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1. Introduction

The fundamental equation of one-dimensional heat conduction problems can
be written in the following form,

9 o\ _ _ou
or (K55) = ot W

where % ; temperature,

K ; thermal conductivity,

¢ ; specific heat,

p ; density,

x ; situation,

i, time,
and K and ¢ depend on x in general. If ¢p can be assumed to be constant, the
equation above becomes
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ox (“ ox/ = ot (2)
where «a ; diffusivity.

We can also treat the problems of a cylnider or a sphere as one-dimenstional, in

the case where the temperature changes only in the direction of its radius. For
a cylinder, e.g., the equation is

2 ( « _al) @« ou _ ou (3)
or or 7 or ot *

In these cases, the general solutions can be obtained, assuming « to bc a constant,
but the numerical computation from them, when wanted, requires often a great
deal of labour. Moreover, the analytical method cannot give a solution easily
when a depends on # or ¥, The method of finite difference will be greatly advan-
tageous in such cases, and several reports have been published using this method.
The author presents, in this paper, a more generalized method of finite difference
usefull for these problems, and it will greatly save the labours in computations.
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2. The case a=a () in (2)

Now we define v as

Qo = Sa(u)du

where ac is a constant of the dimensions of heat conductivity. Then the equation
(2) becomes

®
Considering the following relations
%#(01) — 2(00) =r%+§ —g%-+ ..
w(0D) —(00) = < 2% 4 —'2— %Z’,_‘— -
%(10) + 2(10) — 2(11) — 2(1T) = 27%? -7 g?; + rhga?“;z;cg— +
2(10) + 0(10) - 20 (00) = 122% 4 L 3w

ox> 13 ox?

v s O™ B o

2(11) +2(11) —-22(01) =h'ax2- —rhw-ﬁ-ﬁ W-f- ...

and writing h*=Fka.t, the expression for Eq. (4) can be obtained, neglecting the
terms of order 7°,
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where C is an arbitrary constant. Hereupon we think C=1/10 fit, to avoid the
accumulation of error.

When a () =const.=ay, consequently, z=v, we arrive at the well-known expres-
sion (b) taking k=4. If C=1/12 and k=6 are assumed, the expression is reduced
to (c¢), which is nothing but the expression previously used by Takahashi.
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Returning to our subject, we assume

alu) = ag+ (a; — ao)u, O=su=<1 (5)
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where @y « at the lower limit of # considered, #=0,
a1; « at the upper limit, #=1,

then , ach = aot + % (ar — ao)od’ (6)

i) If ao> a1 taking ac = @0, we have

v=u-—rf, f= :n k2 9.4 (7)
i) If ap<ai, taking ac =—@§ﬂ. we have
ey - ay — Ao
v=u-—p, f = aFa w(1l—u). (8)

Therefore the expression (a) becomes

i

‘ 10 % |
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3. The case a=a(x), in (2).

The equation (2) can be easily transformed into

(Au) a(Cu)
oxz  TBU="75 ©)

where A(x), B(x) and C(x) are determined from the following relations.
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aC—A=0.
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Then considering the relations,

a(Au) + nt o' Auw)
12 T ot

+ ..

Au(10) + An(10) — 2 Au(00) = 1°

> 0" (Az (Au) . 3(Aw) | K o'(Au
Au(1T) + Au(IT) =2 Au(0D) = o = = We g asy + 35 a7 °
Bu(10) + Bu(10) — 2 Bu(00) = I’ a-(aiu) + .
Bu(01) — Bu(00) = —rﬁ(—g—ﬂ-}-

Cu(11) + Cu(11) - Cu(10) — Cu(10) —2 Cu(01) +2Cul00) = = ht=555,
+ ..
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252
Cul0D) - Cu(00) = — < 2Cu) = a(actzzu) _

a(Cu) | ©° F(Cu)
T +'2—T+ ‘e

Cu(01) — Cu(00) =<

with the equation (9) and putting k=4, we arrive at the expression with O (),

Cu
| (— f—o-i-ﬁ))u ,[("“1‘261‘1'}"1“3‘()“37‘2)” ) (——1%+%)u |

4. Heat conduction in a cylinder

For simplification, the case a=constant will be considered, here. Putting
u=7"47Z, Eq. (3) becomes

oz _ (3Z 12) (11)

7—“(“5;e“+7r7-’ :

Therefore we have the expression with O (1f),

1

z i

s, 1 z| 2, W4 Z|_ 3, 1 Z (1)
027760 7 | ~102" 160 7% | ~ 10% 160 77 |
2 4 Z
~ 104+ 160 7~°"

As ﬁ-—»oo at r—(0, we cannot use the above expression at =0, /z, so the other

form of the expression must be obtained.
Considering the relations

Ju
ot ’?

2

ou _du_o  Ou_10ou 0w _
or ~ ort 7" orr — 2 ot’ ort T

1
Ve at =0,

we have the expression at the point 7=0 using the values at =0, y2 7,
2(01) = 15 (22(00) +2 #(01) +6u(V'Z; 0)). (g)
The value at (y2—1)k is also given by the following expression.

u(Y2-1, 0) =0.887302 2(00) + 0.126758 (Y 2, 0) — 0.014059 2(y 2+1, 0). (h)

To go a step of integration further, these expressions can be successfully applied,
taking the points 7=0, (V2= Y2h (N2+1)h,. ...

5. Numerical examples

i) Solve Eq. (2), giving the conditions;
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u=0 (¥=0~L t=0), u=1 (x=0,¢=0), 25=0 (y=1 t=0).
The results # at x=1 are shown in figs. 1 and 2, assuming (5) and
a1
@ =2 1, 2.
ii) Solve Eq. (3), giving the conditions;
=0 (r=0~a, t=0), u=1 (r=a, t=0).

The results # at =0 are shown in fig. 3, and the exact solution calculated by the
analytical method is also plotted in the figure.

6. Conclusions

In this paper, the author has derived a numerical integration method for one-
dimensional heat conduction problems, and shown several numerical examples.
The results obtained have sufficient accuracy for practical purpose by dividing the
variable range of x into only 2 intervals. The author believes that similar meth-
ods above mentioned will be available to the various complicated problems in

transient phenomena.
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