THE THREE DIMENSIONAL BUCKLING PROBLEMS

OF STRAIGHT RODS UNDER AXIAL
AND/OR TORSIONAL LOADS

Isamu IMACHI
Department of Chemical Engineering

(Received April 20, 1954)

Summary

The following problems of elastic instability are theoretically discussed with some
calculations and experiments :

(a) The buckling under compression of a rod with ends hinged in directions not
coincident with its principal axes.

(b) The buckling under compression of a rod consisting of two parts, their direc-
tions of principal axes not coinciding with each other.

(c) General discussion on bucklings of a straight uniform rod having some initial
twist under axial, torsional or combined loads.

(d) The same problem as (c) when two principal bending rigidities are equal.

(e) The buckling under compression of a rod with some initial twist when two
principal bending rigidities are unequal.

(f) The same problem as (c) when there is no initial twist, especially of a strip.

I. Introduction

It appears that the three dimensional buckling problems of rods have not yet
been fully investigated and we believe that some of the problems discussed herein
are new and fairy interesting in themselves in respect of the theory of elastic
instability. The buckling problem of a strip under torsion combined with a tension
has been solved by A. E. Green® by expanding its deformation in Fourier’s series,
but his treatment is much too complicated to become familiar to engineers. Asa
matter of fact, if the effects of sectional deformations are neglected, exact solu-
tions can be obtained theoretically even when large torsional deformations exists.
We shall develop our own series of theoretical investigations on problems belong-
ing to this same category.
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II. Notations

rectangular coordinates fixed to the space, x coincident with the initial
direction of the center line of the rod,

rectangular coordinates showing directions of the tangent, principal
normal, and bi-normal respectively relating to the center line of the
rod, '

directions of sectional principal axes,

direction-cosines of i-axis relating to the x, ¥, z-coordinate system,
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y, z: flexural deformations,
—1‘,—, —‘-)1? pL: principal curvature and curvatures with respect to 1 and 2-axes,
2
%: rate of twist of the center line curve,
«: angular direction of l-axis measured from p-axis,
¢ : angular direction of p-axis measured (approximately) from y-axis (In
Secs. III and IV this symbol is used for a somewhat different
meaning.),
¢=¢'l: one-half total angle of twist between both ends,
I: one-half length of the bar,
EIL, EL: principal bending rigidities with respect to 1 and 2-axes,
G]J.: torsional rigidity,
X=-P,Y,Z: tension and shears in directions %, y and 2,
T, S;, S»: tension in s, shearing forces in directions 1 and 2-axes,
M;: moment, suffix ¢ denoting the axis to which the moment is refered,
Q=DMs;: torque,
m=ELIEL, 7=GJ./EL kK =k= —X/EL, B = —X/EL, h=Q/G]J.

In general, [ '] denotes the derivative with respect to s or approximately with
respect to x.

III. The buckling under compression of a uniform non-twisted
rod when the ends are hinged in directions not
coincident with any of its principal axes

The general from of lateral deflection of a uniform, non-twisted rod buckled
under axial compression can always be expressed as:

y=Ascos kX + By sin ko x + Cokox + Do, } (1)

2= A, cos kx + Bysin kix + Cikix + Dy,

where y denotes the deflection in direction 1 and z in direction 2. When the end-
conditions are asymmetric with respect to any of the principal axes, y- and z-deflec-
tions cannot exist independently but they form a space curve.

1. When both ends are hinged in direction with an angle ¢ from the principal
axis 1

Let 21 be the length of the bar and take the origin of x at mid-point. The

end-conditions are:
At x= x=1; y=2z=0, 2'sin¢+y'cos¢=0, } (2
Micos¢ + Mesing =0. )

Applying these conditions to Egs. (1) we obtain the following critical condit-
ins of buckling:

(3)
(4)

The calculated results of Eq. (3) together with our experimental results are

ki tan kI sin® @ + ks tan kol cos’y =0,
(1 — Eylcot By D)sin® ¢ + (1 — k2l cot kel)cos’ ¢ = 0.
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FIG. 1. Buckling under Compression, Ends Obliquely Hinged, ®1=%s. The marks
show the experimental results on wooden (Hinoki) struts, by K. Konishi.

plotted in Fig. 1. Eq. (4) always gives greater values of critical loads than Eq. (3).
In special cases where ¢ =0, Eqs. (3) and (4) give:

sinkl=0, coskl=0, sinkl=0, or cosk.l—sin kol [ Rsl = 0.

These conditions relate to ordinary problems of a column.

If one of the bending rigidities becomes very large, EI, = e.g., the deflec-
tion z cannot exist and buckling conditions are obtained by putting % =0. Thus,
sin k.l = 0 regardless of ¢ except when ¢=90° In this case a slight deviation of
¢ from 90° causes an abrupt change in the buckling load to 4 P, from P., which
is the value when ¢ = 90°,

2. When the hinge line at one end is perpendicular to the hinge line at the
other
The end-conditions then are:

At zx==xl: y=2=0, y'cosgx2'sing=0, M; cos ¢ = M sin ¢=0, (5)
which lead to the following critical conditions :

(1 - kzl cot kzl -+ kll tan kll) (1 - kllCOt k]l+ kzl tan kgl)

= COS?' 2‘,9(]311 cot k)_l - kzl cot kzl) (kzl tan kzl - k;l tan kll) . (6)
When ¢ =0 or z/2 Eq. (6) is reduced to:
(1 —2k11C0t2k11) (1—2kleOt2ng) =0 (7)

indicating that the buckling occurs independently in either of the planes of sym-
metry as an ordinary strut with one end hinged and the other end fixed.

3. When the hinge angle is ¢ at one end and —¢ at the other end
With similar treatment as the foregoing, we get the two following critical con-
ditions :
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tan® @+kyl tan kil + (1 — kol cot kal) =0,
cot® @kl tan kel + (1 — kil cot kyl) = 0.

IV. The buckling under compression of a rod conmsisting
of two parts, their directions of principal
axes not coinciding with each other

Consider a case where a bar with a length of 2 /=/;+1, constant sectional bend-
ing rigidities £/; and EL throughout the
length, the direction of 1—axis however #
making an anfle ¢ from y-direction for
-l <x <0 and an angle ¢, for 0<x <D, -
is subjected to an axial compression.
The jointed portion x=0 is assumed to
have sufficient rigidity for continuity. If
we use a symbol ¢ in place of 1 or 2
which indicates the part of the bar, for
convenience, the deflections in directions
1 and 2 must be expressed by the equa-

tions FIG. 2 (b).
v; = A;cos kx + B; sin kox + Eikex + Fi,
wi = Cicos kyx + Djsin by + Gilewx + H; } ©)
respectively, and those in directions y and z by the equations
¥i=0iCOs ¥ — w; sin ¢;, 2z = v; sin ¥; + w; CoS Yi. : (10)

The conditions of continuity at x=0 are such that v, z, ¥, 2/, My, M., Sy and
S. are continuous.

1. When both ends are simply pivoted
With the end-conditions

Vi=w=My=My=S1=Su=0 at x= — 1
and V=W = M = Mzz = Sjg =Sn=0 at ¥ = Ig,
the deflections are expressed :

n=Asink (x+1), w; = By sin ki(x+ 1), }

1}2=A?,Sin kg (x—lg), ZUz=B2 sin k;(x—lz). (11)

The conditions of continuity of v, 2z, ¥ and 2z’ at x=0 lead to the critical condition :

tan® @ (% cos ko sin kaly + k> cos kel sin kils) (Fy cos kidy sin kol
+ ks cos koo sin kily) 4 Riks sin By (1 + LYsink: (Ii+15)=0 (12)
where ¢ =@;—¢;. The condition for buckling in cases where ¢=0 or ¢=90° can

easily be obtained from Eq. (12).
In special cases where /i=L=I, we obtain

tan’e (ky cos kil sin kol + ks cos kol sinkil)* + ki sin 2 kil sin 2 kol = 0 (13)
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and in special cases where EL>EL, or ky—0,

tan"' ‘,ﬂ (sin kg[[ -+ kglg Cos kzlx) (sin kzlz -+ kzll COS kzlz)
F+ k(i + b)) sin ke (L + 1) =0, (14)

2. When both ends are fixed
With the end-conditions v=w=v"=w'=0 at x=—/, and x=5L the deflections are
preferably expressed :

wi=C{l—cosk(x+4)}+ Ddk(x+1) —sink(x+1),
V2= Az{l — oS kao(x — Zz)} +Bz{k2(x — 1) —sin Fo(x — l_:,), J
we=Co{l —cosky(x —1L)}+ DA b(x — L) — sin key(x — ).

vi=A{l—coskx+ 1)} + Bllo(x+1,) —sinklx+ 1), ]
(15)

The eight conditions of continuity at x=0 applied to these expressions give the
following critical condition for buckling where, for brevity, conventional notations
c12, s12 etc. are used instead of cos kb, sin kil etc.:

s21, sl (- %2 |
c2l—c12 s Py (c22 ~c12)cos¢ ? 512 |
—21C12 + kl )COS?
| c2l—cl2 (k2522 —
—hes2l —fys12 o kls12 Fis12) cos ¢ (c22—c12) cosy !
s22 s1l
| (c21—=c1l)cose (Sf-l ——§kll—)cos¢ c22—c1l Tk T R
: ! +21cll
(—kes21 _ c22-cll |
+ Is11) cos o (c2l— cll)cose kys22+4 ksl —2 ksl
= 0. (16)
In cases where I,=L=1, Eq. (16) is reduced to :
. 3 2 R\ . . 2
(1 —cos Fil cos kil) sin® ¢ + (—k-; +—k—l—)sm Il sin kol (1 4 cos® ¢)
— 2(kid sin kil cos kol + Bl sin ksl cos ki)
- 2( B in -9, - %; sin 21+, )cos ¢ = 0, (17)

where
By =sin kil — kil cos kil, B, = sin kol — kol cos kol.

When ¢=0, Eq. (16) is nalurally reduced to the four equations:
sin &l =0, sin kql = 0, B; =0, and B, =0.
When ¢=90°, the following two conditions are reduced :
2(1 — cos kaly cos kals — kol sin kaly cos kuly — kil sin kuls cos Foly)
+ (42 + 5) sin &l sin kit =0, (18)
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2(1 — cos kalo c08 kily — kul sin ks cos Fily — Rl sin ki cos Buls)

+( ’Z‘ + %«)sin Fala sin by = 0. (18)

If one of the principal bending rigidities becomes very large, or ky = 0, the
conditions of instability are reduced to: .

n Bl (Bh cos B — in Bit) =0, (19)
sin kélg ( k;lg_ cos kzlg“_ i ]?‘212 ) =0.

These are equivalent to those conditions for individual bars I, and I, clamped at
x=0 in spite of the value of ¢.

V. General discussion on the buckling of a straight
uniform rod having some initial twist under
axial and/or torsional loads

1. General expressions of lateral deflections

Let us assume that a rod uniform in its section, straight in its center line and
having some initial twist about its longitudinal axis has been buckled to some
small lateral deflections under an axial load. a torsional load or combined loads of
both. Further, assume that the shear center line of the section coincides with the
neutral line for bending and also that the ordinary elastic behaviors for bending
and tortion, in other word, the relations

My=EL( 1~ =) M2=EI_>(—(1)—2—-7)1;0~<), and Q@ =GL( % —42)  (20)

hold, neglecting the effects of higher terms of deformation.
In general, the following analytical relations plainly hold :

My = M+ My + M. etc., M) =v;Y — pZ —my etc,
Si=0X+mY+wnZ etc, X'= —q« etc.,

Ai=cosa*A,+sina*i, etc, Jo= —sina*l,+cosa*iy etc,
A = doa! +cOs a2y +sinatdn' = Xg(tx’ + 1—) - (%—)cos « etc.,

A= — h(a’ + %) + (f}—s)sin a etc.,
A = %& etc.,

Lo (B L= (o

Differentiating M, M, @, Si, S: and T with respect to s and substituting the above
relations in these, we get the following six well-known equations of force balance:
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M1'=M2(a'+%)— %-I-Sz"'mx,

Mz':—M;(a’+—:-)+—§— = St—m,
Q,_% - % — s,
T'=§pg- =%—-§f» - gs.

When the bending deflections ¥ and z remain small, as is the case in our
porblems, the direction cosines can be expressed as :

ZS .= 1’ Hs = y,> Vs = Z’,
do= — oy +2'2"),  py=py" =cos¢, vp = p2'' = sin ¢,
An=p(3'2" = 2'y"),  pn= —p2"= —sin¢, vn=py" =cos¢, (22)

M= —y'cos(a+¢) —2'sin(la+¢), m=cos(a+¢), v =sin(a+¢),
le=y'sin(a +¢) —2'cos (@ +¢), p2= —sin(a +¢), va=cosla +¢),
and the rate of twist of the space curve of the center line is expressed by

1

=

T

The amount of twist of the actual material of the rod is now a+¢ which hereafter
is replaced by ¢ (Fig. 2a).

By putting ¢'s=m's=0 and omitting the higher orders of infinitesimals, Egs.
(21) are reduced to:

Q = My = const., T= X =cost.,

Ml'—Mz(p'—ngr%:o,

Q _
My + M@ + S, — o= 0, 3 (23)
S/ =S+ =0,
P2
X
Sz'+519°'—“51""0’ /
or eliminating S; and S.,
. Qo' 1y X _
MY = Myg" =2 MY = MEg" + =7 + Q(E) o =0
2 0 __Qﬁol Ly - X =
M — Meo” — 2 Mi¢' + My + o Q(_Ef) P
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If we assume the initial rate of twist to be constant, ¢’ must also be constant and
the above equations become :

- M 9" - %% + F);T) =(2¢'~ 'EQT)M »
sl 84 &)<~ -G

Egs. (24) are the fundamental equations for our problems and the general
solution of them is expressed as follows:

M, =EIL z—cos a = A cos B1x + B sin fix + C cos 2% + D sin f5:x,
M= EI; ;—sina=sl(—Asin 1% + B cos fix) (25)
+ 8:( — C sin Box — D cos fax),
where B1, f», si and s: are the characteristic constants determined by the equations

g = BX (L4 m) (B = hog') +2 ¢ + mr*B*}

+ (mk® — ¢+ mhre') (B — ¢ + hr¢') =0, (26 )
=8 —¢" e _ B(2 ¢' — hr)
SE T G —mhy) = kg mir (26b)
‘where
oo X ,_Q EL GJe

E_E’, = C]g, m = E[L', and 7= E[_z .
Eq. (262a) gives two sets of solutions §*= gl and §° =, thus giving two values s
and s, corresponding to i and (» respectively.

The general expressions for deflection curvatures of the elastic center line can
now be obtained from Egs. (25) recalling definitions ¢ and ¢.

Y= (—Z‘)—)cos ¢ = (%)COS(SP —a)

= (M) o %+ M. ), sin ¢'x, (27)
(27) (27

2= ( EA‘JI?, )sin @'y — (—%)m cos ¢'x.

Further, the general expressions for ¥, 2/, ¥ and z can be obtained by inte-
grating Egs. (27). But as the deflection curve, with regard to 1/p for instance, is
clearly expected to be perfectly symmetric or perfectly antisymmetric with respect
to the mid-point of the rod when both end-conditions are similar, it is always
convenient to treat such problems in two seperate ways.

Take the origin of x at mid-point of a bar with a length of 2/. Then the ex-
pressions for a symmetric deformation are:

1
P2

or M:= Acos fix + C cos 5%,
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% or mM; = — ms; A sin ¥ — ms.C sin Pax,
y":%[(l-kmsl)cos(Bl+<{z’)x+ (1—ms1) cos (Bl—gﬁ’)x]+%[—2—],

1 o1 H —_
:v’ - %[(1 +ﬂzsl)§g}.—(@+(‘/—)ﬁ' + (1 - 17151)M]+ _g‘[ _2 — ],

B+ e') b=y’
y=_‘..2€[-—(1+7nsl)cos-(ﬁ§_‘+$,i§7)—x——(1—77251)005(31_‘5,‘;’)’5] C[ 92— ]+F,

2! = %[(14—7)251) sin (814 ¢')x — (1 —ms;) sin (f; — gf’)x]-{-—g«[ -2 _I,

2= Al (l-l-7?25.1)‘<£S'S@':tﬂ2£ + (1 =ms) ———F~= cos (B~ ¢)x ] < [ 2- J+ G

2 (B1t+¢’) O B-¢)
_A oy sin (B4 ¢')x sin(Bi—¢)x 1, C[ _o_
2—7[—(1-}-/7131)%;72——+(1—m31)m(8 9)' :I 2[ 2 ]+Gx,

and for the antisymmetric deformation ;

;1-; or M= Bsin 8:x + D sin fax,

—g; or mM: = ms:B cos pix + ms.D cos Fax,
y= —g[ sm((ﬂﬁ,_}:;z)x (14 ms;) — El%gﬁ‘ ';,‘)@i (1- ms;)] +D [ —-2— ] + Ex,
B[ - B0 0] B 2 o

where [—2~] means an expression similar to its preceding term with suffix 2
instead of 1.

2. Boundary conditions and corresponding critical conditions for buckling

(a) A rod wiith both ends universally jointed
End conditions :
=M.=0 at x= [, ie.,
{ A cos 31+ C cos le =0, { Bsin i/ + Dsin 5.0 =0,
or
siA sin Bil + s.C sin 8./ =0, 1B cos i + s:D cos =1 = 0.

Critical conditions:

$2€08 Bl sin B — sy sin Bl cos Bal = 0, ] (28)

or Ss sin Bi7 cos Pl — s;cos Bl sin Bal = 0.

() A rod with both ends clamped against bending
The end-conditions are now expressed by y=z=3'=z'=0at x=+1. Let gl=¢=
one-half the total amount of twist between both ends and
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a={(p81)* = ¢"}{ Bl sin fl cos ¢ — ¢ cos flsin ¢},
b= {(BI)* — ¢*}{¢ cos Bl cos ¢ + Bl sin 5l sin ¢},

¢ =2 ¢Blsin flcos ¢ — {(BI)* + ¢} cos §l sin ¢,
d={(B1) - ¢*}{plcos flsin ¢ — ¢ sin Bl cos ¢},
e={(81)?—¢*}{ — ¢sinBlsin ¢ — Blcos Bl cos ¢},
F=2¢plcos (il sin ¢ — {(BI)* + ¢*} sin I cos ¢,

then the critical conditions reduced from above end-condition become to

a + 77‘15[(1}_ @+ isdz 0

|

dr= | bi+mse by + ms:e» 1
i
|

c1+ msifi Co+ W18 /2 1
= Ay + mSids + msads + #1524, =0 (29)

for symmetric deformation, and
iy = As+ w514y + mSads + w°51524; = 0 (30)

for the antisymmetric deformation, wherein

! a @ 0 ; i (11 a; 0 [ a dg 0 [ dl d: 0 ]
4y = ‘ by b 1| dy= e, b 1 dy= 10y e 1 di=|er e 1
%;6‘1 Cy 1;, lfl Ca 1;, fng fz 1 s }(L fz 1i.

(¢) A rod with both ends hinged along its principal axis 2 (or 1), ie., along
its longer (or shorter) axis.
The end-conditions at x= =1/ are expressed as:

y=2z2=0, —‘;12—=0, —y'sing+ z'cosp =0,
or y=2=0, -DIT=O. y'cos ¢+ 2'sin ¢ =0.

The necessary critical conditions for buckling reduced from these are:
symmetrical, hinged along axis 2;

dip = (= day + das + msidpy — mS24p:) cos il cos 81 =0, (31)
antisymmetrical, hinged along axis 2;
diy = (doy = Aoy — ms1dar + ms2dan) sin il sin 821 =0, 32)
symmetrical, hinged along axis 1;

tr= (= da+ dat »1%% - 7%) sin Bl sin Bal = 0, (33)

antisymmetrical, hinged along axis 1;
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dyg = (Aal — daz — % ;’fs ) cos il cos Bl =0 (34)
where
4= [h______q?__ ~_ cosp{2plpcosptan Bl — (B°F + ¢*) sing) ]
a (3212_9;2) (B2 —¢7)? ’
_ cosg’)( —2 Bl sin ¢ + (B°F + ¢°) cos ¢ tan BI} J
(ﬁ"f’ -¢%) (BE—¢%)* ’
4 =[’ﬂf _ Sin¢{—2Blrj)sm¢_c_ot31+(5?lz+¢2)cos¢}]
< . (3212_¢2) (lez_‘/)'z)z 4
dg = [_Bl _ sin¢ {2 Blpcos ¢ — (8°F + ¢°) sin ¢ cot AI) ]
Sl (B =) ’

the second suffix denoting the adoption §; or j. replacing f£.

VI. The cases where m=1, or EI,= EL=EI

This is the most simple case and might already have been investigated by
other authors.

In this case the initial twist, if any, has no meaning analytically and, with the
relation ¢'=h, Egs. (26) give

Bis =«/;;;_UZE () (1-%). (35)

si=1, S2= —1.

1. With both ends universally jointed.
The critical conditions (28) are both reduced to:

sin (Bi+£:)1=0
(hr)? 7

or B+ R (36)
This means that
- 2
when @ =0, —X¢,=EI(2"1) =P,
T

when X=0  Qu=EI(7)=qQ,

and in general,
P Q 2, _
{5 +(&) ), =1 (37)

The relation between P and @ satisfying Eq. (37) is shown in Fig. 3.

2. With both ends clamped against bending
The condition (29) or (30) is now simplified and expressed by
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Flsin2 Jk2+(%t)2 - \/kz—{#(]él)z l{cos hrl—cos 2 \/kz—%(%)g l} =0. (38)

When X=0, this gives

Qor =143 EI( ) =143 Qe.

The results of calculating Eq. (38) are shown in Table 1 and in Fig. 3.

TABLE 1
hrl \ (kD)2 \‘, hal | (kD)2
7/6x0 2% 1.000 | =/6x6 2x  0.431
1 0.974 7 0.276
2 0.908 8 0.094
3 0.813 | 9 —0.096
4 0.699 ; 10 —0.305
5 0578 |
1.43 5 P, = BT ILX/LQI
Q .\\ Q= G/ L
-—Q—: (1 N T -\ )
— yd (3)
s >N
@ . s —
2|
o e
“1 0 1.0 2.0 3.0 4.0
E./Pe

FIG. 3. Buckling under compression and torque, Eli=El, (1): Ends
universally jointed, (2): Ends hinged parallel, 7=GJ./El2=3/4, (3): Ends

fixed.
symmetric
r‘ ;— anti-symmetric 3
1 T T
512 F T e SR TR
” \ /N \ JAN ! \ PN \\\ \ \\‘\\‘\‘\\‘\
/
Y rBué{cilng Q:f 2nu‘ mo&Q DR
e X \ l\ = N < VRS
! VAN NS i SRR ~
‘ v SN PN R BN T R Y
EBR/Z" < < e < tan rg = v
"y N N B‘,c:cllhg of’ l-s\f.\@od‘e R S~y ( fixed)
IRV SN \ﬂ('t,d)
" pivote
< ~ ) ~ 7~
n o tan rg={(5/3)r¢
Lsymme‘cnc
TR anti~symmetric
] 1/r =EI [GJe —= |
N l
0 0.5 1 1.5 2

FIG. 4. Buckling under tortion, Eli=El;, with ends hinged parallel.

3. With both ends hinged in directions initially parallel to each other
When torque @ exists, the hinge angle ¢ at the moment when buckling occurs
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cannot remain zero because of the twisting deformation due to . If we introduce

new notations B=+VEP+72 and I'= Zl;?', or BU=B+T—-¢ and B:l=B~T+¢, the

critical conditions (31) and (32) are now reduced to

{[ ‘ 2 Bcos Bl cos Bs] cos¢§
Alll:z (B—=T)cos Bulsin (B+1) n (B+T)cosAlsin(B—T1) 1 =0, (29
(B+f) (B-T)
{ 2 B sin Pl sin Bl —sin ¢
Awiz= | (B—I)sinBelsin (B+1) _ (B+1I)sin filsin (B—1) ;| =0 O
| (B+1) (B-=T)

When @=0, i.e. I'=¢=0 and B=Fkl, we get (i) cos kI=0 and (ii) sin kI—
kl.cos k=0 from Eq. (39) and (iii) sin /=0 from Eq. (40). The condition (ii)
means the buckling in the plane containing hinge lines.

When P=0, ie. k=0, B—I" vanishes. Calculating the limiting case where B—
I" tends to zero, we get following two conditions:

(cos 7p — %)(% — tan ¢ ) = sin 7¢ tan® ¢, (41)
(cos rp — E@;Z;Q) (7% —cot ¢) = sin 7¢ cot ¢. (42)

The critical values of 7¢= Y?}Z calculated from Eq. (41) and (42) are plotted

against 7= (gf in Fig. 4. It must be noted that in most ranges of the value of

7, the critical torques computed for this end-condition are somewhat smaller than
those of a bar with both ends universally jointed. This result, which looks curious
at a glance, may be explained by the fact that the end restrictions can in some
cases be expected to facilitate the lateral deflection as the twist is increased. In
G]e . 3

El =4 1S

Fig. 3 the relation between @ and P at the buckling state when 7=
plotted.

VII. The buckling under compression of a rod
with some initial twist when I, x [,

Let the rate of the initial twist be ¢ which is constant throughout the length,
and put @=1=0. Eq.(26a) then gives:

2 12 . 2 Y
g o= AEmEL29T [ A= 4 o1+ me”, (43)

If ¢’ is very small compared with %, the above expression can be reduced
(except when 1—wm is also very small) to

(1+4+m)? ¢

A+ e

. (44)

Bi=k2+{1+2%}¢'z, B§=mk2+{1—2
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If, on the contrary, ¢’ is very large compared with %, it can be reduced to
8o = {grae ALY W)
and the coefficients §'s corresponding to Eq. (45) are

som -1 o m( Ve T (5}

. With both ends pivoted.
Here Egs. (28) are the buckling conditions.
Consider first a case where ¢=¢'l is very large corresponding to a tightly
twisted bar. With the expression (45), Egs. (28) are reduced to:

(5= s1) sin2 ¢ — (s1+ s2) sin 2\/(1+m) ckl=0
(L+m) ( Kl (I+m) |
or (l—m)\/ 5 <2¢>51n2¢—31n2\/ kl

sin 2 B g =0,

Thus 2kl (H;&——m (n=1,2,...) (46)
_ap 21
Pcr-—nPe]1+]25
an,l:) .
where Pe:W' This result means that
Py =2 P, when m—-—i— =0 and P.r =P, when m=1,
and in general the bar is equivalent to a flat bar with its sectional moment of
inertia 2 Iil, .
+ 1>

When ¢=0, Eqs. (44) show that fi=Fk, B =+ym -k and thus s;=0, s2=co. The
buckling conditions become cos fol=0 or
sin B.I=0, which naturally coincides with

L
those of non-twisted bars. . \
The computed critical values c¢= & AnbA-eymmeteip

P, . . .
1;: are plotted against 2 ¢ in Fig. 5.

2 - n=0

\‘ < - == 2.0
™~ s S B —1.60
FIG. 5. Buckling under compression Symmebric %_ n=0,5 —1.33
. . Iy 1 — m-1.0
of twisted bars, pivoted, m=7 2¢=
amount of initial twist between the two
ends. 0
¢} T 2n 3T
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2. With both ends hinged in the direction of axis 2 (pins parallel to the longer
side).

Egs. (31) and (32) are the characteristic equations for this problem. It is
interesting to discuss the case of a strip where m is very small. In this case
approximate expressions

dii = da+ dee=0 and dyup=da+ de=0 (47)

give sufficiently correct critical loads for considerably large values of ¢ (¢ >ca.
7/2). When, however, ¢ becomes smaller m must not be unconditionally omitted.

From the expression (44), under the assumption that both 7 and ¢ are very
small,

()= (RD*+3¢°+ ..., (BoD)? = in(BD)? — ¢° +

=29 _ (kl)“ 2 me
T=mygz’ 2 =U—myem+ G

and expanding all the terms except tan 8/ and cot 8/ in power series in respect
to ¢, we get:

S1 =

. 2311¢ 1—771(}5/[911‘ tan 3« ey [
Aoy + ms depy = B = qj)'[ { Bl (1-¢) 1}+ 31 (48)
2
Aae—f-ms:»dbe--?{{ —24 1 4m ;’f k’l”}
gyt Bl 1—m m 2 By
SRy (27&2 = #r)(1- 2B )] (49)
2 45 >
dey — msiday = (_B—l_'%ﬁ 1+21m;";z/ g’ B:d cot B4l
g’ m_({°
+ 8 1P (E-3)] 6o
ez — ms:daz = Tﬁ‘:l"z%eye’ [% g’
1—m m ;2. (B -9 . g
T g {— grgr +—}] (51)

Now, if we put m=0 preferentially to ¢, Eqs. (31) and (32) give the conditions
(47) which are further reduced to:

@—BL(I ) =1+ (517,

and BilcotBl=1-— (Bél)‘ s (52)
giving the critical values of %I/
2 2
(e =89(%) and (k)*=134(%)

respectively in the limiting case when ¢ tends to zero.
On the contrary, if m is finite, however small it may be, the amount 7?’3. grows
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increasingly important when ¢ becomes smaller. As the expressions (49) and (51)
are then reduced to:

(Bll)

dar + ms2dpe = ¢ (1 — m)

and Ao — MS2dgs = ¢(1 m),

the conditions (31) and (32) are transformed into

tan 8d = — m (1 —m)* (zill):
¢
(3:0)* (53)
and cotfl=—(1—m % 8204 ,

giving the critical values

at the limit when ¢=0. These agree with wellknown results for an untwisted bar
21 in length.

The results of our calculations are tabulated in Table 2 and plotted in Fig. 6.
The curve m=1 can naturally be obtained from Egs. (8), Sec. III, when we put
ki=Fk.. The most notable features obtained through our investigations are as

follows :

a) For a bar with the small value of m——lé_, the existence of a slight initial

1

TABLE 2. The Buckling Coefficients of Twisted Bars under Compression,
Both Ends Hinged along the Longer Axis

Mode of ¢=Per/Pe
o ¢ - samrvr——
buckling m=0 | m=001 | m=004 | m=025 ' m=050 | m=10
0 1~8.9 1 1 L1 1 1
/12 8.9 5.1 145 | 125
=/ 6 8.7 8.6 56 | 25
o/ 4 8.3 8.15 44 2.045
Symmetric =f 2 6.4 6.25 5.8 5.15 4.00
3/ 4 3.75 . 33 2.045
= 18 .16 1.00
5/ 4 3.45 | 2.045
3/ 2 7.5 70 | 625 5.3 4.00
0 4~134 4 4 4 4 4
=/ 4 35 2.045
. 7:; 13 3.6
. 5=/12 5.5
Asntxlnmetric =/ 2 102 ! 10
¥y 3=/ 4 10.6 { 2.045
oA 7.2 69 | 625 5.3 40
5x/ 4 365 2.045
3n/ 2 1.9 } | 10
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twist increases the buckling load remarkably. The buckling form for this range
is symmetrical.

b) When ¢ becomes larger exceeding a limit, the buckling form is replaced by
one which is antisymmetrical. The buckling load, after some stagnation at about

4 P, again increases up to a value several times that of B at ¢ =ca.

abouts.

c) For still larger values of ¢, the buckling form again becomes symmetric
and the buckling load diminishes showing a minimum at ¢ =ca. m.
In Fig. 7. the results of our experiments are shown.

5 or there-

14
S . t mal,/T,
i s-0 2gcl.engt.h of the bar
2¢ = amouns of i
1 . R i
m-O.m bou} e:xis’
. P9=m1n/z‘€ —
- 10 (symmetric) / {anti-symoletric)
S n=0 !
3 "\ / =0.25 |
vog 7 3
o m=/5.01/ § /
~ ! . R
a5 ; /m:C.Ols b ~
o =0,2 m=0,
° 4 'E*I‘ m=0,25 > m=0.50
. l - J\\ A Ll
e - - S
SR PN RN
A IS
,
o
0 w2 7 #/2 2% 5%/2 3=
29 3/,

FIG. 6. Buckling under compression of twisted bars, ends hinged along the longer axis.

o

Theorstiic  curve
6 m=0,0l

le
/ 8 DS\O\O\
4 B,
8 o ™
/\O 8 8 Expepiments m:O.Q;b\Q ,ﬂ/
2 .

e

1

. . 29
O 6 /3 x 32 2n S/2

FIG. 7. Experimental results on the compressive buckling of twisted bars. (by S.
Sekiya and K. Tatebe). With 2.95 mm x15.15 mm steel bar, and #'=380° per metre. The
critical loads were determined by Donnell’s method.
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3. With both ends fixed
The characteristic equations in this case are Eq. (29) and (20). The partial
determinants 4, and 4; in these equations are expanded to:

g Al == e K1¢ {Bll tan Bll - BZZ tan BZZ}

Kicos ¢« filtan Bll}
®
+ sin ¢{ - (Kl + K;) COS §Z) ° ﬁll tan Bll —+ K4(,/) sin ¢}, (54)

ds= K¢ { B tan Bil — B=l tan B:l}
+ Bl (S—l%?){(fﬁ — Ky) ¢ cos ¢ tan Bl + KBl sin ¢}

+ Bl tan Bl cos ¢ { <K1 - Ki) sin ¢ +

+ tan Bul cos ¢{ — (Ki+ Ki) Bul sin ¢ + Kup cos ¢ tan Bil}, (55)
where K= (B = ¢ (B - o), Ki=2¢" (B — B:).

If m is very small, the critical loads can reasonably be calculated by the ap-
proximate equations

4:=54=0 and 4,=4,=0,

in-so-far as the value of ¢ shows a considerable amount. When, however, ¢
is reduced in size, a special con-
sideration is required somewhat
similar to that given in the previous |
paragraph. When ¢ is very large, 16 /’

the bar becomes equivalent to a uni- 7 !

form non-twisted bar with its sec TS N

oLl T ; \
. . . 2 / symnetric
tional moment of inertia =, "-7+- ! \ .
]

b
"’HQ

anti-symmetrip
~

N

L+ 1)
Results of calculations for m=0.04 s D A EE N AN S SN
are shown in Fig. 8. \

FIG. 8. Buckling under Compression
. . I 1 o 2 =
of Twisted Bars, Fixed ends, m=j =5 o i o o

VIII. The buckling of flat strips under axial
and/or torsional loads

Consider a rod subjected to both a compression P and a torque @. The initial

Q

twist is assumed to be zero, or ¢' = Cﬂfz If the bar is of a rectangular section
e

b x t, where t< b, the value of 7 can be estimated by the formula

—4(1-0637%) &

_Gl
7’-F—[g
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. . G 3
and, with a typical value 5= for practical use, we can put 7=
Hence, from Eq. (26 a)
> 11 2 1 3 2
o {0 mres (b 3 o)
2 (2—m)(5-3m) 0.2 (3 3 \ -
-+ — 1 2ol? &Y ol
‘/(1 n)k' + 5 X% +(2 1 m)(, (56)

or, neglecting the small terms concerning to m= (%)- except when ¢’ is extremely
small,

lelz [(k‘ a"’ }/kl+ok rl~ Sz (r,,x:l_

When ¢ becomes small enough as compared with mZ%> ['s and s’s are to be
written :

(57)

Oy i = mht — (1 —’g—) = ml— ", (58)
ms = - Zﬂézf)l » 7Sy = ‘29—;?-

1. With both ends universally jointed.
For brevity, we consider only the case where X=0. From (58)

fi=g’  F=¢l-n(-mn),

- (2—- r) r—1)
S o "/(l—mr)

and thereby the buckling conditions (28) at the limit where m—0 are reduced to

tan ¢ = 1\/_7;/12 tanh y7=1 ¢ = 2\/7tanh(-v,27-),
. _1-7/2 J 2 9
an¢ = V=1 tanh V7—1 ¢ = tanh NE) (59)
The smallest critical torque is calculated as
chl ch - -
GJ. =110 or ZhL =(0.525 7

2. With both ends fixed.

Egs. (29) and (30) are the buckling conditions and 4,=0 and 4,=0 (Eqgs. 54 and
55) can replace them for the most range of ¢ as previously seen. When ¢ is ex-

tremely small, however, Egs. (58) show that ms;—~0 and ms,— <o, and it is necessary
to solve the equations:
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drs 41+ msdy =0 and Ay s di+ ms.d = 0. (60)

We see from Eq. (57) that:
B is real and B: is imaginary when 2 2*= —¢'%,
both B: and B. are complex when —¢2=2k*=-9¢'% and
both 8; and 5. are imaginary when —9¢/2=2%"
Cur examination shows that the buckling occurs only in the first range above or
2
the loading conditions such that gr (Q/;;]e) do not produce any buckling.
The buckling conditions when P=0, or due only to torque @, are reduced to:

4, = = tanh\/%{Z ¢'sin ¢ + 13—195 cos ¢ + % cos ¢ sin 2 ¢}

{2¢> cos¢+——¢ sin ¢+ sm qumZgb} (61)
9 1 .
di= \/2 tanh {¢ sin ¢ — ~—¢cos¢+ﬁ cos ¢ sin2¢
+{—é—-ti)zcosqw—i~2—¢sin¢+%sin¢sin2¢}=0. (62)
When ¢ or @ is very small, we get from Eqs. (58):

4= 2 (B = ¢ {sin il — Bl cos fil — -6 sin ul}»

Aa=ﬁgl(ﬂ§lg—¢2)2{—g—ﬁ?lasin Bl ...}

and the condition for symmetrical buckling becomes :

2 9Bl MBIl = ¢°) o
A = ﬁ.lz [Sm BLZ—BIICOS 1311"""—311 sin Bll+u]+2—¢§i*ﬁll sin ﬁ1l=0,
20
B P =~ nal/I,
‘Fe L = 2¢=lengthd the strip
t / N 2¢=total amount of
/ LN twist due to Q
16 s > P, = (2k8/x)*
] ‘\
~
N
P

7
4
* :ﬂ”"lh u‘oy/ TN T / )
a fixe q N
LB‘ 1/10 , = «
End \ \ \\\ N
i alonh N AN

the lbnger &g

G

f—!
—
N\

&)

/
A
P

N \ Co
* 20Q/Gle b 26— N\ ' [

0 3 [ 2rC 3R

FIG. 9. Buckling under torque and compression of strips.
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or

4¢' — B3l%sin il i (63)
mBil* —¢° ~ 3sin Bl — 3 ful cos Bl — BiI% sin Bl

For antisymmetrical buckling, however, 4;;= 4.=0 is sufficient for very small value
of ¢ and we get

2 6 B11°(Bul cos Bl — sin Bid)

C = 539 N 5 3 . - 64
¢ Bil*(B:l cos il — Sin i) — (Bil* — ¢°) sin Bl — Byl cos Bl (64)

The results of computations are
given in Fig. 9, and the results of o
our experiments are plotted in Fig. ¢ =(‘7:") ¥
10, showing good agreement with 7\

our theory. 12 @*QQGNH
3. With both ends hinged in 82

directions parallel to the longer side S —— 8
The characteristic equations el ®

(31) and (32) can be calculated wWe s o

under precautions similar to those g k3

previously discussed and the results 89 °%

are shown in Fig. 9.
The conditions for buckling in ¢

a special case where X=0 are re- 8 ezf-:oo"'}

mm
] 90 09 x 265"
duced to o) 30 | Spring steel
om "= ’/‘97
4 ———1 8 2f=50 | oo™
X
&

4o ? Spring steel
me /545 s)

FIG. 10. Experimental Results on
the buckling of strips under torque

and compression (by K. Ohnishi). \i‘

2¢
oo r 21T

coszq){ —élgsingb +-g-ﬁ tanh\%cos ¢} - %¢cos¢+—é—¢2sin¢=0,
sin2¢{ - ;—Gcos«/)—%\/? tanhv%sinqb} + —1§2—¢ sin ¢ + é—(pz cos ¢ =0.

IX. General remarks

The outstanding features described at the end of Paragraph 2, Section VII, are
also applicable to the problems in Section VIII with an exception that there is a
minimum value of P in the former case, but not in the latter. The most con-
spicuous point of interest is the fact that an existence of twist to some extent,
either due to the initial state or due to the torque load, greatly increases the
buckling compressive load.
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