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Abstract 27 

WHO has presented a health-based guideline value for boron in drinking water. That fact 28 

indicates that a high level of boron is toxic for humans. However, there is no direct 29 

evidence of boron-mediated malignant transformation. In this study, human lung epithelial 30 

nontumorigenic BEAS-2B cells and tumorigenic A549 cells were used to investigate the 31 

tumorigenic toxicity of boron in vitro. Anchorage-independent growth, a hallmark of 32 

malignant transformation, was increased by boron at concentrations of 50, 250 and 500 33 

µM in BEAS-2B cells, though the same concentrations of boron had no influence on 34 

anchorage-independent growth of A549 cells. Moreover, boron at concentrations of 250 35 

and 500 µM activated the c-SRC/PI3K/AKT pathway of BEAS-2B cells. The results of our 36 

in vitro study suggest that exposure to high levels of boron promotes transforming activity 37 

of nontumorigenic cells. 38 
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1. Introduction 46 

Polluted well drinking water is emerging as an issue of public health in developing 47 

countries (Li et al., 2018; Yajima et al., 2017, 2015). Generally, it is difficult to remediate 48 

inorganic matter represented by elements in drinking water, while organic matter 49 

represented by pathogens can be easily removed by boiling. Therefore, contamination of 50 

well drinking water with toxic elements remains a prickly issue in developing countries. 51 



Identification of toxic elements in well drinking water could be an initial step to prevent 52 

health problems caused by the toxic elements. Previous studies showed contamination of 53 

well drinking water with various toxic elements such as arsenic, iron and barium in Asian 54 

countries (He et al., 2019; Ilmiawati et al., 2016; Kato et al., 2013; Yajima et al., 2012). 55 

Other previous studies showed high levels of boron in drinking water in Argentina and 56 

Chile (Table 1). In this study, we newly demonstrated high levels of boron in well drinking 57 

water though environmental monitoring in Kabul, Afghanistan (Table 1). Residents in the 58 

areas may be exposed to high levels of boron from drinking water. 59 

     Boron, a ubiquitous element in nature, has a health-based guideline value (2,400 60 

µg/L) for drinking water quality proposed by the World Health Organization (WHO), 61 

indicating that boron in drinking water is harmful for human health (WHO, 2017). In fact, 62 

boron has been reported to have various toxicities including reproductive and 63 

developmental toxicities (Khaliq et al., 2018). In contrast, various beneficial effects of 64 

boron have been shown in animal and human studies (Nielsen, 2014; Gorustovich et al., 65 

2008; Barranco et al., 2007; Korkmaz et al., 2007). Previous studies also showed that 66 

boron could exerted toxicities at quite a high dose (30 g of boric acid) in humans exposed 67 

to boron for a short time (ATSDR, 2010). Thus, the toxicities of boron remain controversial. 68 

Previous studies have shown that promotion of anchorage-independent growth of 69 

nontumorigenic cells is a representative characteristic of malignant transformation that 70 

exhibits a change from nontumorigenic cells (non-malignant cells) to tumorigenic cells 71 

(malignant cells) (El Khoury et al., 2010; Kato et al., 2002; Kawamoto et al., 2004). Further 72 

promotion of anchorage-independent growth of tumorigenic cells is a representative 73 

characteristic of progression that exhibits increased malignancy in tumorigenic cells (Kato 74 

et al., 2020; Kumasaka et al., 2013). The malignant transformation of nontumorigenic cells 75 

and progression of tumorigenic cells are biologically different stages in the process of 76 

carcinogenesis (Kato et al., 2020; Omata et al., 2018; Yoshinaga et al., 2018). Activities of 77 



c-SRC kinase, phosphoinositide 3-kinase (PI3K) and AKT (PI3K/AKT) and activities of 78 

mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase 79 

(ERK) (MEK/ERK), potentially sited downstream of c-SRC, are also hallmarks for 80 

malignant transformation and progression (Akhand et al., 1999; Kato et al., 2002; Pu et al., 81 

1996; Thang et al., 2015b). Therefore, the combination of the level of anchorage-82 

independent growth and activity of a tumorigenic pathway(s) could be a strong tool for 83 

assessing the tumorigenic toxicities of elements in vitro (Kumasaka et al., 2013; 84 

Yoshinaga et al., 2018). However, there has been no study on the effects of boron on 85 

tumorigenic pathways as well as anchorage-independent growth in nontumorigenic cells. 86 

In this study, cellular physiological and biochemical studies were performed using 87 

cultured normal lung epithelial cells (nontumorigenic BEAS-2B cells) and lung epithelial 88 

carcinoma cells (tumorigenic A549 cells) to assess the influences of boron on malignant 89 

transformation. Our approach provided a new insight into the health risk of boron 90 

exposure. 91 

 92 

2. Materials and Methods 93 

2.1. Collection of samples and boron measurements 94 

Sampling of well drinking water (n=227) was performed at ten districts in Kabul, 95 

Afghanistan. The methods used for water sampling and elemental analysis were described 96 

in detail in our previous report (Kato et al., 2016). Concentrations of 10 toxic elements 97 

other than boron in well drinking well water samples were reported in our previous paper 98 

(Kato et al., 2016). Boron levels used in this study were previously measured. In brief, all 99 

well water was sampled using polyethylene bottles that were rinsed with well water before 100 

sample collection. The collected well water samples were then transferred to our 101 

department in Nagoya University, Japan and measurements were conducted by an Agilent 102 

7700x inductively coupled plasma-mass spectrometry (ICP-MS). As in our previous paper 103 



(Kato et al., 2016), approval for this was granted by the Ethical Committees in Nagoya 104 

University (no. 2013-0070) and Chubu University (no. 250007 and 20190077) in Japan 105 

and the Ministry of Public Health, Islamic Republic of Afghanistan. 106 

2.2. Cell culture 107 

Human nontumorigenic lung epithelial BEAS-2B cells (JCRB, Japan), human lung 108 

epithelial carcinoma A549 cells (RIKEN, Japan) (Ohgami et al., 2015) and human 109 

nontumorigenic HaCaT keratinocytes (Boukamp et al., 1988) were cultured as described 110 

previously (Yajima et al., 2017). BEAS-2B cells and A549 and HaCaT cells were cultured 111 

in RPMI-1640 medium (WAKO, Japan) and in DMEM medium (WAKO) containing 10% 112 

FBS (Hyclone) and 1% antibiotics complex (WAKO), respectively. Boric acid (H3BO3) 113 

dissolved in the culture medium was used for sole exposure to boron in our in vitro 114 

experiments because previous studies showed that >90% of boron and 98.4% of boron 115 

are present as boric acid in water in nature (Zeebe et al., 2001) and in physiological fluids 116 

in humans (Woods, 1994), respectively. The range of pH values in the culture media in 117 

which 5 µM-50,000 µM boric acid was dissolved was 7.12 to 7.18, indicating that pH of the 118 

culture media had limited effects in our in vitro experiments. 119 

2.3. Anchorage-dependent growth 120 

Anchorage-dependent growth was assessed by crystal violet staining following our 121 

previous protocol (Goto et al., 2016). After 24 h of starvation, cells were incubated in the 122 

absence or presence of boric acid (WAKO). At 0, 2, 4 and 6 days after treatment with 123 

indicated concentrations of boron, cells were fixed using 10% formalin, washed with PBS, 124 

dried, and stained by 0.1% crystal violet (CV, Nacalai Tesque, Japan). The CV was 125 

extracted with 0.2 M citric acid solution (WAKO). The values of absorbance were detected 126 

at 595 nm by a PowerScan4 microplate reader (BioTek, Winooski, VT). 127 

 128 

 129 



2.4. Anchorage-independent growth   130 

Anchorage-independent growth was assessed using a colony formation assay following 131 

our previously reported method (Yajima et al., 2015). After cells had been pre-treated in 132 

the absence or presence of boron for 4 days, 4 × 103 BEAS-2B cells, 1 × 103 A549 cells or 133 

2 × 104 HaCaT cells were resuspended in 1 mL RPMI-1640 or DMEM medium containing 134 

1% methylcellulose (WAKO). The cells were then incubated in the absence or presence of 135 

boron (5, 50, 250, 500 and 5,000 µM) in 24-well ultra-low adhesion plates (Corning, NY). 136 

After 14 days of incubation, the colonies (diameter ≥50 µm) were counted. PP2 (EMD 137 

Biosciences, CA) was applied to inhibit c-SRC. 138 

2.5. Immunoblot analysis 139 

c-SRC, PI3K/AKT and MEK/ERK are representative tumorigenic factors that regulate 140 

malignant transformation (Akhand et al., 1999; Kato et al., 2020; Thang et al., 2015b). 141 

These oncogenic signaling molecules are activated by the phosphorylation of their critical 142 

tyrosine (Tyr), serine (Ser) and/or threonine (Thr) (Kato et al., 2002; Thang et al., 2015a). 143 

In order to evaluate boron-mediated activities of the oncogenic signaling molecules, 144 

immunoblotting was conducted following our previously reported protocols (Kato et al., 145 

2004). Primary antibodies to phospho-c-SRC (Tyr416), c-SRC, phospho-PI3K p55 146 

(Tyr199), PI3K, phospho-AKT (Ser473), AKT, phospho-MEK1/2 (Ser217/221), MEK1/2, 147 

phospho-ERK1/2 (Thr202/Tyr204) and ERK1/2 were purchased from Cell Signaling 148 

(Danvers, MA). Primary antibodies to PI3K p55 and α-TUBULIN were obtained from Santa 149 

Cruz Biotechnologies and Sigma-Aldrich Corporation, respectively. HRP-conjugated 150 

secondary antibodies were provided by Calbiochem (EMD Biosciences, CA) and Cell 151 

Signaling. 152 

2.6. Statistical analysis 153 

Results are presented as means ± standard deviation (SD) and were analyzed with SPSS 154 

25.0 (IBM Corp., Armonk, NY). One-way analysis of variance (ANOVA) with Dunnett’s t-155 



test or Bonferroni’s post hoc test was used for multiple group comparisons. Two-sided 156 

p<0.05 was judged as significant. 157 

 158 

3. Results 159 

3.1. Levels of boron in well water in Afghanistan 160 

Boron levels in well drinking water in Kabul, Afghanistan are presented in Table 1. The 161 

mean boron concentration in well drinking water samples was 2,656 μg/L (246 μM), which 162 

exceeds the reference (2,400 μg/L) for drinking water recommended by WHO (WHO, 163 

2017). The maximum boron concentration in well drinking water in Kabul was 23,395 μg/L 164 

(2,164 μM). Both the mean and maximum boron concentrations in drinking water collected 165 

from Afghanistan were higher than those previously reported for other countries, while the 166 

reported median concentration of boron in drinking water in the north of Chile (2,900 µg/L) 167 

(Cortes et al., 2011) is higher than that in Kabul (1,619 µg/L) in this study. The reason for 168 

the high level of boron in well water in Kabul is unclear despite the fact that maximum 169 

levels of chromium (66.0 µg/L), arsenic (104.6 µg/L), cadmium (0.2 µg/L), mercury (0.4 170 

µg/L), and lead (4.7 µg/L) in the same water were comparable with the levels in other 171 

areas previously reported (Ilmiawati et al., 2016; Kato et al., 2016, 2013, 2010). Since vast 172 

natural boron deposits such as deposits of barite, evaporite and pegmatite have been 173 

reported in areas surrounding Kabul Basin (Mack et al., 2010; Peters et al., 2007), the 174 

deposits could be potential sources of high levels of boron in well water in Kabul. 175 

3.2. Influence of boron on anchorage-dependent growth 176 

Although boron at concentrations of 5-5,000 µM did not suppress anchorage-dependent 177 

growth of BEAS-2B cells, boron at a concentration of 50,000 µM significantly suppressed 178 

anchorage-dependent growth (Fig. 1A). On the other hand, boron at concentrations of both 179 

5,000 µM and 50,000 µM significantly suppressed anchorage-dependent growth of A549 180 

cells (Fig. 1B). 181 



3.3. Influence of boron on anchorage-independent growth 182 

Boron at concentrations of 50-500 µM induced anchorage-independent growth of BEAS-183 

2B cells in a concentration-dependent manner (Fig. 2A, B), but the equivalent 184 

concentrations of boron had no effect on the growth of A549 cells (Fig. 2C, D). These 185 

results indicated different sensitivities of nontumorigenic cells and tumorigenic cells to 50-186 

500 µM boron for anchorage-independent growth. On the other hand, boron at a 187 

concentration of 5,000 µM significantly suppressed anchorage-independent growth of 188 

BEAS-2B and A549 cells (Fig. 2A-D). Our results suggest an anti-cancer effect of boron at 189 

a concentration of 5,000 µM, which seems to be an unphysiologically high level based on 190 

previous studies (Moseman, 1994). 191 

3.4. Boron-mediated activation of c-SRC and PI3K/AKT pathways 192 

Based on our results for boron-mediated anchorage-independent growth (Fig. 2), the 193 

effects of boron on activities of tumorigenic factors (c-SRC, PI3K/AKT and MEK/ERK), 194 

which have been reported to regulate anchorage-independent growth (Kato et al., 2020; 195 

Thang et al., 2015b), in nontumorigenic BEAS-2B cells and tumorigenic A549 cells were 196 

investigated. Expression and phosphorylation levels of c-SRC, PI3K/AKT and MEK/ERK 197 

molecules in BEAS-2B cells cultured under an anchorage-independent condition in the 198 

presence or absence of boron (250 and 500 µM) are shown in Figure 3. Phosphorylation 199 

levels of c-SRC and PI3K/AKT were increased in BEAS-2B cells treated with boron. 200 

However, there were very limited effects of boron on phosphorylation levels of MEK/ERK. 201 

These results indicate that boron activates c-SRC and PI3K/AKT tumorigenic pathways 202 

but not the MEK/ERK tumorigenic pathway (Figure 3, left). On the other hand, boron had 203 

limited influence on phosphorylation levels (activities) of the tumorigenic factors in A549 204 

cells (Figure 3, right). 205 

 206 



3.5. Influence of c-SRC on boron-mediated increase in anchorage-independent 207 

growth 208 

In order to confirm the influence of boron-mediated c-SRC activation on anchorage-209 

independent growth of BEAS-2B cells, further study using PP2, a c-SRC kinase inhibitor 210 

(Thang et al., 2011), was performed. After decreased c-SRC activity in BEAS-2B cells 211 

treated with PP2 was confirmed (Figure 4A), the influence of c-SRC activity on boron-212 

mediated anchorage-independent growth of BEAS-2B cells was examined. The 213 

pharmacological inhibition of c-SRC significantly suppressed anchorage-independent 214 

growth of the cells promoted by 500 μM boron (Figure 4B, C), suggesting that c-SRC is 215 

one of the crucial molecules for regulation of boron-mediated malignant transformation. 216 

 217 

4. Discussion 218 

In this study, the effects of high levels of boron on two types of cell growth were 219 

investigated in human lung epithelial BEAS-2B nontumorigenic cells and human lung 220 

epithelial A549 tumorigenic cells in vitro. Boron at concentrations of 50-500 µM promoted 221 

anchorage-independent growth of not only BEAS-2B cells but also human HaCaT 222 

nontumorigenic keratinocytes (Supplemental Figure 1), indicating boron-mediated 223 

malignant transformation in nontumorigenic cells. On the other hand, the equivalent 224 

concentrations of boron showed limited effects on the growth and tumorigenic signaling of 225 

tumorigenic A549 cells, indicating a limited effect of boron on progression in tumorigenic 226 

cells. 227 

Our biochemical study was then implemented to further characterize the molecular 228 

mechanism of boron-mediated modulation of transforming activity in BEAS-2B 229 

nontumorigenic cells. Boron (250 and 500 µM) activated the c-SRC and PI3K/AKT 230 

pathways but not the MEK/ERK pathway potentially sited downstream of c-SRC in BEAS-231 

2B cells (Thang et al., 2015b, 2011). Based on results of previous study and our studies, 232 



c-SRC activation by boron via phosphorylation of Tyr416 in c-SRC seems to be the first 233 

step of boron-mediated activation of oncogenic signaling (Akhand et al., 1999; Guarino, 234 

2010; Thang et al., 2015b). Activated c-SRC then activates PI3K, which directly binds c-235 

SRC through the SH3 domain, by phosphorylation of Tyr199 in PI3K. Activated PI3K is 236 

thought to in turn induce the activation of AKT through phosphorylation of Ser473 of AKT. 237 

Our biochemical results for boron-mediated activation of the oncogenic pathway of c-238 

SRC/PI3K/AKT (Kato et al., 2002; Thang et al., 2015b) in BEAS-2B cells again suggest 239 

promotion of the malignant transformation of nontumorigenic cells by boron. Our results 240 

showing that the boron-mediated increase of anchorage-independent growth (transforming 241 

activity) was suppressed by a c-SRC inhibitor in BEAS-2B cells indicate that c-SRC is 242 

involved in the boron-mediated promotion of malignant transformation of nontumorigenic 243 

cells. The promotion of malignant transformation of nontumorigenic cells found in this 244 

study does not conflict with anti-cancer effects of boron on decreased levels of anchorage-245 

dependent growth of transformed tumorigenic cells (carcinoma cells) found in previous 246 

studies (Acerbo and Miller, 2009; Barranco et al., 2009; Scorei et al., 2008). In fact, both 247 

anti-cancer effects on tumorigenic cells and cancer-promoting effects on nontumorigenic 248 

cells are well-known effects of arsenic (Thang et al., 2014; Yajima et al., 2015). 249 

Model animals for cancer could be strong tools for evaluating the malignant 250 

transformation in vivo (Kato et al., 2004; Kumasaka et al., 2010). In fact, malignant 251 

transformation of thyroid cells was promoted by oral co-exposure to boron, cadmium and 252 

molybdenum in rats in a previous study (Luca et al., 2017). However, there has been no 253 

animal study in which the effect of exposure to only boron on malignant transformation 254 

was investigated. Moreover, there is no direct evidence for carcinogenic toxicity of boron in 255 

epidemiological studies in humans. Polyhedral approaches targeting cells, animals and 256 

humans are needed to investigate the tumorigenic toxicity of exposure to boron. 257 

 258 



Figure legends 259 

Fig. 1. Influence of boron on anchorage-dependent growth of BEAS-2B cells and 260 

A549 cells. Ratios (means ± SD) of cell viability of BEAS-2B cells (n=4) (A) and A549 cells 261 

(n=3) (B) in the absence or presence of boron (5, 50, 500, 5,000 and 50,000 μM) for the 262 

indicated days are presented. Significant differences from nil control by ANOVA with 263 

Dunnett’s t-test (*, p < 0.05; **, p < 0.01). 264 

Fig. 2. Influence of boron on anchorage-independent growth of BEAS-2B cells and 265 

A549 cells. Ratios (means ± SD) of colony numbers (A, C) and representative 266 

photographs (B, D) of BEAS-2B cells (n=3) (A, B) and A549 cells (n=4) (C, D) in the 267 

absence or presence of boron (5, 50, 250, 500 and 5,000 μM) are presented. Significant 268 

differences from nil control by ANOVA with Dunnett’s t-test (*, p < 0.05; **, p < 0.01). Scale 269 

bars:100 µm. 270 

Fig. 3. Influence of boron on activities of carcinogenic molecules. Expression and 271 

phosphorylation levels of c-SRC and pathways of PI3K/AKT and MEK/ERK in 272 

nontumorigenic BEAS-2B cells (left) and tumorigenic A549 cells (right) in the absence or 273 

presence of boron (250 and 500 µM) are presented. P-c-SRC, phosphorylated c-SRC; P-274 

PI3K, phosphorylated PI3K; P-AKT, phosphorylated AKT; P-MEK, phosphorylated MEK, 275 

P-ERK, phosphorylated ERK. α-TUBULIN was used as an internal control. 276 

Fig. 4. Influence of c-SRC activity on promotion of anchorage-independent growth 277 

by boron. BEAS-2B cells were cultured under an anchorage-independent condition in the 278 

presence or absence of boron (500 µM) and/or PP2 (1 µM). Phosphorylation levels and 279 

expression levels of c-SRC and α-TUBULIN in the cells are presented (A). Ratios 280 

(means ± SD) of colony numbers (B) and representative photographs (C) of BEAS-2B 281 

(n=4) in the presence or absence of boron (500 µM) and PP2 (1 µM) are presented. 282 

Significant differences among groups by Bonferroni’s post hoc test (*, p < 0.05; **, p < 283 

0.01). Scale bars: 100 µm. 284 
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Table 1. Boron levels measured by ICP-MS in drinking water in the world. 489 

Country Sample type No. 
Average 

(μg/L) 

Range  

(μg/L) 
Reference 

Afghanistan Well water 227 2,656a 83~23,395 This study 

Sweden Well water 89 9b 0.7~106 
(Rosborg et al., 

2003) 

Italy Tap water 15 17b 0~76 (Cidu et al., 2011) 

China  Drinking water 98 46a 3~337 (Xu et al., 2010) 

Laos Well water 61 90b 5.2~1,997 
(Chanpiwat et al., 

2011) 

Malaysia Well water 21 96a 5.9~195.1 (Kato et al., 2010) 

Turkey Tap water 88 1,700a 30~3,390 (Çöl and Çöl, 2003) 

Argentina 
Drinking 

Water 
10 2,004a 335~ 5,956 

(Concha et al., 

2010) 

Chile Drinking water 173 2,900b 220~11,300 (Cortes et al., 2011) 

a Mean, b Median. 490 


