pressure is constant. It is
well known that the velocity profile in the boundary layer along the plate, or pipe,
can be expressed by a relationship known as the velocity defect law :38%

(U~—u)/u.=f(9/8) (4.4)

and that, excepting for the outer portion of the layer, the function f of Eq. (4.4)
can be expressed as follows:

S=ailogu (8/y) + by (4.5)

where the value of b, is 2.3-2.4.
From Egs. (4.3), (4.4) and (4.5), we get the value of parameter in constant
pressure o, as follows:

ro=1~— Zz/f [ —ailogw{li+ (u,/U)—L- (a5 U)*} =+ by (4.6)

- where

1 1
L={ a0, E={ st (4.7)
0 0
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and the value of I and L are respectively L = 3.33, , = 20.3.

As shown in Eq. (4.6), the value of k, varies slightly with the value of
u*/U=v7,/oU. There are many well-known relations between the friction coef-
ficients #*/U and Reynolds number Ry = Uf/v, one of which is expressed as follows :

Ulu, =5.45logn Ry +5.55. (4.8)
08

From Egs. (4.6), (4.8) we get a relation-
ship between the parameters x, and Ry o7 e —
as shown in Fig. 4.3. V L
The quantity H=6%/0 is usually
used instead of r as the parameter for
the velocity profile. Re |
In order to find the relation between 100 2 4 6 8 10° 7 4 6 810
parameters £ and H in constant pressure, F1G. 4.3 ‘
we rewrite Eq. (4.7) and get

06

- _ 12 Uy }
m=1/{1 <11>’Tf? (4.9)
where H, is parameter H in constant pressure. Eliminating =, /U from Egs. (4.9),
(4.6), we get

Ko=1—-}i:-l“[—flllogm{]x'(Ho—l)/G’Hg}—}-bo] (4.10)
G- H,

where G = L/L = 6.09.

When the pressure gradient is adverse, the relation between parameter r and
parameter H can be obtained by the same procedure as used in Eq. (4.10) and is
expressed by

e=1- T aloge {h « (H-1)/G B} +5] (4.11)

where the value of I, L, G and b vary H=6%9
according to pressure gradients. If we
take the mean value of each constant as o5
=629, b=766, G=10.05, a1 =56, we '
get the equation

p=1-01821 .

x [5.6logs (H*/H—1) +88]. (412) ' 9

This relationship can be reduced to

the following simple empirical equation:
o)

H=1.34+1.3(0.7—k)+3(0.7—x)? (4.13) L5 o
Fig. 4.4 shows Eq. (4.13) and experi- )
mental results. fC= Us/T

0.2 04 0.6 0.8

The separation of flow occurs in the

range of parameter H covering two-thirds FIG, 4.4
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(1.8-2.8) of the whole range (1.3-2.8) of the parameter, while the range of pa-
rameter r in which the separation of flow occurs covers less than one-half (0.2-
0.45) of the whole range of .

3. Shearing stress equation
From Egs. (4.2) and (4.3) we get the equation of shearing stress at the wall
wo/pU* as follows:

To/pUz - a—2/m+1) o 2D (Uﬂ/y)"""/(’”‘”, (4_ 14)
Using n=1/7, a« =826, from the above equation we have
2o/ pU* = 0.024&" "R "* (4.15)

Eq. (4.15) is nearly the same as Ludwieg Tillmann’s equation®
1 2 —0.678H —0.268
n,/(?pU ) = 0246 x 10777 « R, (4.16)

In as much as Egs. (4.14) and (4.15) are reduced from the approximate equation
(4.2), they can be used only for some range of Reynolds number. We consider
the range of Reynolds number when pressure along the flow is constant.

When pressure along the flow is constant, parameter o is given in Fig. 4.3.
Substituting #o in Eq. (4.14) or Eq. (4.15), we get shearing stress as a function
of R, which is shown in Fig. 4.5.

0008 T
YLy
o6 27 -
0004 |—
M&N
%%%\ [Eg-48) qu,r4J5l
o | /
0002 s
Eg (41D -
0001 fo
2%10° 4 6 & i* 2 4 & 8
FIG. 4.5

So far, the Blasius’s power equation®® for shearing stress along the plate has
been given as

. / (2" Uz) = 0.0256 R7 ! (4.17)

which is plotted by a broken line in Fig. 4.5.
From Fig. 4.5 we know that Eq. (4.15) can be used for a range of Reynolds
number wider than can be used for Eq. (4.17).
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When pressure along the flow has adverse pressure gradient, our experimental
values of shearing stress are compared to values calculated from Eq. (4.15) as
shown in Fig. 4.6. These results are in good agreement; there is only a slight
difference near the separation point where H is larger than 1.8.

‘CV/PUR
-]
2+10°

@ Schultz-Grunow
® H<135
O L8O0>H>1.35
@ 1.80<H

10°

@

0.0248)C (KCRs)™

9 10 210
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Therefore Eq. (4.15) can be used for shearing stress in the diffuser except
near the separation point.

4. Change of velocity profile equations

By using velocity profile equation (4.3) for the value of y ranging from the
outside of laminar sublayer to the momentum thickness, we can derive equations
of the rate of change of the parameter.

A two-dimentional equation of motion in boundary layer is

oudu/d% + pvou/dy = — dp/dx + oc /3. (4.18)
If the potential flow of velocity U exists outside the layer, we have
UdU/dx=—1/p « dp/dx. | (4.19)
The equation of continuity is '
ou/ox + ov/ay = 0. ' (4.20)
Substituting Eq. (4.3) into Egs. (4.18), (4.19) and (4.20), we obtain

S (-—9’~)2n<xdm/dx+ ni®l0 + db/dx+ 2] U + dUT/ dc
(m+1) N6/

= —1/pU?+ dp/dx + 1/pU* + 5t/0y. (4.21)
Integrating Eq. (4.21) with respect to y in the range from the outside of the sub-
layer y, to the momentum thickness 0, we get the momentum equation

6 dp | 0 -
oU% ax t

fﬁ—{ax s dr/dx — e dilds + 0i* U - AU/ dx) = — T (4,92)
9

pU* 0—y
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where

r= (1= 20) k1= Goornsy
¢=1/(n+1)2n+1).

Neglecting y, we get the following non-dimentional expression for Eq. (4.22)

X=(~T'-2)/¢ (4.23)
where

X = — RV grdr/dr + ne®RY "V @8] dx — ORIV 2/ U« dU/ dx
I =0RM™ VU7« dU/ dx
Z =Cro=1)/re  C=(vo/pU”)RY"™ V.

This equation gives the linear relations between X and I

The inclination of this relation is (n+1)(2%+1) which is 1.469 for n=1/7.
The symbols X, I, Z are the inertia term, pressure term and friction term, re-
spectively.

The value of Z depends on the shearing stress gradient near the wall:
(or/2y)y-e =dp/dx. Therefore when dp/dx = (5t/9y)y-0=0, Z=0 and when dp/dx
>0, Z>0.

Fig. 4.7 shows the experimental results determined by Gruschwitz,®® Doenhoff
and Tetervin,”’ and Schubauer®® as expressed in Eq. (4.23) where n=1/7. Fig. 4.7
omits all their results in the range of x < 0.45 i.e. all those near the separation point.

As shown in Fig. 4.7, all ex-
perimental results are distributed
on the right-hand side along line

004

X , Z=0. The same experimental
008 Lyt points are plotted in Fig. 4.8
. where the expression R dr/dx,
007 e
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vs. ~ T is used. Comparing Fig. 4.7 008 x
with Fig. 4.8, we find that in the
latter (Fig. 4.8) the experimental
points are more scattered than in the
former (Fig. 4.7). If we give the 006
experimental data in still another ex-
pression as ORy‘dH/dx, vs. — I, used
more commonly than that in Fig. 4.8,
the points are even more scattered. 004
One reason for this-is that here Zmar
(Fig. 4.8) the expression reveals unre- %{ /
liable data near the separation point. 79,
According to Eq. (4.23), the value 002
of shearing stress term can be de-
termined by the horizontal distance

between the experimental points and -7
the line Z=0. 0 702 004 706
As shown in Fig. 4.9, the values FIG. 4.9

of Z increase with decrease of pa-

rameter & until 0.45; apparently there is some relation between velocity profile
and shearing stress distribution. However, value of r under 0.45, there is no fixed
relationship between the two parameters r and Z.

In order to find the relationship between x and Z for £ > 0.45, experimental
data is plotted in Fig. 4.10.

The lines denoted by 1 show lines of constant values of Z corresponding to
the fixed values of x=0.65, 0.60, 0.55, 0.50, 0.45. Line 2 shows the relationship
between X and —I" when dr/dx=0, as derived from Karman’s integral equation
for momentum : '

R'db/dx= —T'(H+2) +¢. (4.24)

Now we have the relation for the change of the parameter r from which
we can derive an empirical formula. From Egs. (4.23) and (4.24) we obtain

ORY'rdr/dx= (I'=T}) ¢ (4.25)
where
0= - % — {1+ n(H+2))
or
0 =5146(1—4%%) for n=1/7
and

—~Ty=(Z/¢+ /o,

By use of Fig. 4.10, the value of I, can be expressed as a function of pa-
rameter » and we get the following equation :

Ty= —0.118(0.67 — 1), (4.26)
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Rl Substituting Eq. (4.26) in Eq. (4.25),
X we have
0.060 ORY 'k dr/dx
=1.46(1 — £){I" - 0.118(0.67 — &) }.

(4.27)

This equation holds for x> 0.45, and
because almost all experimental results
show that the separation of flow occurs
just after the value of r decreases under
0.45 (Fig. 4.9), we assume the separation
flow starts when r =045 (H=1.8).

Egs. (4.27) and (4.24) are two simul-
- taneous first order differential equations
which can be solved using the step-by-
step method, giving ¢ and &.

Eq. (4.26) of parameter r can be

transformed into an equation of parameter H by use of Eq. (4.13), and we have

0.040

0020

0020 0040 0060
FIG. 4.10

ARY‘dH/dx = —al' — 8 (4.28)

where constants « and § are functions of H (Fig. 4.11).

As already mentioned, there are several empirical equations which predict the
behavior of boundary layers in adverse pressure gradient, the forms of which are
approximately the same as in Eq. (4.28).

Recently Clauser®’ carried out experiments at Johns Hopkins University in
which the velocity profiles were held constant; these results are shown in Fig. 4.12
where the non-dimentional pressure gradient 0/t - dp/dx is plotted against the form

parameter H.
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Although these experimental results do not agree with that given by equation
of Doenhoff and Tetervin' which was for several years the most representative
of all equations, our formula introduced here shows far better coincidence.

5. Boundary layer equation for a circular and rectangular cross-sectional diffuser

So far our discussions have been mainly on equations of flow for only a two-
dimentional diffuser. The forms of diffusers generally used are not only two-
dimentional but have a circular or rectangular or other cross-section.

Here we first consider the flow in a diffuser having a circular cross-section.

Equation of motion for the boundary layer flow along the wall of this type
diffuser is

ruou/ox+ rvou/oy=—7/p e+ dp/dx+1/p » 2(r7) /0y (4.29)
1/p+0pjox=—U-+dU/dx (4.30)

and equation of continuity is
o(ur)/ox+o(vr)/oy=0 (4.31)

where 7 is distance from the center axis.
Integrating Eq. (4.29) by use of Egs. (4.30) and (4.31), we get

to/pU* =1/1d(r0) /dx+ (2 + H) 6/ U » dU/dx (4.32)®

where 7, is inner radius of wall

and H=08%8 &%= :(1— %)idy

Multiplying Eq. (4.29) by = and integrating it with respect to ¥ from y=0 to
y =0, we get

;1 ,a% og*Us)__% g;‘ . dy (4.33)

o= gl-(5) 1

Substituting Eq. (4.32) in Eq. (4.33), we get

where

dH™

0-9 -1 L U (4.34)
where
H*=0x/0 —j‘ T d(u/U) f
’ 0o To fo

In Eq. (4.34), parameter H* is determined by the value of parameter H be-
cause the velocity profile in the boundary layer can be determined single parameter
H (see Chapter I).
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In Eq. (4.34), shearing stress t,/pU? is given in the form of
w/oU=¢(H) « Ry™ (4.35)

which is determined by H and Ry™.
The term of energy dissipation e in Eq. (4.34) is assumed to be expressed by

e=A(H)+T-+B(H) (4.36)
where
0 au m
I'= 5 ax BV

After substituting Eq. (4.35) and Eq. (4.36) in Eq. (4.34), we have

6R’9"%§~ = —a(H) T'=pH) (4.37)
where «(H) and B(H) are functions of only H.

As Eq. (4.37) does not contain radius 7, we may consider that it can be used
regardless of the value of 7, and can be used for two-dimentional flow (7o = ).
Therefore the function « and 8 in Eq. (4.37) is the same as that of two-dimentional
flow. Egs. (4.32) and (4.37) are two simultaneous differential equations which can
be solved by step-by-step method giving H and 6 for the turbulent layer in the
axially symmetrical diffuser.

Next, we consider the flow in the diffuser having a
rectangular cross-section with constant width.

When the flow is not two-dimentional and diverges
or converges as shown in Fig. 4.13, gradient of lateral
velocity w in z direction (dw/dz) is not zero by using
the coordinate as shown in Fig. 4.13.. On the plane
symmetry in this figure, equation of motion of boundary
layer is 17

ou 1 2D 1 or

ou _ - /
“ox Tl T T ax T oy (439 |

z [l

e

. . . F1G. 4.13
and equation of continuity is

ou ov ow _
-a—[_{.—afy——z—gzm_o. (4.39)

Integrating Eq. (5.10) with respect to v, and eliminating » by the use of Eq.
(5.11) and substituting (da/dz):-0 = ¢v, we get the following momentum equation:

db 6 dU 7o

T T @ H) = g~ $o- (4. 40)

Comparing this equation with the two-dimentional equation, we find the ad-
ditional term —¢.0 which has a considerable effect on df/dx.

The equation of the change of parameter H for the rectangular diffuser can
be derived by nearly the same procedure as that for getting Eq. (4.37) and the
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equation thus obtained is the same as that for two-dimentional flow ie. as in
Eq. (4.37).

Therefore divergence or convergence of flow has no influence upon the equation
of change of form parameter H.

By the use of Egs. (4.40) and (4.37), the turbulent boundary layer in the rec-
tangular diffuser can be calculated as giving H and 6 when the pressure distribution
along the flow in the diffuser is known.

6. Conclusion

By substituting the power formula for universal velocity distribution near the
wall (wall law), the author advances a rational and simple method for estimating
turbulent boundary layers in diffuser where the wall friction and velocity profile
parameter are emphasized.

Light is thrown on the problem of turbulent boundary layers, revealing that
other methods heretofore advanced are limited in use.

Chapter V. Effect of Aspect Ratio of Rectangular
Diffuser on two-Dimentionality of flow

1. Introduction

The form and the thickness of the boundary layer of a diffuser determine its
performance. Thickness of boundary layer in two-dimentional diffusers or axially
symmetrical diffusers (conical type) can be estimated exactly by using the theory
of two-dimentional boundary layer.

A diffuser of rectangular cross-section having two-parallel side walls is fre-
quently used for a two-dimentional diffuser.

However, when the aspect ratio (distance between two parallel side walls/
distance between two divergent walls) of this rectangular section becomes small,
the flow on the diverging wall is no longer two-dimentional and thus can not be
exactly calculated by the two-dimentional theory, because in this case boundary
layers on side walls can not be neglected.

2. Experiments on boundary layer thickness

Experiments*' are carried out by this author and Y. Sugiyama to examine the
effect of the aspect ratio on the two-dimentionality of boundary layer flow.

Arrangements of test diffuser are given in Fig. 5.1. Height of entrance (dis-
tance between two diverging walls) is 80 mm and width (distance between two
side walls), which is constant for each diffuser type, varies according to type from
30 mm to 200 mm. Diverging angle may change from 4 to 8 degrees.

Special care is taken to secure uniform pressure distribution at the diffuser
entrance. Straight pipe is used as an approach to the diffuser by which nearly
constant pressure is obtained at the entrance; otherwise, pressure on the wall
becomes considerably lower than pressure at the center. Pressure distribution
along the flow is shown in Fig. 5.2 where chain lines give frictionless fluid when
there is no boundary layer on the walls.

Velocity profiles in boundary layers are measured along the center line of the
walls. The results are compared with the values calculared by two-dimentional
equation. The dotted lines in Fig. 5.3 show the value of momentum thickness on
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wall center in test diffusers where, depending on type, entrance aspect ratio is
30:80 or 200:80 and where diverging angle is 4° or 8°; full lines in Fig. 5.3
show results of calculations by using the theory of two-dimentional equation. As
seen here, results of experiments for diffuser of inlet aspect ratio of 2.5 are nearly
the same as those of two-dimentional calculation.

For aspect ratio smaller than 0.4, however, experimental values differ greatly
from calculated values. For small aspect ratio, two-dimentional calculation should
be modified by considering effects of three-dimentionality.

3. Theoretical consideration

When aspect ratio becomes small, it is considered that side wall friction has
the effect of retarding boundary layer flow on diverging wall. In order to estimate
the effect, momentum balance was considered for flow in a cross-section of the
diffuser, where we assume that the flow is nearly two-dimentional. However, the
effect of side wall friction is too small to explain the discrepancy between theory
and experiment in Fig. 5.3.

Consequently, we know that the effect of side wall friction is small when the
flow is nearly two-dimentional.

Next, we consider a effect of non-twodimentionality of flow on thicknesses of
boundary layer. When boundary layer

flow in the diffuser is not two-dimen- "
tional, that is to say, when stream-lines on T
a plane parallel to wall are not parallel, A — — L%
as shown in Fig. 5.4 and in Eq. (4.40), | \t_’_{f;
the momentum equation is e 4 —
X
di 6 dU ) @
et T g 2rH) = W—fﬁoﬂ.(&l) P—

Value of this additional term ¢, = (da/dz).-0 depends on boundary layer on side
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wall, on divergency of diffuser and on secondary flow.

If there is no secondary flow in a cross-section of a diffuser, streamlines on a
plane near and parallel to the side wall diverge uniformly, as in Fig. 5.4 (b) and
streamlines near the diverging wall converge slightly because of thickening of
boundary layer on side wall, as in Fig. 5.4 (a). Thus the additional term in Eq.
(5.1) for boundary layer on diverging wall and side wall can be expressed respec-
tively as

(5.2)

20 dss 05 dH ds*
o= = G2 ax’ PP G20 <7237—2“Jx*>
where subscript s denotes values for boundary layer on side wall. The effects of
these aditional terms of Eq. (5.2) is to decrease thickness on side wall, and increase
slightly thicknesses on diverging wall.
Values of momentum thickness calcu- Onm

lated by using Eq. (5.2) are compared Enlrance Aspect Ratio 30 : 80

with experimental values on wall center 8r
in diffuser of small aspect ratio, as shown
in Fig. 5.5. As seen here, results of calcu-
lation by using Eq. (5.2) are closer to
the experimental results than those by 4
two-dimentional calculation.

However, there still remains a differ-  ?[ //""””(Sm wall

o
6k ™ diverging wall

ence between results of calculation and
experiment. Here, we recognized that
experimental values at short side of wall
(diverging wall in Fig. 5.5) is greater
than the calculated values, but the ex- 5L - e
perimental values at long side of wall -
(side wall in Fig. 5.5) is smaller than
the calculated value.

Experimental displacement thick- . ‘ ‘ ( , . Lmn
nesses at center of walls are compared ¢ /% 20 w400 S0 500
with those of cross-sectional average FIG. 5.5
values which are obtained from experi-
ments on pressure distribution, as shown in Fig. (5.6). Here, we recognized also
that layer thicknesses at the center of short side of wall are markedly greater
than the average values but that layer thicknesses at center of long side of wall
are not greater, are rather even smaller, than the average.

These discrepancies will depend on secondary flow in a cross-section, because
Eq. (5.2) disregards effect of secondary flow in a cross-section. If secondary flow
occurs in a diffuser, value of ¢,0 in Eq. (5.1) will vary across the wall and differ
from the mean value of Eq. (5.3). Therefore local value of layer thickness is
considered to be affected by the secondary flow.

o side wall

4. Ejffect of secondary flow

Experiments on velocity contour lines in a cross-section (Fig. 5.7) show that
there are secondary flows in the cross-section, as seen in Fig. 5.8. The same
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results as ours were given in Nikuradse’'s experiments®® for rectangular parallel
pipe although he did not use diverging pipe, as we did.

Fig. 5.8 shows that layer thicknesses at center of the short side of wall is
greatly increased by the secondary flow, but that layer thicknesses at center of
the longer side of wall is not increased, or may even be slightly decreased. These
conditions qualitatively agree with our experiments described above.

Consequently, the effect of secondary flow can be considered as follows: The
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ratio of local thickness on side wall center to that on diverging wall 0s/6 becomes
smaller or larger than 1 according by as the aspect ratio is smaller or larger than
1. Therefore by combinding the secondary flow effect with effect of Eq. (5.2)
which shows that the ratio 0s/0 is generally smaller than 1, we see that the ratio
6s/0 becomes very much smaller than 1 when the aspect ratio is smaller than 1,
but the value /0 is only slightly larger than 1 when the aspect ratio is larger
than 1. These conditions are in good agreement qualitatively with our experiments
as shown in Fig. 5.9.

5. Cross-sectional average value

The average layer thickness in a cross-section is more important than the local
thickness when considering the pressure performance of diffusers prior to flow
separation because the average thickness determines pressure in each cross-section.

Although the secondary flow changes layer thickness locally in a cross-section,
when the average of local thickness is taken in the cross-section, the secondary
flow effect will be decreased by cancelling out local change.
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Cross-sectional average values of displacement thickness are calculated by using
calculated value of ¢ with Eq. (5.1) and the value of mean profile parameter
H=1.35. Comparing these values with experimental values, as shown in Fig. 5.10,
the agreement is good.

Consequently we can calculate pressure performance in rectangular diffuser
before flow separation, disregarding the secondary flow effect.

6. Conclusion

Experiments are carried out to examine the effect of width on the two-
dimentionality of boundary flow in rectangular diffusers having constant width.

When the aspect ratio of this rectangular section 7.e. the ratio of distance
between two parallel side walls to distance between two diverging walls is larger
than 2, flow on diverging wall is nearly two-dimentional and can be calculated by
two-dimentional theory. '

When aspect ratio is smaller than 1, local thicknesses at center of diverging
wall is greatly increased by the effect of secondary flow as well as by that of side
wall boundary layers, but layer thickness on side wall are decreased by these
effects.

However, disregarding these effects, the important cross-sectional average
thickness can be calculated even for diffusers of aspect ratio smaller than 1.

Chapter VI. Test Application of Formulae and Theories

1. Effect of boundary layer thickness on flow in diffuser

In designing diffusers, it is important to estimate the separation point of flow
as well as to decide the thickness of boundary layer.

Thickness of boundary layer decides behavior of flow before separation in
diffuser as well as diffuser performance. Separation of flow from the wall results
in loss of energy and increased vibration. By using our theory on flow in diffuser
and our experimental results thus far given, thickness of boundary layer, velocity
profile and separation point can be calculated with more accuracy.

In this section we give examples of calculations showing how the thickness of
boundary layer at the entrance affects the flow in the diffuser.

When pressure along the flow has been previously determined, momentum
thickness of boundary layer and parameter of velocity profile can be given by
step-by-step calculations of the two simultaneous equations (4.24) 'and (4.28) for
two-dimentional diffuser or (4.32) and (4.28) for axially symmetrical diffuser.
Separation point is given when the value of H is 1.8. Fig. 6.1 shows results of
calculation when the potential flow in a two-dimentional diffuser has a diverging
angle of 8°. Fig.6.1(a) is parameter H vs. x/h (x: distance from entrance along
—0~Rf,"’ vs.
I
%/ he both for various boundary layer thickness at the entrance (for 6o/h =0, 1, 2%)
and both for Uphe/v = 10°.

As the layer thickness at the entrance increases, the separation point approaches
the entrance (Fig. 6.1(a)), although distribution of boundary layer thickness (non-
7
o

flow, h: width of entrance) and Fig. 6.1 (d) is momentum thickness

dimentional thickness —— R}"*) is quickly affected by entrance thickness (Fig. 6.1 (b)).
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In these calculation we have assumed pressure

"y to be constant in each cross-section of diffuser and,

5 = by use of Bernoulli’s theorem velocity outside
§p——— — —— L~ poundary layer U is assumed constant in each
cross-section. This assumption is verified by our
experiments except for some diffuser types, i.e.
where in the cross-section close to the entrance
pressure gradient on the wall becomes greater than
near the axis. In this case it is easier for the
separation point to come near the entrance because
of greater pressure gradient.
Figs. 6.2 and 6.3 are results of calculations
when the diverging angle is 10°. Comparing Fig.
6.2 with Fig. 6.1 we see that the separation points
in Fig. 6.2 (diverging angle of 10°) comes nearer
to the entrance. (x/ho<5) than those of Fig. 6.1
(diverging angle of 8°).
Fig. 6.3 shows the effect of Reynolds number
at entrance Usho/v (Us: velocity at the entrance)
on the thickness of layer in each cross-section.
The greater the Reynolds number becomes, the
thinner the boundary layer grows.
In Fig. 6.8 (a), dotted lines give the distri-
bution of displacement thickness ¢%/ho¢ which
increase greatly along the flow. Because the
potential flow diverges  straightly ahead
and because the cross-sectional area of
diffuser should be greater than that of
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potential flow by the displacement thickness, thus the shape of diffuser differs
somewhat in to a trumpet-like form.

When the shape of diffuser is previously known, calculations of flow becomes
somewhat more complicated than when pressure p is known, because velocity
outside boundary layer U should be calculated from both the values of displacement
thickness and form of diffuser by using

Eq. (1.4). 0 y , T .
Therefore, calculations should be ! ‘ J ’ x ¢
carried out by solving three simultane- 09t /e
ous equations concerned with 6, U and 7 N\
H=0%/0 instead of two equations con- g8 /0 \\\
cerned with § and H. N
Fig. 6.4 compares results of these a7 N
calculations of flow in a diffuser of rec- SO
tangular cross-section (full line) where 6= S~
the distance between two parallel walls By T3eparation
is kept constant and two other walls J
diverge at an angle of 10°, with the flow 1r 7
in Fig. 6.3 (dotted line) where the po- 7
tential flow diverges at an angle of 10°, rer
both conditions for the same thickness of
boundary layer at entrance and for the Br
same Reynolds number. In this case 10" recangulsr diftse,
(full line) separation of flow does not r — /0" two~dimensional diffuser
occurs as easily when compared with sk xy
the previous cases, because the boundary ’ ) , . ) o
7 7 2 3 P 5

layer thickness suppresses the main flow
and reduces pressure rise and occurance
of separation.

From the above, we can see that the boundary layer thickness at the entrance
usually has the effect of easy separation, but this is not true when the boundary
layer thickness suppresses the main flow.

FIG. 6.4

2. Comparison of calculated separation point with experimental results®®

a) Experimental results

There have been many experimental studies made on the efficiency of diffusers
and loss of energy through diverging flow but few experimental results have been
published on the phenomenon of flow and its state of separation.

Experiments on the separation of flow in a 20° conical diffuser are carried out
by this author and others.®” Here we describe the experiments and compare ex-
perimental separation points with theoretically calculated separation points of flow.

The 20° conical diffuser used on this investigation is shown in Fig. 6.5. This
diffuser can be separated into two parts divided in a plane including the center
axis of the diffuser. The diffuser is connected to the approach pipe which, in turn,
is connected to a contraction pipe and a blower. By lengthening the approach
pipe length ! from 225 D, to 245 D, (D,: entrance diameter), the thickness of
boundary layer at entrance to the diffuser is increased.

For visual observation of separation of flow in the diffuser, short length of
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silk thread are knotted all along two steel wires,
stretched across the outlet section of the diffuser.
Fig. 6.6 represents four views, each differing in
approach pipe length and Reynolds number at en-
trance UoDo/v (U: mean velocity). All these
views show that a reverse flow occurs near the
wall.

In these experiments there is a considerable
fluctuation of flow such as pressure oscillating 4-
8% of its mean head. The correlation of velocity
between points in the outlet section of the diffuser
is measured by using two hot-wire anemometers.
Fig. 6.7 gives examples of correlation measure-
ments. When the two points come close together
in the same side of the same section (Fig. 6.7
first image, left), the correlation is good. On the
other hand, when the two points are on opposite sides of that section, (Fig. 6.7
last image, right) there is a reverse correlation between the velocities of the two
points.

seee
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Dy °

BO_QO_=1,4><105 M‘L:l,gxms
‘8

v

FIG. 6.6
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Figs. 6.8 and 6.9 show the velocity distribution at stages before entering,
while within and after leaving the diffuser. Here the length of approach pipe is
2.25 D for Fig. 6.8 and 245 D for Fig. 6.9 respectively, and here U, Dy/v is 1.4x 10°
for black ponts and 1.9x10° for white points.

The central part of velocity profiles in both stages before entering (x= —36 mm)
and while within the diffuser (¥ =43.4 mm, x= 104 mm) are similar; reverse flow
occurs only near the wall in stages ¥ =434 mm and 104 mm. The values of pa-
rameter H of these velocity profiles are 2.3-3.2. In the section of the tail pipe
where pressure is maximum (x=632 mm), the value of parameter H returns to
the value at the entrance 1.25-1.3.

Pressure distribution shown in Fig. 6.10 and Fig. 6.11 when I/D, is 225 and
24.5 respectively.

The chain lines here represent pressure distribution for frictionless fluid.
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b) Determination of starting point of separation of flow

It is difficult to decide the exact starting point of flow separation in these
experiments because of the presense of velocity pulsation. We can calculate
displacement thickness ¢* by experiments on both velocity and pressure distri-
butions. By plotting 6* distribution along the wall of the diffuser, we can see
that the thickness increases greatly at a point where the main flow forms as a
jet at an angle of divergence of less than 4° and is not influenced by the wall of
the diffuser (see Fig. 6.10 and 6.11), this point can be assumed to be the sepa-
ration starting point.
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¢) Comparison of calculated separation point with experimental results
In our method of calculating turbulet boundary layer in diffuser, the equation
of parameter H is given as follows:

6RY'dAH/dx = —~ o' —
where

— 0 dU pus
= Ub/v I'= U7 dx Ry

and « and @ are functions of only H as shown in Fig. 4.11, IV. In this method
it is assumed that the separation of flow starts when the value of parameter H

is 1.8.
By using this equation with both the equation of momentum thickness which is

db

1aU | 1 dnl_ <
o +0{(H+2>

Udx " 7 ded ™ oU*

and the equation of velocity just outside the boundary layer
U 0"
z=(-2%)

where U is mean velocity in a cross-section, we can calculate the separation
starting point.

These results for two different inlet pipe lengths are shown in Figs. 6.10 and
6.11.

A comparison of the position of the separation point with the experimental
results, shows good agreement, as seen in these figures, which proves the increased
accuracy of our theory.
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