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Résumé

The tensorial formulation of the mathematical theory of anisotropic rheological
bodies is presented taking into account thermal phenomena. The present theory
includes, in special cases, those obtained by the author,” Oshida,® Sips,” Frenkel®
and Kneser,® respectively. The expression of macroscopic internal energy of the
media is somewhat different from the one given by Meixner.® In an isothermal
process, the effect of initial stress of solid-like body is also considered being based
on Sakadi’'s formalism.”

I. Preliminaries and Notations

In this paper the author presents the generalized theory of anisotropic media
with rheological character, so as to include author’s theory® in 1953. The an-
isotropic thermal conduction and expansion are also taken into account.

Notations

%i: rectangular coordinates, (i =1, 2, 3)
2;: components of displacement, being infinitesimal quantities of first order,

(=1, 2, 3)
ui = %% components of velocity, (=1, 2, 3)
aij = _1_(_8;‘,‘ + Ei) : components of strain tensor, being of first order
/ 2 \ Ox; axj ’ ’
(7, 7=1,2,3)
_ o 1/(3%5 B\, - . . . ¢
Bij = 5 ( o%i 3 x,-) : components of rotation of displacement, being also o

first order, (7, j=1, 2, 3)

A;j: components of stress tensor, being free from initial stress A¥s and
being first order infinitesimal quantities for solid-like body, and not for
liquid-like one.

%(x'): components of initial stress of finite magnitude at initial coordinate
point x/, components being %, (4, i=123)

t: time,

o + p: density, p° : density at initial state,

'+ p: pressure for liked-like body, " : pressure at initial state for liquid-
like body,

T°+ T: temperature, T°: initial temperature,

o, p, and T are all infinitesimal quantities of first order,
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U : internal energy per unit mass in the macroscopic sense,

q: * components of heat current vector, = — rj; gz‘

ri;: coefficients of thermal conduction, (4, 7=1, 2, 3)

£’ : static volume modulus for liquid-like body,

aiju: partial coefficients of elasticity, (4, 7, ., /=1,2,3; and =1, 2, ..., R)

aji: partial coefficients of viscosity, = " @k, (i, j, k 1=1, 2, 3; and
r=1,2, ..., R)

aii’: coefficients corresponding to partial thermal expansion, (7, j=1, 2, 3;
and n=1,2,..., N)

77, g™ g, o, 9 GR: hysteresis functions, (r=1, 2, ..., R; n=1, 2,

.., N; I=1,2, . s Ly m=1,2,...,M; k=1,2,..., K)

.—5”, o, ol o, e, and “”. relaxation times,

¢” @ static specific heat at constant volume,

c“’“. partial specific heat at constant volume, (m=1,2,..., M)

w : circular frequency,

v : complex velocity of wave,
. direction cosines of the outward normal to the boundary of the unstrained
state for solid-like body. (=1, 2, 3)

For the abbreviation we shall write the differential operator with respect to the

time ¢ as follows:

- d _ 95 9% 5 _ o2
D= =51t ot o5 = Bt

As usual in the tensorial notations, one should sum up over double indices.

I1. Equations of State

In rheological madia such as visco-elastic bodies, if the volume dilatation is
produced suddenly and kept constant (i.e. kept in an isostrained state), normal
stress decays after a sufficiently long time and finally vanishes. While, in liquids,
pressure also decays after a sufficiently long time, and does not vanish but finally
approaches to a constant value, still remaining finite. This is the main difference
between solid-like (visco-elastic) and liquid-like materials. In the following we
shall be chiefly concerned with the equations of state for liquid-like and solid-like
bodies, respectively.

The equations of state for an anisotropic liquid-like body are written, in linear
approximation, as follows:

R N
Aitt) ={ ="+ Boml )} * 15+ 2 aiihi o t) — S all* T(1), (1)
r=1 n=1i
aifi outt) = afilowtt) = § 0 - outt - ) ar)
(2)

af* () = alf{ T(1) —j g™ (tr) - T(t—t';df"
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(7r) (r) (7)
Aijia = QLlij = Qigjl,
n [/
m-j’ = Aji ), (3)

(4,7, 1=1,2,3)

with initial pressure p".

The second terms in (1) accompanied with hysteresis functions come from the
elastic relaxation of the media, while the last express the relaxation of thermal
expansion.

While, we can write, in analogous form, the equations of state for solid-like
body with a slight modification of the rheological coefficients @it and afj’.

R k.
Aii(t) = D aii ou(t) = D aP* T(t). (1)
r=1 n=1
The summations in (1) and (1) can be replaced by Stieltjes integrations when

the distribution of hysteresis functions is discrete in some region and continuous
in the other.

Equations (1) are reduced to (4) in an isotropic body,

S

L
Ai(t) ={ =P+ Eom(t)} * dij + {IZA””" - %— ,u(s’*}akk(t) . By
=1 D g=1

8

X N
+2§_1{/,z‘s’*o;j(t) - 2™ T(E) - 0, (4)
§= n=1
A () =29 { are(t) — j di”’(t’)okk(t - f')dt’}’
0
ooy oo emy (T sy |
1 i () = p {a,,(t) joqﬁ (" gij(t -t dt' s

a1 =2 {T0) = § g™ T - ) ar'}

a,{}” — Cr(maij,
with partial coefficients corresponding to Lamé’s constants A" and x‘’, and partial
coefficients corresponding to isotropic thermal expansion a'™.

The expression (4) was already presented by the author in 1953, and, in case
a™ =0, corresponds to the expression given by Oshida® and Sips.? Futher, if we
put L=1 and S=2, (4) is proved to be equivalent to the equation of state pre-
sented by Frenkel-Obratzov.*

In a solid-like body, equations (1’) are reduced to (4') for the isotropic case,

L . 2 S
Aij(t) = {g,).””"— '9721/1“’*}0%(” . Bij

K N

+ 233 u S () = 2D T(E) - 64, (4')
s=1 n=1

with a slight modification of 1%, x* and a™.

For the sake of simplicity, we shall consider in (1), (1'), (4), and (4') the
Maxwellian relaxations:
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1 "
) I L it
j((;r') = e 15 s

(7
1
1 \
) —1/[za(M
2= —mre
T2 )
) (5
Sy ,,,1, — 3t
¢ ) = f;h e »
1
t —tr [z ()
SJ(tf _ _r_ge /=4 2

with <’s all positive.
Then, in linear approximation, all the operators with superscript *, can be
written symbolically by the integro-differential operators:

(ry _(r) Eell
()% auklfl 'D _ aijnD )

Qijil ++7D = 1+c (r)D’

n\ (m
(7). D
i7 - n
1 + <D’
h ne
NUES l‘ ) ( JD A( d D

4 (6)

= D = 1+
ok _ 790D p'D
AT 14D T 14D
with D= -2, where ai, A" and 4%, correspond to the partial coefficients of
of J p p
viscosity.

The equations of motion for anisotropic media are written under the con-
sideration of (1) or (1’):

2 a
0 0&i _ OAi 0 v
o = oy TP o
with external body force X;. (i=1, 2, 3)

The change of density, if necessary, is given by the equation of continuity.

II1. Conservation of Energy

The energy equation for rheological media inside the volume enclosed by any
surface F is

K 2 (ovav =W+ Wt @, (8)
where the integration extends throughout the volume enclosed by F. K is the total
kinetic energy, U the internal energy per unit mass in the macroscopic sense, W:
the rate at which work is done on the media by the surface traction at F, W. the
rate at which work is done by the body force, and @ the rate at which heat is
conducted across F into the media inside F.



122 Research Reports

The kinetic energy is given by
_1( o2
K= [dutav, (9)
By using Green’s theorem,

W= — j‘AVj‘ude= fa%(uinﬂst

(v is the inward normal to the surface F)

which after introduction of equations of motion (7) is reduced to

W1=S'Au%%}dV+ fp"(ui%zg} —quj)dV- (10)

When no body force exists,

Xi=0 and W:=0. (11)
Heat inflowed is
aq; o oT
==\ 22 dV =\ -\ kij=—]dV, (12)
@ “ ox; [ X (h" ox; )(

with the coefficients of thermal conduction i = «ji.
The combination of (8), (9), (10), (11), and (12), gives the energy equation
in the media, in linear approximation,

0 oU

Oaij >'T
oot

— A A 13
A 55 5 Gxom; (13)
Here arises a question. What is the expression of the internal energy, then?
The answer is as follows. After we have taken ¢;; and 7 as independent varia-
" bles of thermodynamical state as already done in (1) and (1'), we suppose that

it is natural to take

U= U+ dUr = (Z5) a7+ (So-), doy, (14)

where suffixes ¢ and 7' outside the blackets mean the isostrained and the iso-
thermal states respectively.

Then, as usual in thermostatics, we can interpret that ( -g—[%:-) is specific heat
c

at constant volume, which we shall designate as ¢, and we shall write (gf{ )1
ij

as bij, which measures the heat effect of deformation of the body at isothermal
state. In rheological media, however, we shall rather put instead of ¢ and &,
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o 0
L‘* - Co-l- Z c(m)*, c(m):é: T= c(m) {T(t) _ j J}z;f}; T(t — t')dt’} . (15)
m=1 0
i t©
by = el + e, S gy = ap {0.:;(1‘) - j ;BZf",aij(t - i')dt’} s (16)
k=1 0 :

as presented in the previous paper.”

Now, we shall consider the meaning of (15) and (16), taking merely their
first terms. If the media undergo the infinitesimal deformation adiabatically as
we see from (14), the expression Ussinaic =T+ cloi; is the work done by the
Saij.

ot

+ (second order terms), the right-hand side of which is a small infinitesimal
quantity of first order for liquids, and is of second order for visco-elastic bodies,
according to the finite value of #° or the vanishing value of p°.
2" 2
o ot
the change of temperature is obtained as

surface force and is equal to »-gdf ( A,-;%%}) ={ —p"8;; + (first order terms)} +
J

In those cases, if we put Uiaiavaue + + (second order terms) = 0, then

-1 ° By
P S i 2

+ (second order terms)} .

On the other hand, if the media change their state isothermally always under
the quasistatic process, the change in free energy can be expressed as mechani-
cal work and is 60— T6S, S being the entropy of the system. Thus, when p° is
finite, this quantity is of first order. Accordingly the entropy term (bounded
energy) is also of first order.

While, when p° vanishes, 60— 74S is of second order and Ulomeraa = e 01 is
of first order. Accordingly, the bounded energy is of first order.

If we take the Maxwellian relaxational process in (15), relaxation times being

M
=™, and put ¢ =¢"+ X} ¢™ with M =1, then the expression of internal energy

m=1

is shown to be formally equivalent to the final expression presented by Kneser.”

IV. Applications and Discussions

The simultaneous equations (7) and (13) with (1), (14), (15), and (16); or with
(1), (14), (15), and (16), are generalized fundamental equations of motion and of
conservation of energy for anisotropic rheological media. These, when simplified,
can be applicable to the theories of surface rheology of mono-molucular layer of
macromolecules such as presented by Tachibana-Inokuchi,® Oka,® Oka-Saté!® etc.
and also may have some contributions to accustic (ultrasonic) bifringence in high
polymer solutions and highpolymeric substances. The rheology of solid crystal-
like materials is also involved in the present theory, mutatis mutandis.

When the process occurring in the media is isothermal, i.e. 67 =0, (7) with
(1) can be simplified, and (13) shall be omitted. For the sake of simplicity we
shall take the Maxwellian relaxational process and consider the progressing sinusoidal
wave with circular frequency w. Then, as is well known, owing to the symmetric
property of the matrix aij};, we see that there exist three waves with different
velocities, whose planes of oscillation are perpendicular to each other. Moreover
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these waves show the dispersion and the dissipation because of the existence of
the complex elastic moduli :
. (i
(7)% 1WQi5kl
a;;. = ==
ik 1+ tory”’
When the initial stress of finite magnitude is distributed in the solid-like media,
we have the equations of motion in the isothermal process according to Sakadi’s
formalism ™

2 [ ~ —~ ]

008 _ DAl | ODji a0, OWji a0 OAi

1Y or = djk %k + “a}k ii + D% Ak] =+ ax,-
+ o™X} — o1 X3 + @55 X7, (17)

where

Alj = Aij in (1),
X%x'): body force per unit mass at initial coordinate point x,
X:(x) : body force at x in a strained state,

At the reference state in equilibrium with initial stress,

2A(s
o Xix) + 2A2X). g, (18)

Here the initial stress is expressed as Aj(x') at initial coordinate point x', ol

being the-initial-density:
Boundary conditions state

Fi— FY = — opjn Aij + ounln} F? + @i Fi + 0§ Alj, (19)
with initial conditions at the equilibrium state:
Fr=n} A}, (20)

where 7} are direction cosines of the outward normal to the boundary of the
unstrained state; F? and F; surface tractions at initial state and at strained state,
respectively.

Owing to the existence of the initial stress, in some cases progressing waves
such as surface waves actually damp, and moreover the fugitive character of
rheological stress A}l;, makes the damping more rapid. Equations (17) must be
quite useful in the case of the practical problems occurring in many engineering
fields.

As a special case, with isotropic stress (4'), we have from (17), by using
complex Lamé’s moduli 2% and p'%, complex velocities of three waves for infinite
solid-like media :

T S
b= B with = 33~ G (BY - B
s=1

= ith = S5 — L(Bl - BY)
V2= A0 with pe= 230" = 5 (D2 33),

s=1



Research Reports 125

and
- L i
V= \/;)%, with 2, = 2020% £ 237 9%

1=1 ¥=1

if we take Bl =0 after suitable transformation, B} being the transformed initial
stress, and X! and X; being put equal to zero.

Starting from (7) with (1), or with (1), no temperature terms and no body force
being taken into account, we can see that the three waves, one purely longitudinal
and two purely transverse, are obtained after suitable orthogonal transformation.
Calculation of the transformed elements of the matrix a{fx" can be quite analogously
carried out as in the case of elastic waves in crystals.?!» Once the velocities of
these three waves are determined, we can obtain specific heat of anisotropic media,
when they are solid-like or liquid-like, accroding to Debye’s theory and Oomori’s
treatment®® of the dissipative wave.

In the analogous line of consideration the surface energy of liquids can be also
calculated by using the relaxationally elastic surface waves, following to the method
presented by Frenkel.

When no initial stress exists, the behaviour of the mechanical and thermo-
dynamical system hitherto considered, is completely described by the system of
equations (7) and (13), with (1), (14), (15), and (16); or with (1'), (14), (15), and
(16). This macroscopic system, however, is not itself closed in the sense of thermo-
statics. Here arises a question how we can consider the system in itself closed
from the view-point of irreversible theory of thermodynamics. Actually the terms
of heat conduction, fugitive specific heat, bulk and shearing viscosities, and thermal
expansion of fugitive nature, are present in our fundamental equations, so the dis-
sipation of energy and the entropy production do actually occur in our open system.
But, if we take some subsystems characterised by some extra imnmer wvariables, in-
cluding those such as chemical potentials and some measures of excited states of
constituent molecules and atoms, we may set up a closed system as a whole. Meixner®
considered affinities in the expression of internal energy and arrived at the hystere-
sis functions in the stress-strain relation after eliminating the linearly decaying
inner variables. He, however, did not propose any equation involving thermal con-
duction. So, the expressions of internal energy and of energy equation in the pre-
sent paper are different from his in these points.

Taking into consideration some subsystems with a sufficient number of inner
variables and of energy equations, and those of entropy production in the individual
subsystems, we may be in the goal of the closed system in the sense of irreversible
theory of thermodynamics, after eliminating a sufficient number of inner variables,
which do not fall under our direct observation. Thus, (7) and (13) with (1), (14),
(15), and (16), although still remained in the scope of an open system, should be
reconsidered, if necessary, from the view-point of a consistent irreversible theory
of thermodynamics.

In concluding the paper, the author wishes to express his sincere thanks to Prof. Z. Sakadi
for his encouragement and advices throughout this work.
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