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Nomenclature

The following nomenclature is used in this paper:
p =pressure of air in the pipe-line

po =mean pressure of air in the pipe-line

u =velocity of air in the pipe-line

uy =mean velocity of air in the pipe-line

@ =discharge volume of blower

K =bulk modulus of air

p =density of air

¢ =velocity of sound

r =ratio of specific heat

t =time

t =t/(l/c)

x =linear coordinates
% =x/l

A =area of cross section of the pipe-line

! =length of pipe-line

V =volume of tank

P; =effective total pressure of blower

up =peripheral valocity of vane-wheel

D =diameter of vane-wheel

b =outlet vane-height

n =number of revolutions of blower

Sy =area of exit opening of the pipe-line

¢ =flow coefficient of exit opening

f =frequency

fs =frequency of vibration of normal mode (index s)
»w =angular frequency

ws =angular frequency of vibration of normal mode (index s)
k =w/c

ks =ws/c
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=pressure amplitude of surging
¢ =equivalent damping coefficient of free vibration of air column
¢s =equivalent damping coeflicient of vibration corresponding to normal mode
(index s)
g =pressure variation of air in the pipe-line
v =velocity variation of air in the pipe-line
¢s =pressure variation in generalized coordinates
Qs = generalized force

Introduction

In the running of such fluid machines of rotary type as the centrifugal pump
and the blower, unstability of fluid flow or violent oscillation of fluid are experi-
enced flequently. These phenomena are known as the surging of fluid machine.

In general, the surging is apt to occur when a machine is operated with
small discharge or in cut-off condition, and for this reason, the range of discharge,
in which the fluid flow is stable, is limited and this phenomenon causes much
trouble in the running of machine.

When we use a blower as a supercharger for aircraft engine of reciprocal
type or as a compressor for aircraft gas turbine, the violent surging can not be
permited because there exists a serious danger of failure of the machine or in-
terruption of the combustion process.

With increased use of blowers in the field mentioned above, the problem of
surging has been taken up by various investigators recently. A general survey
of the investigations up to the present day is as follows.

In 1947 Bullock, Wilcox and Moses? carried out a mainly experimental investiga-
tion and showed that the surging is a phenomenon of periodic variation of the
pressure and the velocity which occurs in the range of discharge in which the
machine has a rising characteristic, and its frequency is same throughout the
pipe-line, and also that the frequency and the amplitude of pressure variation
depend on the conditions of the pipe-line in a complex manner.

In 1948 Fujii®» gave a theoretical treatment to the problem. In which he took
up mainly the case of pipe-line of uniform cross section, and deduced some im-
portant conclusions about the nature of surging from the viewpoint that the
surging phenomenon is a vibration of continuous body. In this theory, he con-
firmed that the surging phenomenon is nothing but a self-excited vibration of
fluid column in the pipe-line caused by the rising characteristic of the blower.

In 1949 Shimoyama?® also gave a theoretical treatment to the phenomenon
based on the same standpoint as above but through a quite different mathematical
method. In this paper, he derived an ordinary differential equation of second
order which approximately describes the phenomenon and proposed a criterion
for stability of air flow, and contrived a graphical method for estimating the
amplitude of surging. The author’s study is much indebted to his paper.

In 1953 Huppert and Benser® carried out a theoretical and experimental
study. In which they considered a blower, the characteristic of which is discon-
tinuocus at the stall point, and indicated the possibility of a certain type of surging,
in which cyclic shift between stalling and unstalling occurs in the compressor
resulting from transient fiow variations following an initial stall.
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In 1955 Emmons, Pearson and Grant® proposed a theoretical model of surging
from the standpoint. that the system composed of a blower, ducts and volumes
can be regarded as a Helmholtz resonator. In this theory, they derived a for-
mula which gives the frequency of surging. The results of experimental study
are also included in this report.

In 1956 Kusama, Tsuji and Oshida® proposed a theory from the viewpoint
that the system has finite degrees of freedom, and deduced a stability criterion
of the flow. They also carried out the experimental researches employing centri-
fugal blowers.

In 1960 Katto”® 1 carried out experimental and theoretical investigations
for the surging of small fan duct systems. In these researches, he devised the
equivalent lumped models for the vibrating air columns and utilizing these models
he also gave the oscillation cycles of systems by phase plane integrations.

In addition to the studies mentioned above, fairly many reports have been
presented by Pearson,™!» Bower,'® Stephenson,'* Finger,'®® Folley,'” Harada,'®
Sherstyuk!® and so on,?” 4 @4 yp to the present.

As stated above the nature of the surging phenomenon is becoming to be
clarified gradually. However it can be said that the theoretical studies so far
made, are based on the excessively simplified or idealized assumptions and, on
the other hand, the experimental ones are rather fragmentary. This leaves the
obvious duty for someone to carry out systematic experiments, and clarify the
actual state in which the surging occurs, by considering the effects of the di-
mensions of the pipe-line, volume and accessories of the pipe-line on the surging
and by clarifying the relation between the form of characteristic curve of the
blower and the surging. In this paper the author deals with the surging pheno-
menon rather more experimentally but with some theoretical emphasis.

Chapter I. A Fundamental Consideration on the Surging Phenomenon

1. Preliminaries

As will be shown in the following chapters, careful study of the surging
problem reveals the existence of several phenomena that can not be explained
from the standpoint that the system has only finite degrees of freedom. So the
author is of opinion that for complete understanding of the intrinsic nature of
the phenomenon we must regard the system as having infinite degrees of freedom
or as a continuous body, especially if the system has a long pipe-line.

Fujii® investigated the problem from this standpoint and gave a fine theore-
tical model. In this theory, he derived the unstability condition of flow by deter-
mining the general solution of the equation of wave motion under the assumption
of small oscillation and making it satisfy the boundary conditions of the system.
He also showed the sustained wave form of surging by making use of his graphical
method.

In his report, attention is mainly focussed on the pipe-line system having the
blower at one end and the resistance (valve or nozzle) at the other end and the
graphical solution for sustained wave form of surging is also given for this case.

However in the actual use of the blower, there are many systems in which
the blower is placed at the midway of pipe-line. For these cases, it is easily
presumed that both the stability condition of the flow and the sustained wave
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form of the surging become multifarious. In order to obtain clear understanding
for the surging phenomena which arise in actual pipe-lines of various construction,
it is to be desired that the theoretical model is established for pipe-lines of the
form mentiened above. So in advance of the experimental study of the surging,

we deal with this problem from the viewpoint that the system is a continuous
body.

2. Differential equations and boundary conditions ,

We consider the pipe-line as shown in Fig. 1.1, where the pipe length is
denoted by ! and the position of the blower by &l We here assume that the
passage in the blower is negligiblly small compared with the pipe length and
that there is no friction in the pipe-line. In Fig. 1.2, the characteristics of the
blower and the valve are shown (indicated by B and V respectively), where the
abscissa is discharge of the blower and the ordinate is the pressure, and the
pressure in the suction pipe is taken as standard. The characteristics B expresses
the effective static pressure and V the pressure drop at the valve, and the abscissa
corresponding to the intersecting point E of the two curves indicates the discharge
at the steady flow state.

T=fr@

- Blower
i
G\ Valve
|
!f i
z-0  X=%4 x=t ¢
Fi1G. 1.1. Pipe-line. FI1G. 1.2. Characteristics of blower

and valve.

Because the surging occurs in the range of small discharge, it may be permit-
ted in general to regard the value of the pressure corresponding to E as the dif-
ference between the pressure inside the valve and the atmosphere.

In the following we consider the differential equations which describe the
phenomenon and the boundary conditions. Denoting the pressure, the density
and the velocity of the fluid in the pipe-line by p, p and # respectively, the equa-
tion of motion of the fluid and the equation of continuity are written as follows:

ou oun 1 2p _

ot T¥or T o ex =0 (1.1)
- op 9p ou

"é?+24~—ax +p——*ax =0. (1.2)

When we confine our consideration to the case in which a variation of the
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density is small, the second terms in Egs. (1.1) and (1.2) can be omitted. And
using the formula dp/dp=c?, above equations reduce to

oun 1 op

L 9P .3
5t oy =0 (1.3)
ou . 1 op 4
x —+ —= pc o =0, ' (1. 4)

where c is the velocity of sound. These two are the fundamental equations for
succeeding discussion.

Eliminating p or # from these equatlons we have well known equations of
wave motion, namely;

Ou _ 2 0u

s = ¢ o (1.5)
2 2

%:& gﬁ (1.6)

But for ease of mathematical treatment, we adopt (1.3) and (1.4) rather than
(1.5) and (1.6), and treat them with the characteristic method in the theory of
partial differential equation. Namely we first define a set of curvilinear coordi-
nates £o(x, f) = aq(constant), (¥, t)=ps(constant) in such a manner that & and
7o are mutually independent and the derivatives of » and # in the direction normal
to the coordinate curves are indefinite, then by use of these & and % we trans-
form the coordinates from x, £ to s, B and convert Egs. (1.3) and (1.4) to a
set of equivalent characteristic differential equations shown below

C, : ot 1 ox

Sas ¢ Bar =0, (1.7
c.: aagi +%~§—g——o (1.8)
. g;‘o }%gfo =0, (1.9
r.: _% - 016 —ggg =0. (1.10)

Writing in the non-dimentional form, we have

°(47) _ 2(%)

C.: S Ly (1.11)
c-: a(;é;) + agi) =0, (1.12)
I igjé)-jué--a—(ﬁg}?—):o, (1.13)
ro: (%) _ 1 2(aje) =0. (1.14)

2B P 9B
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Integrating above differential equations under the condition that «, or f, is con-
stant, we have

C.: w(-f/%» - % = R(B), (1.15)
C-: (-;ié—- + 4 =Sla), (1.16)
re: Xy %W{—w—)— = 7B, (1. 17)
ro: - é— ”(—172?75677 = s(aa), (1. 18)

where R(), 7(B), S(as) and s{a,) are arbitrary functions of s or as.

By above equations, namely by the curvilinear coordinates containing a, and
B, as parameters, a corespondence between a point (x//, £/(Il/c)) on the x/I, #/(l/c)
plane and a point (#/c, p/(1/2)pc?) on the u/c, p(1/2)pc* plane is established. In
our case the curvilinear coodinates, or the so-called characteristic C,, C_, 7"y and
JI'_ are straight lines having the inclinations +1, —1, —2 and +2 respectively.
This state is shown in Fig. 1.3. C, and C. represent the loci of wave motions
which propagate in the positive and negative direction respectively, and the small
domains 1, 2, 3 and 4 in the left figure correspond to the points 1, 2, 3 and 4 in
the right respectively; these points indicates the state of liquid.

FI1G. 1.3. Curvilinear coordinates.

A graphical solution method where the solution is obtained by accomplishing
the correspondence between the (x, t) and (z, p), satisfying the boundary con-
ditions on the two planes, has been applied to such problems as the water hammer
and the gas flow in the exaust turbine,® but not to the surging problem yet.
It is however not adequate to use this graphical method for the deduction of the
universal characters of the surging, for examples, the stability criterion of the
flow (or the condition for the occurence of surging) or the role of the blower in
the surging phenomena, because this method gives the individual solution corres-
ponding to the particular initial or boundary conditions.

In order to deduce the universal characters of the surging, we treat the
problem analytically by the aid of Egs. (1.15)~(1.18) and the boundary conditions.

In the following we consider the boundary conditions.

Refering to Fig. 1.1 and Fig. 1.2, we take the following equations as the
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conditions at the suction end of the pipe-line,

2
Pr=o =Pa— ¢ ﬁ%‘il (for positive flow),
: (1. 19)
Dr=0= Pa (for negative flow),

' 2.
where P; is the atmospheric pressure and ¢; p—ugi is the sum of the pressure

drop due to the suction and the pressure loss of inflow. The condition at valve
is as follows:

px=l = f—V(Qx=l), (1. 20)
where @=u«A holds if the area of the cross section of the pipe-line is denoted
by A.

Next, concerning the blower, we have two conditions: one is that the con-

tinuity of the flow is fulfilled and the other is that the pressure difference between

the delivery and the suction pipe is equal to the static pressure afforded by the
blower.

Indicatihg the values corrésponding to the suction and the delivery pipe by
suffixes L and H respectively, we have at x=¢£[

Q=Qr=Qu, (1.21)

b =pr+ Q). (1.22)

Shifting the ordinate in Fig. 1.2 to the position of E, and adopting the non-
dimentional values p/(1/2)pc* and u/c instead of p and @, we obtain Fig. 1. 4.

Wspce

Frlyg)

f 8( Uy, c)
Fi1G. 1.4. Characteristics of blower
and valve on p/(1/2)pc?, u/c plane.

d/c

Next, neglecting the pressure drop due to suction and pressure loss of inflow, and
taking the atmospheric pressure as standard, Eqs. (1.19)~ (1. 22) reduce to

< (I%L)?)Cz )xuo =0, (1.23)

(”(‘I/%H)*pgz‘hzﬁfr{(un/c)m}, (1. 24)
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(2z/€) =21 = (atu/€) =11, (1. 25)
P _ o4 .
(65 = (5o ) + el lmleres). (1.26)

In the succeeding discussion we use above equations as the boundary conditions.

Our aim is to examine the characters of solution of (1.15)~(1.18) which
satisfies above boundary conditions. Here, for brevity, we use the notations t, &
instead of #/(I/c), x/I and write newly p, # instead of D/(1/2)0c% u/c. Then Egs.
(1.15)~(1.18) and the boundary conditions (1.23)~(1.26) can be written in the
following forms:

C:i: t'— % = R(B, (1.27) (Pr)x=0 = 0, (1.31)
Cc_: ¢t + & = S(O(o), (128) (_pH)x:] =fV{(Z£H)x=1}y (132)
Iy (2u+5)/2 =78, (1.29) (2) =2 = {atz s =1, (1.33)

I-: Qu-— /2 = slay), (1.30) (Pm)z=s = (Dpr)x=t+ fo{(2r) x=2}. (1.34)

3. Propagation of disturbance

Investigation of the instability condition of the flow, or the influence of the
blower on the vibration of the fluid column by the aid of above equations is
equivalent to that of the change of amplitude of a disturbance with the lapse of
time.

For this purpose it is required to study the feature of propagation of a
disturbance (or wave), and this section is devoted to this subject.

We consider the «/, # plane (ie., #/(I/c), %/l plane) as shown in Fig. 1.5.

X=0 X=E X=1

F1G. 1.5. Loci of propagating disturbance.

Assuming that the disturbance O starts from the valve position #'=1 and
propagates toward upstream, when it reaches the blower position #'=¢, it is
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affected by the blower in a manner governed by the conditions (1.33) and (1.34),
and resultant states, which are denoted by A:; and A,, propagate again toward
upstream and downstream respectively. The disturbance A is transformed into
B: by the reflection at the suction end &' =0, and this reflection depends on the
condition (1.31). The disturbance A, which propagates toward downstream, is
also transformed into B, at the valve &' =1 by the reflection which is governed
by the condition (1.32), and such processes are continued. Obviously these loci
of propagaiton of disturbances correspond to C. and C. mentioned in the pre-
ceding section. :

It can be proved that, if the ratio of the suction pipe length to the delivery
pipe length (m': #') is rational, the #', ' plane becomes to be covered after a
certain period of time by numerous equally spaced (the distance is denoted by
& in Figure) loci of disturbance. It can be also proved that m' bands of width
(eg= Al/m') are contained in a period of time A in which a disturbance goes
and returns through the suction pipe, and #' bands in a period of time B in
which the disturbance does the same in the delivery pipe. The proofs are omitted
here.

If £ (or m':n') is irrational, the value of & can not be defined. But even in
this case, since we can select an approximate rational number with desired ac-
curacy, it may be permitted to use the results of the succeeding treatment, where
the value of ¢ is assumed to be a rational number, for the case where £ is an
irrational number.

In addition, for the case where &=0, or the blower is at the suction end of
the pipe-line, we take A'=0, B'=¢g, m'=0 and »'=1, as is seen from Fig. 1.5.

4. Condition of stability

Suppose the blower is in a steady running at point E in Fig. 1.2. If an
infinitesimal disturbance in a pipe-line grows up with time until it becomes impos-
sible for the system to maintain the equilibrium state corresponding to point E,
then this equilibrium is said to be unstable. On the contrary if a disturbance
dies down with time and the equilibrium state E is recovered, the state E is
stable. OQur aim in this section is to deduce the condition under which an equili-
brium state is stable (or unstable), refering to the discussion of preceding section,
and to examine the role of the blower in surging phenomenon.

Taking the zero point of the abscissa at the point corresponding to the
working discharge of the blower as is shown in Fig. 1.4, we discuss the problem
on the assumption that only small oscillation can occur. On this standpoint, we
can write the blower characteristic fz(#) in Eq. (1.34) and the valve characteri-
stic fv (%) in Eq. (1.32) in linear forms, namely:

Fele) =@+ bu, (1.33)
frlu) = a+ gu, (1.36)
where & is the inclination of the characteristic curve of the blower.
Hereafter we preceed our discussion making use of Egs. (1.27)~(1.34) of
Section 2. Solving Egs. (1.29) and (1.30), we have
u= (r+s)/2, (1.37)
p=7r—s (1.38)
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In these equations, and also throughout this section we use for brevity the
notations » and s instead of 7(B) and s(a) respectively.

Next, rewriting the boundary conditions (1.31)~(1.34) by use of Egs. (1.-35)
~(1.38), we have

at & =0, 7L = SI, (1.39)
at x' = 1, 7’1;‘811:5—3-,?*@%—3—}2 ) (1.40)
at x!__ﬁ___?n' yL+ S =7u+s (1.41)
I e .+ Sz =7u+ Sa, .
and ?’[1"511:7’;*?8[,*}'5*}-5"@%-2- (142)

Further, we can write Egs. (1.41) and (1.42) in different forms, namely:

! (D +4) b

Qi

at x’=$=ma 7H = ) 7ot o set (1.41)
_3[12%¢L+.(_§_£.§2_3L+,‘22, (1.427)

or ‘7L=Q‘g‘£‘711+;2—“311+ -g, (1.41)

sp= -Z-m—% Q{iﬁs}ﬁ g‘- (1.42")

Next, with above equations, we deduce an equation which represents the
vicissitude of a small disturbance with time, by establishing the correspondence
between the loci of the disturbance on %/, # plane (in other words, the chara-
cteristics C. and C_) and the points on p, » plane which represent the states of
the fluid.

From (1.37) and (1.39), we obtain 7z = u,_s, that is, #; is the velocity varia-
tion at the suction end of the pipe-line. By examining the variation of r; with
time we can see the vicissitude of small disturbance (or propagating wave of
small amplitude). Since this vicissitude can be well examined without loss of
generality in the situation where #/, ¢’ plane is covered already with the bands
of loci of disturbances of width ¢, and where the disturbances arrive at suction
end x' =0 one after another at constant time interval, so we treat the problem
under this condition.

Now, considering the process in which a small disturbance, which corresponds
to a band of width &, starts from x'=0 and passes through the blower position
%' =£1, reflects at the valve x' =1, passes again through the blower position and
returns to the suction end x'=0, we persue the corresponding variation of 7z on
the p, # plane.

Drawing this process as is shown in Fig. 1.6, and mapping this on the #/, #
plane and the p, » plane we have Fig. 1.7 (a) and (b). In Fig. 1.7 (a) a band of
width ¢ on the %/, ¢ plane is shown by a straight line and in Fig. 1.7 (b), cor-
responding feature on the p, # plane is shown. And in both figures the corre-
sponding points are indicated by the suffixes of the same numerals and on the
», u plane the quantities corresponding to suction pipe are indicated by adding a
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L (3)

(Suction end :(4,)1 Blower W
(Suction end C (Blawen\—(ﬂd Valve

FIG. 1.6
ES
<
Chﬂ‘l
%0
W /Sa oy o By (’;12 Auz)
~0 7% \/ %3
(' (Tuz, dns)
[6)
6 1, A (Yus, Brs)
.47
7 ,__% = [
Sheer_ - 3
- 8
I 27
2rh)
BN
7 S, Au) Ethedis)
=0 X5 X=1 s, 4es)™ & @Vf P, duy U ./
Suction end  Blower Valve v dis)
(a) (b)

FIG. 1.7. Correspondence between the points on #', ¢ plane and those on
p/(1]2)pc?, u/c plane.

prime. Besides, a state of the fluid corresponding to a point on p, » plane are
represented by a set of (7, s), as is seen in Eqgs. (1.87) and (1.38). The cor-
respondence between both figures are obtained with help of Eqs. (1.27)~(1.30)
in the following manner.

Namely the process (1) in Fig. 1.6 is characterized by a constant value of
Bo (for example ;) on the #/, ¢ plane as is seen from Eq. (1.27), and a Iy of
Eq. (1.29) corresponds to the same value 3 on the p, # plane, so the state of
fluid at the suction side of the blower and at the moment when this process is
finished, or, in other words, when the disturbance (7, su)* just arrives at the
blower position, is represented by a point (71, s) on the same I', (denoted by
numeral 2'). This is seen from the fact that B! ie. #;: is held constant and only
a, varies. The state of the fluid in the delivery pipe at the blower position is
represented by a point (7p:, sm) (denoted by numeral 2) which is related to point
(711, s2) by Egs (1.41') and (1.42"). The similar discussion applies correspondingly
to the process (2), (3) and (4).

As shown above, using the notations in Fig. 1.7 (b), and pursuing the each
process of Fig. 1.6, we can obtain the relation between two values of 7, corres-
ponding to the point 1 (71, sz1) and 6 (7zy, sz3) respectively. In other words we
can know the change of magnitude of the velocity variation at suction end bet-
ween before and after the period which is required for a disturbance to make a
round trip through the pipe-line, in the following manner.

Using Egs. (1.41') and noting that the starting point is (7, su), we have
Eq. (1.43) for the moment when the process (1) is just completed,

* This is denoted by numeral 1 in Fig. 1.7 (b) and because this point corresponds to
the suction end of the pipe-line, it is clear that this point exists on the # axis.
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4)

(d o+

Yoz =

e

s (1.43)

ol 2l

Sz +

p{.n} >

and for the monent the process (2) is completed, by Eq. (1.40) we have

2- g _2a
Spz = g+2 42 ’ (1.44)
after the process (3) is completed, by Eq. (1. 42”) we have
Sz = %7‘}13 + -(L?;&Sm -+ %: (1.45)
finally after the process (4) is completed, by Eq. (1.39)
14 = Si3, (1.46)
and consequently from (1.45) and (1.46) we have
714 = %?’Hs*f‘ Q"—Z:'é')"SHGS + 5 a (1.47)

In this equation, as the values with suffix H correspond to the state of the
fluid in the delivery pipe, we replace these by the values with suffix L which
correspond to the suction pipe and introducing Egs. (1.44), (1.43), (1.41") and
(1.46), we obtain

(g=2) - _ (§—2)(+49) B
(§+2) OS2 (§+2) 72 =0. (1.48)

(B—4)vpa + bros —

However, as is seen from Fig. 1.7 (b), the point 2/ (771, sz2) and the point 5
(715, sr2) lie on the same I'_, furthermore on the x axis, which corresponds to
%' =0, spp=7z; is satisfied because of Eq. (1.39). Consequently Eq. (1.48) reduces
to the following form:

(g—2) (g—-2) (b+4)
(g+2) brs — -——-@;L—-Z-)—w——mzo. (1.49)
In this equation, 7z, 715 723 and 7., are the magnitudes of the velocity varia-
tion at the points 1,5, 7 and 6 respectively. Consequently this equation describes
the vicissitude of a small disturbance.
Because the relation among the four values of 7, expressed in this equation
is true for any band of width &, we may select a band as standard and write 7
as 7., where we consider 7z corresponds to zth band from the standard band.
Considering that m', #/ and N(N=m'+n') bands are contained between 7z
and 7., 713 and 7z, and 7 and 7, respectively as stated before, we may write
aAS L5 =Ts4m, Yra=7Vz+y_m and 7za=7,45, and with these notations Eq. (1.49) reduces
to

(b—4) 7pa+bres —

(g—2) (§—2) (5+4)

(b — 4) 7245 + 0T ze5-m — *(m" brzrm — “-WW 7z = 0. (1.50)

This is the fundamintal equation which determine the stability or unstability of
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phenomenon. We deduce the condition of stability with this equation in the fol-
lowing.

As Eq. (1.50) is a difference equation which expresses the linear relation
among the four values of 7, we may put r=CX¢ and we have

G- XY+BX"™ — GBX™ ~ G(b + 4) =0, (1.51)
where
_&-2
G= g+2

When Eq. (1.51) has no multiple root, using the N roots of Eq. (1.51) we
may write 7z as follows:

N
7z = > ¢; X5, (1.52)
i=1

Consequently for the decrease of 7, with increasing z, or with the lapse of
time, the condition |X;|<1 must be satisfied. Accordingly it is clarified that the
condition of stability is equivalent to the condition that all roots of Eg. (1.51)
exist within the unit circle on the complex plane. This statement is also true
when Eq. (1.51) has some multiple roots.

Now, the necessary and sufficient condition under which all roots of an alge-
braic equation of N degrees exist within the unit circle was given by Schur in a
form shown below.? Namely, in the equation of the form

f()=az"+@z"" '+ - - - +ay=0,
we define Dy as

oy * C an-1 f an
[~Z - Qn-1QGN
0 co.
ao [ a - o ax
Dy=) —+« — « — —_ - — (T.1)
ayay-1 a; *
51\: * ‘ 5150
0
Gy * Gy-1° * ° * Gy

then defining Dy_: as the determinant which results from removing two rows
and two columns corresponding to Nth and 2 Nth from Dy, and defining other

Qo an

determinants D;’s successively in the same manner until D; = i a is reached,
N (]

the above mentioned Schur’s condition is that all determinants D;s are positive.
Finally, in our case, the condition under which the phenomenon is stable is
stated as follows:
“The stability criteria for the phenomenon is that the all Schur’s determi-
nants of Eq. (1.51) are positive”.
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Thus we have obtained the mathematical representation of the condition of
stability. However it is not so easy to decide the stability by the calculation of
all Dy’s, except the cases where &=m'/(m'+#') =m'/N is a convenient number.

To cope with this, we must adopt adequate methods, for example, the nume-
rical calculation of the roots of Eq. (1.51) for given 5 and G. However we show
some simple examples in the following;

(i) The case in which the blower is connected to the suction end of the pipe-
line (£=0). From the preceding discussion, we have N=1 and »/=0. Then Eq.
(1.51) becomes an equation of one degree, and the condition of stability is easily
obtained as follows;

-1 241 1

<1, (T.2)

ro[og, | vofoy
..[..
joy

L\v[ STHN

_1‘

and this coincides with the stability criterion deduced by S. Fujii? by another
method.

(ii) The case in which the blower is placed at the middle of the pipe-line
(£=0.5). In this case N=2 and m’'=1, then from D;>0 and D,>0, we have

from Dy>0, ;1—%@{>1, (T.3)
£ -1 b

from D»>0, = PR <1, (T.4)
z 5

in addition, when both 7 and g are positive, the former condition reduces to g>2.

In the following we examine the role of the blower for the vicissitude of
disturbance, with the aid of Eq. (1.51). For this purpose we consider a case in
which the disturbance reflects at the valve without any loss of energy and the
vicissitude of the disturbance depends on the blower alone. That is, we assume
that the valve is closed entirely. For this case, from Eq. (1.36) we have g=co
and Eq. (1.51) reduces to the next form;

(B—4) X¥+pX¥™ — (5 +4)=0. (1.53)

Considering the relation between the roots and coeflicients, we have

m‘w

_ |
B

n,':jz

consequently if 5 > 0, ]—b——% > 1 holds,

that is, it is clarified that if >0 is satisfied, at least one root exists outside of
the unit circle and the phenomenon is unstable; in other words if the blower has
a rising characteristic at the working discharge, it amplifies the disturbance reg-
ardless of its position in the pipe-line. Next, if =0 is satisfied we have easily
X¥= -1 from Eq. (1.53), and this shows that all roots of Eq. (1.53) distribute on
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the unit circle, and then the disturbance is neither amplified nor depressed by
the blower (hereafter denote this as neutral). Next we examine if <0 is the
condition of stability. Calculating Schur’s Di;, we have

I G-4 =G+ -
D=l G+0 G-0= 78

Consequently it is easily seen that 5 <0 is a necessary condition for stability.
To examine whether 5 <0 is a sufficient condition or not, we must calculate all
Schur’s determinants D;’s, howsver it is very troublesome. We can instead discuss
this problem rather more easily by the aid of Rouché’s theorem,?® but the process
of discussion is omitted here.

The results obtained so far can be summarized as follows;

b5<0 is a sufficient condition for stability except for the cases in which the
blower position coincides with a node of any normal mode of vibration of air
column, where the state is neutral.

From above discussion we can conclude that if the inclination of the chara-
cteristic curve of the blower at the working discharge is negative (5 <0), the
blower depresses the small disturbance except for the cases in which the blower
position coincides with a node of any normal mode of vibration, if the inclination
is horizontal (5=0), the blower neither amplifies nor depresses and if the inclina-
tion is positive (5>0, or the blower has rising characteristic), the blower always
amplifies the small disturbance. In addition, when we examine the role of the
blower under the condition that the valve is full open, where the disturbance
reflects completely like the preceding case, the same conclusion can be obtained.

In the next place we examine the influence of valve on the propagation of
disturbance. For this, we take up the case of 5=0 in which the blower has no
influence on the vicissitude of disturbance. In this case Eq. (1.51) reduces to

XV = - %—;—22, (1.54)
and the condition of stability is written as
:";_12_} <1 (1.55)

Because ordinary valves have such characteristic that the rate of outflow
increases with the pressure at the valve end of the pipe-line, or > 0, it is clear
from Eq. (1.55) that valves depress the disturbunce excepting the cases of F=oo
and g=0.

Further for g=w and ¢=0, X¥=-1 and X¥ =1 are fulfilled, and these cor-
respond to the closed and full open states of the valve respectively, and as the
reflection of disturbance is complete for both cases, it is clear that a valve does
not affect the vicissitude of disturbance.

Finally, when we take the effect of valve into consideration, it can be con-
cluded that the disturbance is always depressed if =0, and possibly amplified
only in the case of $>0. Fujii? deduced the similar conclusion for the case in
which the blower is connected to.the suction end of the pipe-line, however it is
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intaresting that the conclusion is also true for more general cases.

In this section we deduced the mathematical representation of the condition
of stability and discussed the relation between the vicissitude of disturbance and
the characteristics of the blower and the valve.

5. Graphical solutions of surging

In the preceding discussion, it is clarified that there is a posibility of amplifi-
cation of a small disturbance near the working point of the blower only when
the blower has a rising characteristic (56>0) at the working point.

However even in such a case as above, where the vibration diverges, the
reflection of disturbance becomes to obey the rule for the decending characteristic
(5 <0) with the increasing amplitude, as seen from the form of the characteristic
curve in Fig. 1.2, so it can be easily presumed that the amplification of the
disturbance is restricted within a certain limit.

In this section we examine the behavior of disturbance with large amplitude
by a graphical method. Here as a graphical method, we adopt the method of
characteristic. In this method, the boundary conditions (Egs. (1.31) ~ (1.34))
must be fulfilled graphically and this is done in this particular problem in the
following manner.

In Fig. 1.8 (a) and (b), an example is shown.

This shows the process of solution for the case where the valve is closed
abruptly from the state T) or 7; (the prime indicates the state in the suction
pipe) to the state T3, and in this case the blower is at the midpoint of the pipe-
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Fi1G. 1.8(a). An example of procedure of graphical solution.
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FIG. 1.8 (b). An example of procedure of graphical solution.

line. However, the following statement about the manner of fulfilling the
boundary condition is quite general. Fig. 1.8(a) and (b) show #, x' plane (i.e.
t/(Il/¢), %/1 plane) and p, u plane (ie. p/(1/2) oc®, u/c plane) respectively, and a
point on the p, # plane indicated by the same numeral with that written in a
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small domain on ¢, x' plane, represents the state of fluid corresponding to that
small domain.  The boundary condition (1.31) corresponding to the suction
end and (1.32) corresponding to the valve end can be represented on the p,
u# plane by two lines (A) and (B) respectively, as is generally known. The
conditions at the blower position, (1.33) and (1.34), can be fulfilled in the fol-
lowing manner.

We locate two points which represent the states of the fluid in the suction
and the delivery pipe at the blower position, for example 10 and 10, which are
enclosed by small circles in Fig. (b). This can be done considering the following
requirements. First they must lie on the I'_ and I, line respectively which
pass through points 9 and (4), the points determined by the preceding step.
Secondly they must have the same abscissa in order to satisfy the condition (1. 33).
Finally the difference of the values of ordinate between these two points must
be equal to the ordinate of the characteristic curve corresponding to the common
abscissa in order to satisfy the condition (1.34).

The results mentioned below are obtained in this manner. In this case because
the surging commences in general in the running state where the valve is fairly
closed, we treat the problem under such condition. We also assume that the
initial disturbance is caused by an abrupt change of the valve opening.

Fig. 1.9 shows a special case in which the blower is connected to suction
end of pipe-line. For this case Fujii® gave the solution by another graphical
method, but for the sake of comparison with other cases we show the results
here. In Fig. 1.9 the abscissa is non-dimensional time #/(//c), and the ordinate
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FIG. 1.9. Graphical solutions of surging (=0 and valve is closed).
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is non-dimentional pressure p/(1/2)pc? or non-dimensional velocity #/c.
(@) and (b) show the solutions corresponding to the cases in which the valve
is closed abruptly from the stable running state of the blower. In (@) the blower
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FIG. 1.10. Graphical solutions of transient pressure waves (£=0.3 and valve is closed)
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has a rising characteristic at cut-off ($>>0) and the lines (1), (2) show the pres-
sure variations after the closing of the valve at the valve end and the blower
end respectively, and (3), (4) show the velocity variations. In (), the blower
has a decending characteristic at cut-off (5<0), and the pressure variation at
valve end is described. Curve (¢) shows the pressure variation at valve end
which takes place after a stepwise closing of the valve, where 5>0 at cut-off.
Comparing (@) with (¢), it is clear that the pressure and the velocity variations
converge to fixed rectangular waves irrespective of the nature of initial distur-
bance when 5>0, and from () it is also clear that when 7 <0, an initial distur-
bance damps and a new equilibrium state is reached.

Fig. 1.10 shows a transient state of the pressure variation at valve end in
the case where the blower position £=0.3 (m': N=3: 10) and the valve is closed
abruptly. In this figure the blower characteristic at cut-off is >0 in (@) and 5<0
in (b) and for respective cases the vibration diverges or converges. The final
wave form is not shown here.

Fig. 1.11 shows the results for the case of £¢=0.5 (m': N=1: 2) and the sign
of b after the closing of the valve is shown in the figure.

Fig. (a) shows the case of abrupt closing of the valve and line (1) is the
pressure variation at valve end, (3) is the velocity variation at suction end, (2)
is the pressure variation at delivery side of the blower, (4) is the velocity varia-
tion at the same point (velocity variation is same as the suction side), (5) is the
final form of the pressure variation at a point, the distance of which from the
suction end is equal to 70% of the length of the pipe-line, (6) is that of the
velocity variation at a point corresponding to 20% of the pipe length.

Further, (b) shows the pressure variation at valve end in the case of 5 <0.
and (¢) shows the case of stepwise closing of the valve.

Fig. 1.12 shows the results for the case of the blower position &=0.4 (m':
N=2: 5) and abrupt closing of the valve (5>0). Line (1) shows the pressure
variation at valve end, and (2), at the blower position, (3) is the static pressure
of the blower, (4) is the velocity variation at suction end and (5), at the blower
position (final wave form).

Next, Fig. 1.13 shows the results for the cases in which the valve is open
to a certain degree, and the blower position is £€=05 (m': N=1: 2). In this

-1 L |
figure, (@) and (b) correspond to unstable E = "3 |1 >1 and stable
|8 O 1]
ot gL
—— 7 (
IR Rl
—= 5 1 <1} state respectively (cf. (T.4)), and the line (1) is the
§ ?2‘ -+ 1 z - 1

pressure variation at valve end, and (2), at the blower position (delivery side),
(3) is the velocity variation at suction end, and (4), at the blower position and
(5) is the velocity variation at valve end.

From Fig. (a@) it is seen that when the condition of stability is not satisfied
at the working point of the blower, the final wave form of disturbance is asym-
metrical.

The characters of surging obtained from above treatment are summarized as
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F1G. 1.13. Graphical solutions of surging (=05 and valve is slightly open). Working
point of blower is unstable in (a) and stable in (b).

follows:

(i) When the condition of stability is not satisfied (especially if the valve is
closed entirely, this corresponds to 5>0) at the working point of the blower, a
disturbance build up into a fixed sustained vibration irrespective of its initial
form, however the wave form changes along the pipe-iine. The final wave form
depends on the blower position.

(ii) When the condition of stability is satisfied (especially if the valve is
closed entirely, this correspond to 5<0), an initial disturbance damps and a new
equilibrium state is reached.

(iii) When the valve is entirely closed or fairly closed, the fundamental
period of sustained vibration is 4//¢ and this is equal to that of free vibration of
air column in the pipe-line.

(iv) When the valve is entirely ciosed, the final form of velocity variation at
the blower position is rectangular (cf. the line (4) of Fig. 11 (@) and the line (5)
in Fig. 1.12), however when the valve is open to a certain degree, above statement
does not hold (cf. the line (4) in Fig. 13 (a)).

In the above we have studied the characters of surging which occurs in the
pipe-line with uniform cross section. Next, we show an example of the case in
which the pipe-line has a discontinuous change of the cross section in Fig. 1. 14.
In this pipe-line, the blower position is £=05 (m/: N=1:2), the areal ratio is
1:2 (suction pipe versus deiivery pipe), the position of the discontinuity of the
cross section coincides with the blower position and the valve is closed entirely
(where, $>0). In this case as the boundary condition at the blower position,
we must take the following equation instead of Eq. (1.33),

Ar(#r)x-st = A (un)x-u

where A; and Ay denote the areas of suction and delivery pipe respectively.
In Fig. 1.14, line (1), (2) and (3) in (@) show the pressure variation at valve
end, the velocity variation at suction end and the pressure variation at the blower
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<

position (suction side) respectively, and (&), which is shown for the sake of com-
parison, is an example of free vibration in the same pipe-line and shows the
pressure variation at valve end, where the scale of ordinate is adequately chosen.
As is seen in Fig. (b), the free vibration in such a pipe-line has no periodicity
in a strict sense, namely the frequencies corresponding to normal modes of vibra-
tion of air column are expressed in the form f=71¢/41, where 1’s are the roots
of the following equation,*”

(1. 56)

u, _ Ag né a(1—¢)
wn = A, 2 - tan r 5

and the values of 7v are generally incommensurable each other. The surging
which commences in the pipe-line of this type also has no periodicity, but its
amplitude is nearly constant.

By compareing (a) with (b), it is seen that the existence of the blower has
no influence on the mode of vibration as was case with the pipe-line with uniform
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cross section. Nevertheless, it may be expected that the surging in such a pipe-
line as this is observed in many cases as a periodic vibration having the frequ-
ency corresponding to the lowest value of 7 of Eq. (1.56), because the components
of higher frequencies are apt to die down.

6. On frequency of surging

As was seen in the preceding treatment, when we assume that the change
of density of the air is small, the fundamental frequency of surging which occurs
in a pipe-line with uniform cross section is equal to that of the free vibration
and the magnitude of which is ¢/4! with ¢ being a constant, if the valve at pipe
end is entirely or nearly closed.

On the other hand, when the blower of high pressure type is used, the change
of density may not be neglected, and the frequency of surging would be different
from ¢/4 1.

When we treat the problem taking the change of density into account, we
must adopt Egs. (1.1) and (1.2) instead of Egs. (1.3) and (1.4), but here we
rather give an approximate treatment to the problem of the frequency of surging
which occurs in a pipe-line with a blower of high compression ratio. That is,
we assume that the sound velocities in the suction and the delivery pipe are
different each other due to the change of state of the air, but the propagation
of disturbance obeys Egs. (1.3) and (1.4) as was the case in the preceding
sections.

Under above assumption it can be considered that the effect of the change of
state of the air on the frequency of surging is composed of the following two
factors. The first is that the sound velocity in the delivery pipe differs from
that in the suction pipe, and the second is that the mode of vibration changes
caused by the discontinuity of density at the blower position. The extents of
influence of the two factors on the frequency depend on both the compression
ratio of the blower and the blower position.

The above statement about the second factor means that the abrupt change
of density at the blower position causes discontinuity of volumetric flow and the
change of mode results alike the case of the pipe-line with discontinuous cross
section (cf. Eq. (1.56)), even if the system has the uniform cross section.

Next we compare the frequency of surging with that of free vibration under
the atmospheric pressure for a pipe-line of uniform cross section with a closed
valve end. Assuming that the compression is adiabatic, we have

cn P’Ii k=12
2 - <pL> , (1.57)
where ¢ is the sound velocity, « is the ratio of specific heat and suffixes Hand L
indicate the values corresponding to delivery and suction pipe respectively. The
ratio of velocities in the suction and the delivery pipe is

2/rk—i
N
o b (CL) (1.58)

Accordingly if the compression ratio of the blrower (pn/p.) is given, cz/cr and
ur/uy are known, and when the suction pipe open to the atmosphere we can put
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cr=cq (ca is the sound velocity in the atmosphere).

The influence of the first factor mentioned above on the frequency of surging
is estimated by Egs. (1.57), under the consideration that because the sound velo-
city is high in the delivery pipe (cx > cr = ¢e), in proportion to this the frequency
of surging becomes high.

Then the influence of the second factor is estimated by Eq. (1.56), considering
that the air column vibrates with the same frequency as the fundamental frequency
of a pipe-line with discontinuous cross section which would give the same discon-
tinuity of the flow velocity as the value of w:/uz obtained by Eq.(1.58). The
results of calculation are shown in Fig. 1.15. In this figure the abscissa is the
compression ratio of the blower, the ordinate is the ratio of the frequency of
surging (denoted by f:), which is calculated in the foregoing manner, to that of
free vibration under the standard state f,=c./4!, and the parameter is the blower
position &.

The dotted lines in the figure are the calculated values obtained taking the
change of the sound velocity alone (i.e. the first factor) into account, the chain
lines are the calculated values which descibe the effect due to discontinuity of
the flow velocity (i.e. the second factor), and the full lines show the combination
of above two effects, where the combination is obtained by multiplication.

As is seen from the dotted lines, the value of fs/f. increases with the com-
pression ratio because the sound velocity also increases with this, and the degree
of influence of this first factor becomes larger with the ratio of the length of
delivery pipe to the total length of the pipe-line (or with decreasing £).

Next, the influence due to the change of mode of vibration reaches its maxi-
mum when the blower is located at the middle of the pipe-line (£=0.5) and f5/fa<1
is always fulfilled.

Accordingly when we take both influences into account, fs/f. becomes larger
or smaller than unity as the case may be, as seen from the full lines (the full
line corresponding to & =0 coincides with the dotted line), in other words the
frequency of surging becomes larger or smaller than that of the free vibration
of air column under the standard state. :

o7

FIG. 1.15. Effect of compression ratio of blower on
frequency of surging.

7. Conclusions
The results obtained from the study in this chapter may be summarized as
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follows:

1. The condition of stability of a small disturbance in a pipe-line with a
blower is equivalent to the condition under which all roots of Eq.(1.51) exist
within the unit circle on the complex plane; namely the condition is that all
Schur’s determinants of Eq. (1.51) have positive values.

2. There is a possibility of amplification of a small disturbance near the
working point of the blower only if the blower has a rising characteristic (5>0)
at the working point. And if the valve at pipe end is full open or entirely closed,
b <0 is the necessary and sufficient condition for stadility, however if the blower
position coincides with a node of any normal mode of vibration of air column,
the small disturbance is not depressed even if the condition 5<0 is satisfied.

3. When the cross section of pipe-line is uniform, and if the condition of
stability is not satisfied, a disturbance builds up into a fixed sustained vibration
independent of its initial form, however the wave form changes along the pipe-
line. The final wave form depends on the blower position.

4. When the cross section of the pipe-line is uniform, the wave form of sur-
ging is periodic in a strict sense. On the other hand, when the pipe-line has a
discontinuous change of cross section, above statement does not hold, but it may
be likely that the surging in such a pipe-line is also observed as a periodic
vibration if the component corresponding to a normal mode is dominant.

5. When the valve at pipe end is entirely closed, the final form of velocity
variation at blower position is rectangular. However, when the valve is open to
a certain degree above statement does not hold.

6. In the pipe-line with a blower of high compression ratio, the frequency of
surging may be higher or lower than that of the free vibration of air column
under the standard state, due to the fact that the state of air in the suction and
the delivery pipe are appreciably different between each other.

Chapter II. Preparative Experiments?®

1. Preliminaries

In the preceding chapter we have treated the surging phenomenon from the
theoretical viewpoint. And when we deduce and solve the differential equtions,
some idealized conditions were used; for instance, passage in the blower was
represented by a point, and pipe friction was neglected.

So to obtain the detailed knowledge of the surging phenomenon we must do
the experimental research. The theory suggests that the condition of stability
of air column is influenced by the shape of the characteristic curve and that
there is a close connection between the free vibration and the surging phenomenon.

So in this chapter, we deal with the problems of the free vibration and
measurement of the characterlstic curves of blowers.

As to the problem of frequency of free vibrating air column, many studies
have been done up to now, but only few experimental data®?*" for the air column
of large scale, such as that of the actual pipe system of the blower, have been
presented.

And as to the problem of damping, Rayleigh and Lamb?® treated it theore-
tically on the standpoint of acaustics, and recently P. Hadlatsch?'% studied the
damping effects of the valve or opening, that is inserted in the pipe-line system,
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on the propagating pressure wave from the thermodynamical viewpoint. . But in
the former theory, the problem is treated under excessively idealized coditions
and the latter theory is too intricate, and experimental data are very few.

In this chapter the probrem of free vibration of air column in the pipe-line
systems are treated experimentally, and especially, the effects of valve or opening
in the pipe systems on the vibration are discussed.

2. Measurement of characteristic curves of blowers
We use two single-stage centrifugal blowers with no guide vane (blower B:

and B;). The types of blowers and dimensions of vane-wheels are summarized
in Table 2.1.
TABLE 2.1. Dimensions of Vane-wheel
O n %)A d@oai"; EA%W ,% [ i“ ) | s
O 0P I 4 oa Ryl I TR Rt RN = Tl 1S I} 0| @
PR L FIEY PECEEICE o) Y-
205 S S EE30YS8E S SEESSTESPEEREECE o
i i :
\ ‘No.1| 20 | 235 l1°68]| 30° | 12 | Backward curved
By 3300 1.5 \ 200 }No.2t 320 ‘ 23.9 25° & 30° 8 | Backward curved
B.| 2400 | 95 1 300 |No.3| 514 ; 23.0 !680.51' 24° | 16 |Straight
| i i i i

Two parts of the characteristic curve of each blower, namely the positive and
negative discharge region, are measured separately. Fig. 2.1 (a) and (b) show
the respective pipe-line systems for the measurement. When we measure the
negative discharge region, a supplemental blower is used to obtain the negative
flow in the blower test. And the rate of negative discharge is controlled by chang-
ing the number of revolutions of the supplemental blower.

nomeler
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FIG. 2.1. Pipe-line systems for measurement of
characteristic curve of blower.

Characteristic curves of the two blowers are shown in Fig. 2.2, in terms of ¢
and ¢ (¢ is non-dimensional coefficient of total pressure and ¢ is that of dis-
charge). These values are calculated by the following formulae,

¢ = Q/nDbup,

¢ = P/ (pup/2) (2.1)
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FIG. 2.2. Characteristic curves of blowers.

where

discharge m?/s,

. diameter of vane-wheel m,

: outlet vane height m,

peripheral velocity of vane-wheel m/s,
: effective total pressure kg/m?

: density of air kg.s?/m"

PSR E S

For comparison, characteristic curves of pumps, given by S. Fujii® and R. Dziallas®®
respectively, are included in the same figure.

3. Experiments on free vibration of air columns
(3-1) Experimental apparatus and methods of experiments

Two types of pipe-lines with an open end are tested, one has a volume at
another end of the pipe-line (Fig. (@)) and the other is without a volume (Fig.
(0)). These are shown in Fig. 2.3. Dimensions of tested pipe-lines are summarized
in Table 2.2. The pipe-lines are constructed by steel pipes (5 in. in diamerer,
0.01335 m? in mean cross sectional area).
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FIG. 2.3. Pipe-lines for measurement of free
vibration of air column.

TABLE 2.2. Dimensions of Pipe-lines

Volume of tank V=390.3! V=127.81 V=01
| Length of | Length of Length of
No. of | s p No. of ? . No. of . .
pipe-line E px(%;l;ne pipe-line pn(plel;gne pipe-line pllzleél)ne
ISE 1.541 II-1 1.698 m-1 | 7.938
I-2 E 3.091 II-2 3.252 II1-2 ] 3.060
I-3 | 4.601 II1-3 4.758 i II1-3 | 4.575

For each pipe-line, many wall-orifices with various diameter are attached to
the tank wall or clossed end and their effects on the vibrating air columns are
examined. Moreover, using the pipe-lines of No. I-3 and III-3, the effects of valve,
which is inserted into the pipe-line, on the vibration are studied. That is, various
thin circular plates with concentric opening (these are regarded as the models of
valves) are attached at various positions of pipe-lines, and effects of these are
studied. The pipe-lines used later for the experiments of surging are also tested.
The types of these pipe-lines are similar to those shown in Fig. 2.3, except that
the blower B; is connected to their open ends, but the blower is not driven in the
experiments of free vibrations. And the lengthes of these pipe-lines are in the
range of 1.5~31.5 m.

To excite the free vibration of air column in the pipe-lines, we use a piston.
That is, the piston is inserted into the pipe from the open end and drawn out
abruptly. For the pipe-lines with the blower, the piston cannot be inserted, so for
such pipe-lines we use the compressor of reciprocal type. Namely, at first the
suction opening of the blower and exit opening of the pipe-line are coverd up by
the rubber plates, and then air is sent into the pipe by the compressor through
the small tap attached to the pipe-wall, and after the pressure rise of the air-
column is attained. the rubber plates are removed abruptly, then the air column
vibrates. The magnitude of pressure amplitude are about 150 kg/m?.

To measure the pressure vibration, a pressure indicator has been made as in
Fig. 2.4. This is connected to a pressure tap on the wall of the pipe-line or the
tank through a short rubber tubing (about 40 mm in length and 10 mm in dia-
meter), and the pressure variation is recorded on bromide paper by an optical
method.
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FIG. 2.4. Pressure indicator for F1G, 2.5. Optical system.

measurement of free vibration.

Fig. 2.5 shows the optical system. In this figure, light source 1 is a lamp
with a linear filament and the image of the filament is focused on the slit 3 by a
condensing lens 2. And by a lens 4 and a cylindrical lens 6 the light beams
through the slit 3 are converged on bromide paper 7 as a point.

A rubber diaphragm with two small mirrors (cf. Fig. 2.4.) vibrates according
to the pressure variation in the pipe-line and the record is taken. Further, the
standard tuning-forks, their period are 1/50 sec. and 1/100 sec. respectively, are
used for the time index in the record.

(3-2) Results of experiments for pipe-lines without blower

At first we show the experimental results as to the frequency. The measured
values of frequency of fundamental mode of vibration of air columns in the pipe-
lines shown in Table 2.2, are summarized in Table 2.3. However these values
correspond to the cases in which the exit openings (or orifices) of pipe-lines are
closed.

TABLE 2.3. Frequency (fundamental mode s=1)

V=390.31 V=127.81 V=01
Length Length Length

of Measured, Calculated of Measured Calculated of Measured Calculated
pipe- value value pipe- value value pipe- value value
line | line line

(m) | (c/s) (c/s) (m) (c/s) (c/s) (m) (c/s) (c/s)
1.541 7.58 8.01 1.698 12.47 13.07 3.060 27.30 27.80
3.091 5.44 5.60 3.252 8.97 9.20 4,575 18.25 18.60
4.601 4.43 4.56 4,758 7.26 7.43 7.938 10.55 10.73

In the above table, the calculated values are obtained by the following for-
mulae originated from acaustics,®

kdetanbsl=AllV, fs=ke/27% (2.2)

where f,: frequency, suffix s: index of the mode of vibration s=1, 3,5, ..., ¢:
velocity of sound. When we obtain the calculated values of frequencies in the
above table, the value of ¢ is taken as 340.67 m/s (this corresponds to 15°C), and
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measured values also are given as their equivalence at 15°C.
From Table 2.3, we can conclude that the values of natural frequencies calcu-
lated on the basis of the acoustic theory hold sufficient accuracy even for a pipe-

line of large scale.
Table 2.4 shows the measured values of fundamental frequencies (s=1) of the

pipe-lines with different exit openings (or orifices).

TABLE 2.4. Effect of Small Opening on Frequency

J V=390.31 | V=0
Diameter of St 1=1541 m | 1=3.091 m | 1=4601 m } 1=3.060 m | [=4.575 m | [=7.938 m

(mm) f (c/s) | (c/s) J (c/s) (c/s) | (c/s) E (c/s)

0 | 7.58 5.44 443 | 213 1825 | 1055
14.8 756 5.51 44219 8% | 1064
20.0 7.56 5.52 448 | 289 | 1874 10.76
25.0 | 7.68 555 | 448 § | ,

30.0 A 549 | 451 f

This table shows that the small exit opening of the pipe-line increases slightly
the frequency of the air column.

Hitherto we have shown the experimental results for the fundamental mode
of vibration, but for the higher mode, experimental data show that the Eq. (2.2)
holds good and small exit opening increases the value of frequency like the case
of fundamental mode.

In the following we show the experimental results of the damping of free vib-
ration. When we increase the area of opening (or orifice) attached at the tank-
wall, the damping of vibration of the fundamental mode increases very fast, but

a W
e ()

e \,WN\/W\
(e)
) 02588,
ooV w T
FIG. 2.6. Damping of vibration due
to small opening at tank ((¢)~ (¢) and
(d), (e) correspond to s=1and s=3 type
respectively).
D?S!Ir s (C)
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FIG. 2.9. Damping of vibration of fundamental mode (V=01).

that of the higher mode increases only gradually.

Some examples of obtained photographs (used pipe-line is No. I-3) are given
in Fig. 2.6, and in these, (a), (») and (¢) are fundamental modes and correspond
to the diameter of orifice 0, 20 and 30 mm respectively. While (d) and (e) are
second modes and corespond to 35 and 45 mm of orifice diameter.

Then in Fig. 2.7~2.9, the results of the measurement of damping for the
fundamental mode are plotted, and the figures correspond to the pipe-lines I, I
and III respectively. For the cases of Fig. 2.7 and Fig. 2.8, the used orifices are
0, 20 and 30 mm in diameter, and for Fig. 2.9, these are 0, 14.8 and 20 mm.
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These figures are obtained by the following method. That is, the values of
the successive double amplitudes %m_1, %m, %m+1, ... (indicated in Fig. 2.6 (a)) are
taken. And a point, which has x, as the value of ordinate and %1 as abscissa,
is located in the figure, and many points are obtained by the same procedure.
When the damping of vibration is viscous (or linear) damping, a line joining these
points is a straight line and passes the origin. Then using the following expression

D = pe” ¥ sin ot (2.3)
(po: inital value of p),

we can define the damping coefficient ¢ as follows;

tan 0 = e*~/® (2.4)

where, 4 is the inclination of the straight line.

By the expression mentioned above, we can easily see the nature of the damp-
ing which the vibrating air column exhibits. And from these figures (for example
Fig. 2.7), we can see that the lines corresponding to the orifice of 0 mm (the pipe
end or tank wall is closed entirely), curve upwards slightly, on the other hand
those corresponding to the pipe-lines with the opening curve downwards.

From this fact, we can presume that the mechanisms of the damping are quite
different between two cases and can conclude that the damping is not viscous.

Further, when the tank-wall has an opening, the value of damping increases
with the area of the opening, and corresponding this, the line moves left in the
figures. This tendency becomes remarkable as the tank volume V becomes smaller.
And if the area of the opening and th length of the pipe-line are fixed (each
figure contains the experimental result for the pipe-line of nearly equal length),
the degree of the damping decreases with the tank volume. Moreover, the upward
curvature of the line corresponding to the orifice of 0 mm, decreaces with increas-
ing value of length ! and decreasing value of tank volume V, and becomes straight.

For the pipe-lines without tank, the closed end is a node for all modes of vib-
ration. And in these cases, when the area of the opening at the pipe end reaches
a certain value, the record of the pressure shows only a very irregular vibration,
and for the larger area of the opening, the vibration which corresponds to the
pipe-line with two open ends arises. For an example, the experimental results are
shown in Table 2.5, and dimensions of the pipe-line used are as follows: [=1.86 m,
A=0.006757 m’. From this table, we can see that the transition of the mode arises
at rather small area of the opening. The meaning of the equivalent damping coe-
fficient written in the table, shall be explined later.

TABLE 2.5. An Example of Transition of Mode of Vibration

. Calculated value Measured value [Equivalent damping
(Areai of opening) . of frequency of frequency coefficient
(Cross sectional area of pipe) (c/s) c/s (rad./s)
0 (one end is closed) 45.79 44.8 2.3
0.06 irregular variation
’ of pressure

0.27 85.5 5.1
0.65 88.3 4.7
1 (both ends are open) 91.57 88.5 3.8
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{3-3) A consideration on damping of free vibration

First, we derive the theoretical formulae describing the damping effect of the
opening on the vibrating air column, by a simple hydraulic consideration, the
calculated values of damping by the formulae are compared with the measured
values.

When the area of an opening is small, the values of the frequency of air column
are nearly equal to those for the case of closed end. So we can write the equa-
tion of the mode of vibration as follows,

Ds= Pssin ksx (2.5)

where, Ps is the maximum amplitude of a pressure variation and ps is the maximum
value of the amplitude at a position =.

Here we assume that the air flows out from the opening during a half period
of vibration, in which the air pressure inside the pipe end (or tank) is higher
than that of outside, and the kinetic energy of air flow ¥ is lost from the vibrat-
ing system, Similarly we assume that in another half period, the air flows into
the pipe through the opening and the kinetic energy of this flow is compensated
by the potential energy of the vibrating air column and this is lost entirely.
Moreover, we adopt the formulae of stationary fiow for the air flow through the
opening, considering that the frequencies of phenomena are rather low.

Under the assumptions mentioned above, and using Eq. (2.5) we obtain the
expression of the lost energy W in a half period of outflow,

72

W= S ¢S, / 2Pssin ost « p sin witdt
0 A p

—e T2
=220 2 gin g PR E sin®? wstdt
0

p “ D)

where, ¢: coefficient of discharge, S;: area of opening, 7T: period of vibration.

And the same equation holds for another half period of inflow. So we obtain the
rate of dissipation energy W: as follows;
S 1 b
[ = )It—
W = Y250 il oy o pi H_%m-( 2 ) ( 4 )

Ve (%)

(2.7)

The potential energy of the air column in the pipe-line V, can be evaluated
as follows. That is, when the pressure rise at a position x in a pipe-line is 4p,
the amount of compression of infinitesimal volume Adx is Adxdp/K: where K is
a bulk modulus. And the potential energy of compressed air of pressure ps is

1

(" (ads/20pap =L 4 pax
V0 P = 2 K‘f)s % .

Integrating this throughout the pipe-line, we obtain the value of V5,
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1 PiA

A
Vo'—‘*é‘ KS Psdx+ ”"(Ps)x I =757 4K0‘ (2.8)
where
AllV
Vos =11+ a7777ys +(ksl)2} 2.9

Writing the pressure amplitude Pssin &/ at tank or pipe end as Fr and insert-
ing it to the equation

ave _ _ '
=W (2.10)

we obtain the equation which describes the rule of damping,

VPr =+ Pro— 0.2782 KS:&(2/0)4(2 gs sin® ksl) (1/ A) ¢ (2.11)

where Py is the initial value of Pr.
When the value AI/V is small and the mode of vibration is fundamental (s=1),
above equation (2.11) is approximately written as

VP =Py — 02782 KSiC(2/0)2(1/ V)t. (2.12)

The results from the above theory, are given in Fig. 2.10, together with the
measured values. In the calculation we adopt ¢=0.6, and the calculated lines from
Eq. (2.11) are shifted to the left by the amounts equal to the difference of the
values of abscissa between the measured lines of damping and the straight line
which passes the origin and makes an angle of 45° with the holizontal axis (this
line means no damping). Here by “measured lines” we mean the measured values
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FI1G. 2.10. Damping of vibation of fundamental mode
(comparison between theoretical values and measured ones).
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of the damping in the same pipe-line but without the opening, eventhough the
mechanism of damping is quite different in this case.

As shown in the figure, the theory holds good. In this experiment, the range
of values Al/V is 0.0527~0.497 and we can say that the damping effect of the
opening can be estimated by Eq. (2.11) with sufficient accuracy for the pipe-lines
in above range.

Further, for a pipe-line without a tank (that is Al/V=w), Eq. (2.11) reduces
to the following form,

VPr = VP — 02782 KSiC(2/ )2/ ADt (2.13)

and this equation gives rather larger values of damping than the measured ones:
the caluculated lines of damping are shown in Fig. 2.9.

From above discussion, the damping effect of a small opening at the pipe end
or tank wall on the vibration of air column is clarified.

And on the basis of this fact, we can infer as follows; a small opening whose
position is near a node of a mode of vibration has a powerful damping effect on
the vibration by the mechanism discussed above (needless to say, if the opening
is large the mode of vibration itself changes), contrary the opening near a loop
has less effect.

Above inference is confirmed by experiments. Some examples are given in
Fig. 2.11. In the figure, the curves III, IV and V are experimental results for the
pipe-line of [=1.825 m, V=390.3 /, and III corresponds to the case of without open-
ing, V to the case in which the opening is on the pipe wall near the open end
(the distance is 7.9 cm and diameter of opening is 33 mm) and IV to the case in
which the opening is at tank wall (diameter of opening is 30 mm). And only the
curve IV, for which the opening is at a node of vibration, shows a large damping
(frequency corresponding to this curve is nearly equal to those of III and V).

In addition, the curve II shows an example of damping of the vibration of
second mode and is obtained under the following conditions; /=13.00 m, V=2390.3 [
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FIG. 2.11. Relation between position of small opening
and damping of vibration,
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and the opening is at tank wall. For this case, the position of the opening is near
a loop of the second mode (sin kZ=0.13) and the form of the curve II is rather
similar to that of a line of damping corresponding to the fundamental mode and
without opening (cf. Fig. 2.6 (d), (e)).

In the next place, we consider the mechanism of damping of air column in
the pipe-line without small opening.

By the usual method in the acaustics, the damping due to the acaustic radi-
ation can be caluculated. In the method, the oscillating volume flow at open end
of pipe is replaced by a simple source, the strength of which is equal to that
volume flow. And by this method we obtain the formulae describing the nature
of damping as below,

PV = Pr’()e_()wlzvojt (2 14)
where,
do = (0sA)?/ (8nKe sin® ksl),
vo= A/(4 Kossin® Bsl)
and ¢: velocity of sound, K: bulk modulus.

Eq. (2.14) gives a viscous damping and can not explain the fact that the line

describing the damping on the %, %s.: plane has upward curvature, and more-
over gives too small a value of damping compared with the measured one; for
an example, tan0=1.0001 (cf. Eq. (2.4)) for the pipe line of /=2 m, V=390.3 /and
A=0.01335 m? and this value is too small.
"~ In conclusion, it can be said that when the frequency of air column is low as
in the case of surging, the damping effect due to the acaustic radiation is negli-
gible and other factor plays an important role. Then we handle the problem by
hydraulic consideration.

" Urnider the assumptions that the energy loss due to the abrupt enlargement
and contraction of air flow occurs at the junction of the pipe and the tank and at
the open end of pipe, and that the vibration is in a normal mode, the rate of
dissipation of vibrating energy W is obtained in the form that WiecP!. The
energy loss due to the pipe friction can also be considered as W;oc Pi. Puting
these relations in Eq. (2.10), we obtain the formula describing the damping of air
column as below,

%;———-—%;)-mt (2.15)
where, »; is a constant depending on the dimensions of pipe-line.

The above equation shows that the damping is not viscous and the line of
damping represented on the %, xn4: plane has upward curvature; this means that
the damping ratio increases with the amplitude of vibration.

As mentioned above, this equation explains the experimental result qualita-
tively, but quantitative agreement with the measurement is not so good, excluding
the case of short pipe-line (about 3 m in length). This discrepancy is attributed
to the fact that the energy loss due to the pipe friction for the vibrating air flow
can not be estimated exacltly. However, from above discussion, we can see that
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when a discontinuity of cross sectional area or accessories which act as resistance
to the air flow (for examples a valve or a blower) exist, most of energy is lost in
the form Wi P And we can also presume that the discontinuous cross sectional
area or the valve has the larger damping effect on the vibrating air column the
nearer is their position to a loop of vibration.

(3-4) Effects of valve, opening and blower on vibrating air column

The effect of the valve, inserted at a point of pipe-line, on the vibrating air
column is examined. The type of the pipe-line is the same as that shown in Fig.
2.3, and the exit opening (orifice) is closed. Three different ratios of the opening
area to the cross sectional area of the pipe-line are used and they are 0.505, 0.249
and 0.1245 (about 1/2, 1/4 and 1/8) respectively. Here as a model of a valve, a
thin iron plate with a opening is used, where this is set in the pipe-line in such
a manner that the opening is concentric with the cross section of the pipe. The
position of the iron plate in the pipe-line and the measured frequency of the air
column are summarized in Table 2.6, where the position of plate is shown by the
distance from the junction of the pipe to the tank for the pipe line with a tank,
and from the closed end for the pipe-line without tank.

From this table, we can see that the opening of valve has no effect on the
frequency and the mode of vibration, when the value of opening ratio is larger
than 0.1.

TABLE 2.6. Opening Ratio and Frequency

1=4.610m V=390.3/ Opening ratio 0.505

Distance from

No. of i i A Frequency
experiment i ]u?gl)on 1 (c/s)
L: 0.031 4.42
L2 1.543 4.42
Ls 3.096 ! 4.41
Ly 4.610 4.42

Same pipe-line Opening ratio 0.249

i

L1 0.031 | 4.43

L, 1.543 | 4.46

Ls 3.096 : 4.44

i

L1 | 0.031 | 441
L, | 1.543 | 4.41
Ls 3.096 ] 4.39
Lo | without iron plate 4.44

1=4575m V=01 Opening ratio 0.505

L 1.511 185
L. 3.061 18.3
Ls 4.575 | 18.1
Lo without iron plate 18.3

Fig. 2.12 shows the results of mearsurement of damping. As seen in this
figure, the damping of vibration occurs in such a manner that the damping ratio
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F1G. 2.12. Damping of vibration due to throttle valve
inserted at a point of pipe-line.

increases with the increased amplitude (as mentioned in preceding section), and
the magnitude of damping increases with the decreased value of opening ratio.
When the opening ratio is fixed, the damping takes the larger value the nearer
its position to a loop of vibration (for a fundamental mode, the open end of the
pipe is the only loop).

Further, in the figure, the L; in (a) shows the larger damping than L. or Ls
and this fact contradict the above discussion. However, this is explained as
follows; that is, for the case of L, the position of plate is very near to the junc-
tion of the pipe to the tank, and air flow diverges in the tank with the smaller
areal ratio than the cases of L, or Ls.

From above consideration, we can presume that, when we controll the dis-
charge by a valve, and if the system is in the surging state, the frequency is not
affected by the opening ratio of the valve until the valve is nearly closed position;
and when this state is attained, the type of surging will change into the type
having a node at the closed valve.

Next, the effect of the blower (not driven) on the vibrating air column is
examined. When a blower is connected to a pipe-line, the passage in the blower
becomes a part of the vibrating air column, then the frequency of such system
differs from the value calculated by Eq. (2.2) considerably.

The effect of the passage of the blower on the frequency of pipe-line can be
represented by introducing the notion of equivalent pipe length (denote this as
41y.  This 41 is defined as follows; with the measured frequency of the pipe-line
with the blower, the value of [ corresponding to that frequency is calculated by
the Eq. (2.2), then the difference between the obtained value of [ and the real
length of the pipe is 4l

The values of 4/ obtained for many pipe-lines (/=1.5~31.5 m) are shown in
Fig. 2.13. Tn this figure, the ahscissa is the frequency and the ordinate is 4I. In
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this experiment, the blower B; is used. It can be seen from above figure that the
value of 4l varies depending on the pipe length and the mode of vibration, but
the degree of variation is not so large. And for blower B, the value of 4/ is in
the range of 70~110 cm and this value is about 1.5~2.4 times as large as the
mean diameter of the volute chamber of the blower.

Fig. 2.14 shows the damping effect of the blower on the vibrating air column
in the pipe-line. And this figure is drawn with the experimental data for the pipe-
line I in Table 2.2. The lines (1), (2) and (3) correspond to the case of pipe-line
without blower. From this figure, we can see that the blower acts as a damping
factor in the manner as the valve; that is the damping ratio increases with the

increased amplitude, and this tendency becomes more remarkable in the case of
a short pipe.
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FI1G. 2.14. Damping effect of blower on vibrating air column.

In Fig. 2.15, the values of equivalent damping coefficient (denote this as ¢)
corresponding to the mode of s=1, which are measured with many different pipe-
_lines without exit opening, are plotted against the amplitude of pressure variation
(measured at tank or closed end). Regarding the damping of the vibrating air
column as viscous one (cf. Egs. (2.3) and (2.4)) we can estimate the equivalent



180 Tadaya Ito

|

T
g - Orifice ngtagdmir
T it fyags | ST e
36 43 Chain lire
o A==z 4 q04Ys |53 Tiododchinlie
3 el PR g
=32 2 L5300 {0l
E £ . 3 12008
w 4 1-33)
28 Ay 2 1t Ty
/ / 4 TR=3151 )
8135
RN /’s‘: [ 11300 T
: : RS e
Iy &Lt
20—H 5 .
A A enaUs LA 1-583%
06 ) /:ﬂ/’;é <% -
: |7 6 4875 14349
Y I e e Y
12 e
N S BT G v
/ /%’ | AL 13
! [ —
08 AT 38 %'_‘S(
&1 | =% T
0.4 =
0 55 40 60 80 100 120 140 160

tmplitude Yo
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various pipe-lines.

damping coefficient ¢ from the inclination of the line on the %m, %m.: plane which
passes through the point (%m, %m+1) and the origin of the coordinates. The values
of ¢ obtained in this manner are plotted against the value of abscissa (%m+ Xma1) /4.

Further, the frequencies are also shown in the figure. From this figure, it
can be seen that the value of ¢ decreases with decreased frequency (or in other
words, increased pipe length) in most cases.

4. Conclusions

In this chapter, as a preparation for the study on the surging phenomenon,
we have done the measurement of the characteristic curve of the blower, and the
study on the free vibration of air column. The obtained results are summarized
as follows:

1. The values of natural frequencies calculated on the basis of the acaustic
theory hold sufficient accuracy even for a pipe-line of large scale.

2. An opening at the end of pipe-line has little effect on the frequency of vib-
rating air column, if its area is not so large that it must be regarded as an open
end.

3. When the amplitude of pressure variation is not so large, a valve inserted
into the pipe has little effect on the frequency even if the opening ratio is as low
as 0.1.

4. The value of equivalent pipe length 4/ of a blower is nearly constant in
spite of the variation of the pipe length and the mode of vibration, and it is about
1.5~2.4 times as large as the mean diameter of the volute chamber of the blower.

5. When either the valve or the blower is in the pipe-line, the damping ratio
of vibration of air column increases with the amplitude.

6. The damping effect of an opening on any mode of vibration of air column
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is the greatest, when its position coincides with a node of the mode, and this fact
can be utilized when we contrive the scheme for preventing the surging.

Chapter III. Experiments on Surging: Blower is
Connected at Suction End of Pipe-Line®® %

1. Preliminaries

In the preceding chapter we have shown the results of preparative experi-
ments. And in this chapter we describe the results of experiments on the surging
phenomenon.

On the surging, several researches have been conducted up to the present.
However it is not yet clarified the relation between the actual state in which the
surging occurs and the dimensions of pipe-line. So in the studies stated in the
present chapter, we pay special attention to this question.

2. Experimental apparatus and methods of experiments

The blower By, shown in Table 2.1, is chiefly used in the experiments.

The pipe-lines (5 in. in diameter) are shown in Fig. 3.1. By varying pipe
lengths 7, tank volumes V, revolutions of vane-wheel n» and relative positions of
blower in the pipe-line £/, the effects of these factors on the surging phenomenon
have been examined. However, the detailed discussion on the effects of the last
factor will be given in the next chapter.

Orifice

NE

Tank V

Sing

F1G, 3.1. Pipe-line.

Three series of pipe-lines are examined, and these correspond to the tank
volume V=0 (one end of the pipe is directly closed), V=127.8 7 and V'=390.3 [
respectively and for each tank volume pipe length is varied in the range [=9.91
~20.98 m, [=3.32~31.51 m and /=1.825~24.45 m.

Because the blower is driven by a D.C. motor, the number of revolutions »n
can be changed at any time from 900 to 5000 r.p.m.

Discharge is measured by wall-orifices, and is controlled by diameter of orifices.
Since the position of exit opening (or orifice) has direct effect on the surging,
which will be discussed later, two positions of an orifice are examined. One is
position F and the other is S as shown in Fig. 3.1.

To investigate the surging phenomenon, the pressure variation and the velo-
city variation of air column in the pipe-line must be measured. The pressure
indicator for pressure measurement has been made as shown in Fig.3.2. This is
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FIG. 3.2. Pressure indicator.

connected to a pressure tap on the wall of the pipe-line or to the tank through a
short rubber tubing (about 40 mm in length and 10 mm in diameter). The record
is obtained on bromide paper by the same optical system as mentioned in the pre-
ceding chapter.

The pressure in the balancing chamber of this indicator balances the static
pressure of the blower through a balancing cock which is closed when the record
is taken. This indicator can take sufficiently high frequency (above 500 c/s) as
compared with the frequency of the surging. And the swing of the light beam
on the bromide paper is exactly proportional to the pressure variation.

Velocity variation is measured by a hot wire anemometer. Output voltage of
this anemometer amplified by a D.C. amplifier is recorded by an electro-magnetic
oscillograph. The circuit is shown in Fig. 3.3. For the measuremsnt, the constant
current method is adopted. A large resistance Ry (about 120 Q) is inserted in
series in order to make the current variation of the circuit induced by the resis-
tance variation of hot wire H (5 mm in length and 3/100 mm in diameter) negli-
giblly small.  Consequently it is expected that the current in hot wire is held
constant. The circuit constracted by R, and E, is to cancel the mean value of
voltage drop of hot wire. Only-the variation of valtage drop due to the resistance

variation, which corresponds to the pulsation of air flow, is amplified by the D.C.
amplifier.

i

Electromagnetic 1 Direct current =36"Volt
oscitlograph o~ amplifier |- >—L

FIG. 3.3. Electric circuit for measurement of velocity variation.

3. Results of experiments
(3-1) Feature of surging

In order to know the feature of vibrating air column in the surging state, the
amplitudes of pressure variation are measured at several points along the pipe-
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line. The results are shown in Figs. 3.4, by dotted lines. Here the abscissa indi-
cates the distance between the position where measurement is made and the junc-
tion of the pipe-line and the blower (in the case of (3) only, the origin of the
abscissa is taken at the suction end of pipe-line), and the ordinate shows the non-
dimensional amplitude expressed as the ratio to its maximum value. In this figure,
the graphs (1) and (2) are results corresponding to two positions of exit opening
or orifice (position S for (1) and position F for (2)) in the pipe-line of [=24.45 m,
V=390.3 I, A=0.01335 m? £=0 (n=3645 r.p.m. for (1), n=4640 r.p.m. for (2) and
non-dimensional discharge ¢=0.023 for both).

10
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2 4 6 10 17
Blower
) FIG. 3.4. Varation of pressure amplitude of

surging along pipe-line.

The graph (3) corresponds to the case of [=12.02 m, V=127.8 I, £=0.127 and
orifice position S. In this case the blower has a suction pipe and the phase of
the pressure variation in the suction side is nearly equal to that in the delivery
side.

For comparison, the curves representing the normal modes of free vibration
are shown by full lines in each graph of Fig. 3.4. The value for these curves are
calculated by Egs. (2.2) and (2.5) shown in preceding chapter, that is:

ps= Pssin ksx, ki etan kl=AljV (3.1)

where, suffix s, an odd integer, is the index of normal mode, ps is the magnitude
of pressure variation at position x, and P, is the maximum value of ps.

From these graphs, we can conclude that the variation of amplitude along
the pipe-line resembles that of a normal mode of free vibration determined only
by the boundary conditions and dimensions of pipe-line.

Some wave forms obtained for (1) in Fig. 3.4 are shown in Fig. 3.5. Here
x=5.946 m for (a), x=11.44 m for (b), x=17.00 m for (¢) and x=24.54 m for (d).
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From this figure we can see the fact that the wave form changes along the
pipe-line (as discussed in Chapter I) but a component which corresponds to a .
normal mode (here s=1) is dominant as mentioned above.

Other examples of oscillograms are shown in Fig. 3.6. In this figure, (@) and
(b), which correspond to the cases of (1) and (2) of Fig. 3.4 respectively, show
the pressure variations in the tank and at the position of its maximum value re-
spectively. The wave form is nearly sinusoidal, especially in the case where the
type of surging is s=1. Fig. 3.6 (¢) shows simultaneous indication of pressure
and velocity in a pipe-line. The difference of phase angle between the velocity
and the pressure is about 90°, resembling to the case of standing wave in free
vibration, although in this photographic record, the wave form of velocity is dis-
torted by a non-linear characteristic of the hot wire anemometer.

Using such a record as (¢), we can describe a locus of the point representing
the instantaneous state of air column at the measured position, on the ¢, ¢ coordi-
nates plane; and this locus is a closed curve and changes its shape and dimension
depending on the measured position.

(3-2) Frequency of surging

The frequency of surging changes with dimensions of the pipe-line. The values
of frequencies for many different cases, are summarized in Table 3.1, and the
corresponding natural frequencies are also shown in the same table for comparison.
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TABLE 3.1. Frequency of Surging and Natural Frequency (15°C)

185

s Number of
i Orifice . Frequency of Natural
Cg;gé?ﬁﬁ:ngf diameter rggogi‘gé? :rs surging frequency
(mm) (r.p.m.) (c/s) (c/s)
33 3150 5.13 5.73
" 3645 5.14
" 4140 5.17
[=6.69 m n 4640 5.16
;’:0127-8 ! 43 3395 5.23 5.79
Orifice position S " sao0 >
Type of surging s=1 53 3645 5'30
Vane-wheel No. 1 )
1 4140 i 5.31
" 4390 5.30
0 | 5.54
1=10.94m 33 3890 4,11 4,43
Other conditions are the same as above 43 3395 4,13 4.38
Vane-wheel No. 1 53 3890 4.15 4.43
Vane-wheel No. 2 33 3395 4,08 4.38
[=2441m ; o |
Other ccnditions are the same as above gg 38"”0 | gﬁ gg
Vane-wheel No. 1 | | . -
1=31.51m 33 3645 i 1.96 { 2.00
Other conditions are the same as above 53 " ] 1.96 ! 2.01
l =20.98 m : T
V=01 33 3890 i 3.72 3.92
Other conditions are the same as above
1=5.157 m
23.51 4680 3.60 3.99
Mt 2951 " 3,63
Orifice position F 2?85 x ggg
Vane-wheel No. 1 o ' 3.93
Type of surging s=1 i :
1=24.45m 33 | 3235 6.80 7.24
V' =390.31 n 4440 6.96
§=0 " 4680 6.92
Orifice position F 29.51 " 7.00
Vane-wheel No. 1 0 7.13
Type of surging s=3
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These natural frequencies are measured under the condition that the blower is not
driven. Working discharge of the blower corresponding to the orifice diameter of
0 and 53 mm (shown in Table 3.1) is ¢=0 and ¢=0.066 respectively in non-dimen-
sional representation. When orifice diameter is zero, namely the discharge is zero,
the surging does not occur, so for this case only the natural frequency is shown
in the table.

As we can see in Table 3.1, the frequency of surging is almost independent
of the number of revolutions and the type of vane-wheel, but determined only by
dimensions and boundary conditions of the pipe-line. The frequency of surging is
somewhat (2~10% in the present experiment) smaller than the natural frequency.

(3-3) Effects of working discharge and number of reveolutions of blower on

surging

When the number of revolutions # is small, as the discharge of the blower is
increased from cut-off condition, the state of air flow in the pipe-line becomes only
slightely unstable in the range of d¢/de>0. When z is larger than a certain value,
however the surging clearly occurs in a part of the same range of ¢, and the
amplitude of surging varies with the discharge and takes a maximum value at a
certain point in this range (but for the blower B, the feature of variation is
different to a certain extent; in this case the amplitude of surging is muximum
at cut-off and decreases with the value of @).

An example is shown in Fig. 3.7. Conditions of this experiment are as follows:
[=13.00 m, V=127.8 /, exit opening (orifice) S, and static pressure of the blower
at cut-off are 269, 209 and 126 kg/m? corresponding to three blower speeds 7 =3890,
3395 and 3650 r.p.m. respectively.
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F1G. 3.7. Effects of rotating speed and working
discharge of blower on surging.

Amplitude

In the figure, the amplitude of surging (the value at tank) is plotted against
the non-dimensional discharge ¢. Two groups of curves correspond to the cases
for vane-wheel No. 1 and No. 2 respectively. Values of parameter n are also
shown in the figure. The type of the surging corresponds to the normal mode
s=1, for all cases.

From this figure, we can conclude that both the surging range of discharge
and the amplitude increase with 7.
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The amplitudes of pressure variation at tank or closed end of pipe are plotted
against # in Fig. 3.8. Here the results for six different pipe-lines are shown, where
curves are drawn from the point at which the amplitude of surging becomes nearly
constant. For all curves, the orifice position is S and the type of surging is s=1.
Full line and chain line in this figure correspond to the cases ¢ =0.0225 and ¢ =
0.039 respectively.

From this figure, we can say that in cases of orifice position S, when the
volume of tank is constant, the surging is apt to be built up with the length of
pipe-line, and the larger the value of d¢/dg, the more the surging is apt to occur;
the value of dy/dg at ¢=0.025 is larger than the value at ¢=0.039 for this blower,

as shown in Fig. 2.2.
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FIG. 3.8. Relation between rotating speed of blower
and pressure amplitude of surging.

(3-4) Effects of length of pipe-line on surging

The relation between the amplitude of pressure variation and the length of
the pipe-line is investigated with five pipe-lines of different length but with the
same tank (V=2390.3 I). In this experiment, the blower is connected to one end
of the pipe-line (£=0) and the number of revolutions of blower # is kept constant.

The state of surging varies with the length of pipe-line, and the features of
variation are entirely different for the two cases of orifice position Sand F. These
features will be discussed below separately.

Fig. 3.9 shows the result corresponding to the case of orifice position S, where
7=3475 r.p.m. and the static pressure of the blower is about 217 kg/m* at cut-off.
Here the abscissa is non-dimensional discharge ¢ and the ordinate is the amplitude
of pressure variation at the tank. In this case, the component of pressure vari-
ation corresponding to the mode s=1 is dominant and that corresponding to s=3
is very small and unstable (the type of surging is s=1).

As seen in this figure, the amplitude of pressure variation increases with in-
crease of pipe length, and the surging range of discharge also slightly increases

with it.
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FIG. 3.9. Relation between pipe length and pressure amplitude of surging
(orifice position S and type of surging s=1).

The results obtained for the cases of orifice position F are shown in Fig. 3.10
(@), (b) and Fig. 3.11, where the value of # is 4680 r.p.m. and the static pressure
of the blower is about 385 kg/m? at cut-off. In these figures, both components of
pressure variation, which corresponding to s=1 and s=3, are shown separately.
Values of amplitudes plotted in Fig. 3.10 are measured at the tank, and those in
Fig. 3.11 are at the position corresponding to the node of s=3 type.
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FIG. 3.10. Relation between pipe length and pressure amplitude of surging
V (orifice position F and type of surging s=1).
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FIG. 3.11. Relation between pipe length and pressure amplitude of surging
(orifice position F and type of surging s=3).
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We can see from Fig. 3.10 and Fig. 3.11, the surging of the type s=1 is
dominant when the length of pipe-line is short, but as the length of pipe-line
increases, the type s=1 decreases and the type s=3 becomes dominant. But in
the cases where the type s=3 is dominant, the type s=1 is dominant for very
small discharge region of the blower.

As seen in these figures, the surging range of discharge and the amplitude of
surging are remarkably smaller than those of s=1 in Fig. 3.9.

(3-5) Effects of volume of tank on surging

To investigate the effect of the volume of tank on the surging, two cases of
valume (V=127.8 [ and V=0 ]) are examined in addition to the case of V=390.3
! which was discussed in the preceding section. For the case of V=127.8 [, the
length of pipe-line / is changed from 3.32 to 31.51 m and # from 1500 to 5000 r.p.m.,
and for the case of V=0 [, [ from 9.91 to 20.98 m and » from 1500 to 5000 r.p.m.

When the exit opening is at the end of pipe-line (orifice position F), sustained
surging does not occur for all cases, and the air flow fluctuates only slightly in
the range of discharge in which dy/de>0. From the above results and the result
which was shown in the preceding section, it can be seen that the surging is apt
to build up with increased volume of tank for the case of orifice position F.

For the case of orifice position S, the surging occurs for any pipe-line when
n is larger than a certain value which depends on the tank volume and other
conditions, and the type of this surging is always s=1.

An example of the results is shown in Fig. 3.12, where the amplitude of pre-
ssure variation (at tank) is plotted against » for various values of parameter ¢.
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F1G. 3.12, Relation between tank volume and pressure
amplitude of surging.

From these results, it can be seen that the surging occurs at low speed for
larger tank volume, but its amplitude increases more rapidly with increased speed
for smaller tank volume.

4. Considerations on results of experiments
(4-1) Variation of discharge in surging state
So far we have treated mainly the pressure variation of surging. Now, we

consider the discharge variation at the position of the blower.
Several examples of curves, which indicate the relation between the amplitude
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of discharge variation and the working discharge of the blower, are shown in Fig.
3.13, where both quantities are expressed in terms of non-dimensional quantity ¢.
These curves are drawn using the results of experiments with the vane-wheel No.
1 in Fig. 3.7, and the results for the pipe-line of /=24.45 m in Fig. 3.11, on the
assumption that the relation between the pressure variation and the velocity vari-
ation in the surging state is same as that in the free vibration (cf. Fig. 3.4 (@)
and Eq. (3.1)).
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FIG. 3.13. Relation between working discharge of blower
and amplitude of discharge variation.

Straight lines (1), (2) and (3) in Fig. 3.13 are drawn for easier appreciation
of the graph: that is, the line (3) indicates the position of working discharge at
which the blower shows a maximum head, the lines (1) and (2) make an angle
of 45° with the horizontal axis, and when the curves exist in the domain above
the line (1), it show that backward air flow occurs in a certain duration in one
cycle of the surging and when they exist in the domain above the line (2), it
shows that the discharge enters in the range of d¢/de <0 beyond the point of
maximum head.

From this figure, we can see that the state of surging changes with the
number of revolutions », from the state with no backward flow to the state with
violent backward flow, and that the characteristic of the blower plays a more
important role in determining the amplitude of the surging with an increased =
(in the range of discharge of descending characteristic d¢/dg<0, the blower has
a damping effect on the vibration as discussed in Chapter I).

(4-2) Effects of dimensions of pipe-line on surging

In Section (3-4), it has been shown that the state of the surging changes with
! in quite different ways for the two cases of orifice position ¥ and S.

In this section we explain this fact. Fig. 3.14 shows the relation between the
values of the dissipation energy per unit time in the normal mode of free vibration
(denote this as W:) and the length of pipe-line. The values of W; are calculated
from the results of experiments on the damping of the free vibration of air
columns, which have been shown in Chapter II, and the ordinate in this figure is
not the absolute value of the dissipation energy but its ratio to the value of the
shortest one in a group of pipe-lines with the same tank.
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F1G. 3.14. Relation between energy dissipation and pipe length.

The curves I, II and III in Fig. 3.14 correspond to the cases of Section (3-4)
(V=390.3 1), and the curve I is the case for orifice position F and the type of
surging s=1 (orifice diameter is 30 mm, pressure amplitude at tank is 100 kg/m?),
the curve III, for orifice position F and s=3 (measured values for orifice diameter
20 mm are used for calculation), and the curve II, for orifice position S and s=1
(pressure amplitude at tank is 50 kg/m?).

In the case of the curve I only, W increases rapidly with [ (it is worthy of
notice that, in this case the position of the exit opening is at the node of vib-
ration).

From this fact it can be considered that to elongate the pipe-line is more
disadvantageous in case I for the occurence of the surging than in other cases.

As we have mentioned already, experimental results show that, for the case
I, it becomes more difficult for the surging to occur with increased I but for the
cases IT and I1I, it is still apt to occur.

Therefore, we can conclude that the feature, in which the surging varies with
1, is considerably influenced by the feature, in which W: varies with L

In addition, the curve IV in Fig. 3.14 corresponds to the case of V=127.8 |
and orifice position S. When the value of ! is small, this curve declines as the
curve II does, and the pressure amplitude of surging becomes large with [ (cf.
Fig. 3.8) again resembling to the case of curve II.

In conclusion, it can be said that the feature of the surging is determined by
the mutual relation between the dimensions of the pipe-line and its accessories
{exit opening or valve), because the dimensions of the pipe-line determine the
normal modes of vibration and an accessory of the pipe-line has different damp-
ing effect on different mode of vibration (cf. Fig. 3.14) as mentioned in preceding
chapter.

5. Conclusions

The results obtained from this experiment may be summarized as follows:

1. In the surging state, the air column in a pipe-line vibrates in a certain
manner resembling to that of a normal mode of free vibration.

2. The more rapid the revolution of a blower becomes, the more violent the
surging grows, and the more important role the characteristic of a blower plays
in determining the amplitude of the surging.

3. When the length and area of a cross section of the pipe-line are fixed, the
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surging is apt to build up according to the volume of tank.

4. The feature of the surging is considerably influenced by the conditions
under which the energy is dissipated from vibrating air column through exit
opening.

5. The surging usually occurs in the type corresponding to the fundamental
mode of free vibration, but when the conditions of the pipe-line (ie. dimensions
of pipe-line and position of exit opening) are such that it has large damping effect
on the vibration of this mode, the surging occurs in a type corresponding to
higher mode.

Chapter IV. On Effects of Position of Blower
in the Pipe-Line on Surgiug?®’

1. Preliminaries

In the preceding chapter, we have clarified the feature of surging, the fre-
quency, the relation between the amplitude of surging and number of revolutions
of the blower, and so on. And in this chapter, we examine the effect of the
blower position in the pipe-line on the surging.

2. Experimental apparatus and methods of experiment
The blower B, shown in Table 2.1, is used in this experiment, with No. 1

TABLE 4.1. Dimensions of Pipe-line, Blower Position and Position
at which Measurement is Made

‘e Position at which measurement
Blower position is made
Pipe-line Length of
& suction pipe Remarks *p Remarks
(m) (m)
1=5.157Tm 0 0 loop of all modes tank | node of s=1
I V=2390.31 0 0 2.30 nede of s=3
n=4680 r.p.m. | 0.293 1.51 tank | node of s=1
Orifice F 0.654 3.37 tank | node of s=1
0 0 loop of all modes | tank | node of s=1
0 0 11.44 | node of s=3
0.1348 3.29 tank | node of s=1
0.1348 3.29 1144 | nede of s=3
0.22701 5.55 loop of s=9 tank | node of s=1
1=2445m 0.2270! 5.55 11.50 | nobe of s=3
I V=390.31 0.2270 5.55 9.03 | node of =9
n=4680 r.p.m. | 0.3335 8.15 loop of s=7 tank | node of s=1
Orifice F 0.3335 8.15 11.63 | node of s=3, 7
0.5015 12.26 loop of s=5 tank | node of s=1
0.5015 12.26 5.95 | node of s=5(suction side)
0.5015 12.26 18.19 | node of s=5(delivery side)
0.9254 22.71 loop of s=3 tank | node of s=1
0.9254 22.71 11.35 | node of s=3
1=24.45 m ‘o 0 | loop of all modes | tank | node of s=1
V=390.3 [ 0.1348 3.29 tank | node of s=1
IIT n—4680 * p.m 0.2270 5.55 loop of s=9 tank | node of s=1
Orifice S. T 10.3335 8.15 loop of s=7 tank | node of s=1
0.9254 2271 | loop of s=3 tank | nodeof s=1
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TABLE 4.1. (Continued)

cns Position at which measurement

Blower position is made

Pipe-line [Length of o |

£ lsuction pipe Remarks » Remarks
3 (m) (m)

0 0 loop of all modes | tank | node of s=1
0 0 10.24 | node of =3
0.1884 3.77 tank | node of s=1
1=20.04 m 0.1884 3.77 9.76 | node of s=3
v V=960.61 0.5170 10.35 loop of s=5 tank | nodeof s=1
n=4430r.p.m. 05170  10.35 954 | node of s=3
Orifice F 05170  10.35 ! £ 53 node of s=5
0.9795  19.19 00p ot 5= tank | node of s=1
0.9795 19.19 10.03 | node of s=3
0.9795 19.19 5.39 | node of s=5

vane-wheel. The pipe-line has the same form as that shown in Fig. 3.1. The
volumes of tank at the end of pipe-line are V=390.3 / and V=960.6 I

In this experiment, the relation between the pressure amplitude and the dis-
charge is measured for many positions of blower in a pipe-line, under the con-
ditions of constant pipe-length and of constant number of revolutions of the blower.

And the pressure amplitude of air column and the discharge of the blower
are measured by the same way mentioned in preceding chapter.

In Table 4.1, the dimensions of pipe-lines, the index of the blower position in
the pipe-line, the position at which the measurement is made (denote this as zx,
this %, is measured from a suction end (x=0) of the pipe-line) are summarized.
The values of ¢ and x, are selected under following consideration. By the experi-
ments of preceding chapter, it is confirmed that in the surging state, the ampli-
tude of pressure and velocity variation varies along the pipe-line in a manner
resembling that of a normal mode. So first we calculate the normal modes of free
vibration by the following formulae (cf. Eq. (2.2) and Eq. (2.5)),

ps= Pssin ksx,
vs= (Ps/pc) COS RsX = Vmmax COS EsX

where,

Bsl-tanksd = Al/V, ws= ks =2nfs, (4.1)

P, : maximum value of pressure amplitude,
ps . pressure amplitude at x,
Vmas: maximum value of velocity amplitude,
vs: velocity amplitude at x,
. velocity of sound,
A : area of cross section of pipe-line (here, A = 0.01335 m?),
. index of normal mode of vibration and an odd integer
when we write ks = asst/(21).

o

%)

In Fig. 4.1, the variations of pressure amplitude along the pipe-line are shown
taking the value of P as unit, for the pipe-lines II, III and IV shown in the Table
41; here (a) and (b) correspond to the pipe-line II, III and IV respectively, and
for the former s=1~9, and for the latter s=1~5,
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FIG. 4.1. Variation of pressure amplitude along
pipe-line for various normal modes.

The discussion in Chapter I shows that, when the position of the blower in
a pipe-line coincides with a node of a mode of vibration, the blower does not
affect the vibration of that mode. Then from the contrast between a loop and a
node as physical phenomena, we can presume that the blower have a drastic
effect on the vibrating air column, when it is situated near a loop. So the value
of £ is selected, as far as possible, so that it coincides with a loop of a mode of
vibration, and x, corresponds a node.

The damping effect of the blower on the vibrating air columm is also
measured for each blower position, to clarify the causes which affect the variation
of the surging due to the blower position.

3. Results of experiments

Experimental result for the pipe-line I in Table 4.1, is shown in Fig. 4.2. In
this figure the abscissa is the working discharge of the blower and the ordinate
is the pressure amplitude of surging, and the parameter is &.

In this experiment the type of surging occured is s=1. This is known from
the following observation. The pressure amplitude shows its maximum value at
tank, which corresponds to a fundamental mode (s=1), and not only the wave
form is nearly sinusoidal but also the frequency of the wave is nearly equal to
the free vibration of s=1 type. Moreover the amplitude of component of vib-
ration, which corresponds to s=3 type is nealy zero, even at the measuring point
corresponding to a node of that mode; the position of the node is near the middle
of the pipe-line,
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FIG. 4.2. Relation between pressure amplitude of surging
and blower position in pipe-line {pipe-line I).

From this figure, it can be seen that the surging of s=1 type is most violent
when the blower is connected to the end of the pipe-line (£=0), and less violent
it becomes the nearer the blower position is to the tank. And the static pressure
of the blower in the cut-off state, is about 381 kg/m?®.

Fig. 4.3 shows the experimental result for the pipe-line II in Table 4.1. Here
the type of surging is s=3. As seen in the figure, the feature of surging remark-
ably changes depending on the value of £ That is, the surging occurs most
violently when £=0, but in £=0.277, the vibration of air column almost disappers
and this state of rather stable flow continues to the value of £=0.5, and beyond
this value the fluctuation of flow occurs again and increases with the value of g,
and the flow falls into the surging state and at £=0.925 the most violent surging
takes place again (where the most part of the pipe-line is a suction pipe). In
this figure, all plotted values of the pressure amplitude are those measured at a
point of pipe-line corresponding to a node of s=3 type. And in the range of very
small discharge (¢%0.01), the surging of s=1 type is dominant, and for that range,
the values of pressure amplitude of s=1 type measured at tank are plotted. And
the static pressure of the blower is about 381 kg/m? at cut-off state.
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FIG. 4.3. Relation between pressure amplitude of surging
and blower position in pipe-line (pipe-line IT).
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The frequency of the surging of s=3 type is almost independent of the value
of £ This fact is shown in Table 4.2, and for comparison, the measured value
and the calculated value by the formula (4.1) are given in the same table. In
this table, the number of revolutions of the blower for each value of £ is not kept
constant, but it has little effect on the frequency of the surging as shown in
Table 4.3. These experimental facts mentioned above support the conclusions in
chapter I.

TABLE 4.2. Relation Between Blower Position and Frequency of Surging
(Pipe-line is II, s=3 type, diameter of exit opening is
33 mm and values correspond to 15°C)

[ Number of
Blower position| Frequency of surging | revolutions of Natural frequency
blower
® (c/s) (r.p.m.) (c/s)
0 a 6.93 ' 4390
8;3% ggg { 3228 measured value=7.24
0.3335 surging does not oceur | 4680 calculated value=7.50
0.5015 surging does not occur } 4680

TABLE 4.3. Relation Between Number of Revolutions of
Blower and Frequency of Surging

(s=3 type, diameter of exit opening is 33 mm, £=0.1348
and values correspond to 15° C)

Number of revolutions of blower Frequency of surging
(r.p.m.) (c/s)
3235 6.80
4440 6.96
4680 6.92

Moreover, in this experiment the surging does not occur in the type of s=1
(excluding in the range of very small discharge) and s=5, but in the case of £=
0.5015, where the blower position almost coincides with a loop of the s=5 mode,
the observation of pressure fluctuation at a point in the pipe-line corresponding
to a node of that mode shows that the surging of s=5 type continues for a cer-
tain dulation, but it is unstable. From the results of this experiment, we can
say in general that the surging corresponding to much higher mode is difficult
to occur.

We examined also the relation between the pressure amplitude of surging
and the number of revolutions of the blower. In this experiment, the value of
non-dimensional discharge ¢ is kept constant (¢=0.025). The results are shown
in Fig. 4.4. In this figure the abscissa is the number of revolutions of the blower,
and the ordinate is the pressure amplitude of surging and the parameter is §. From
this figure, it can be seen that the feature of the variation of the surging ampli-
tude depending on the value of £ is not affected by the number of revolutions of
the blower #,
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FiG. 4. 4. Effect of rotating speed of blower on relation between
pressure amplitude and blower position in pipe-line (pipe-line II).

Fig. 4.5 shows the result of experiment for the pipe-line III in Table 4.1. In
this experiment, the exit opening is attached at the pipe-wall near the outlet of
the blower (at S in Fig. 3.1), so its position moves towards the tank, with the
change of the blower position. The type of surging occured is s=1.
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FiG. 4.5. Relation between pressure amplitude of surging
and blower position in pipe-line (pipe-line III).

In Chapter II, we have shown that the damping effect of exit opening on the
vibrating air column of any mode is greatest when its position is at a node of
the mode, whereas it is least at a loop. In this pipe-line, £=0 is the case in which
the exit opening position is near a loop of the mode s=1, and, in spite of the low
speed of the blower, the surging zone and pressure amplitude is larger than those
in the cases of pipe-lines I and II. And both the surging zone and pressure ampli-
tude decrease with the increasing value of £, as is shown in Fig. 4.5. This
tendency is similar to that for the pipe-line I, but the tendency is much more
remarkable in this case. This experimental result may be attributed to the fact
that the decrease of the amplitude is also induced by the increase of damping
effect due to the approach of the exit opening to a node of vibration, in addition
to the factors considered in the case of pipe-line 1.

Moreover in this experiment, the static pressure of the blower is about 217
kg/m? at cut-off state. And this experimental result supports the conclusion con-
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cerning the problem of the prevention of surging, mentioned in Chapter II, Section
4.

In Table 4.4 the relation between the blower position & and the frequency
is shown. The table also containes the measured and calculated values of fre-
quency of free vibration. From the record of the free vibration, it is clarified
that, when £=0, the period of vibration is nearly independent of the amplitude,
but when £=x0, it decreases with the decreasing amplitude. From this fact, we
can presume that, in the pipe-line with the exit opening at the midway of the
pipe-line, the mode of vibrating air column approaches gradually that of the
pipe-line which has an open end at the position of the exit, with the decreas-
ing amplitude. This tendency becomes more remarkable with shorter distance
of exit position to the tank. The measured frequency listed in Table 4.4 is
obtained by averaging the period of the photographic record during the time
interval in which the amplitude of the damped pressure wave stay within the
range from 200 to 150 kg/m?. Then in the table, the frequency increases with
the value of & On the other hand, in spite of the change of the pressure
amplitude with the increase of £, the frequency of surging is nearly constant.
That is to say, when the surging once occurs the air column vibrates in the
same mode independent of the position of exit opening. Moreover, the all
values given in the table are those for the exit diameter 33 mm.

TABLE 4.4. Relation Belween Blower Position and Frequency of Surging
(Pipe-line is III, diameter of exit opening is 33 mm
and values correspond to 15°C)

Blower position Frequency of surging i Natural frequency
(¢/s) (c/s)
0 1.69 1.73
0.1348 1.67 i 1.80
0.2270 1.69 | 1.88
0.3335 1.68 ! 2.11
0.9254 surging does not occur 5

calculated vaiue=1.784

Fig. 4.6 shows the relation between the amplitude of surging and the num-
ber of revolutions of blower #n, where ¢=0.025. As seen in the figure, for &=
0.9254, the surging of s=3 type occurs (when the value of n is large) in spite
of the fact that the surging of any type does not occurs for 7 =3475 r.p.m.
(cf. Fig. 4.5). This result may be explained as follows; for £=0.9254, the po-
sition of exit opening is near to a loop of the mode of s=3, and damping
effect for that mode is very small, then the condition of self-excitation for that
mode becomes to be satisfied first with the increased n. Further in the above
figure, the plotted values of amplitude are measured in the tank, and the maxi-
mum value of the amplitude of s=3 type is about four times as large as the
plotted value (as seen in Fig. 4.1 (a)). In the following, the experimental re-
sults for the pipe- line IV in Table 4.1 are shown in Fig. 4.7 (a@)~(d). For
this case, when £ is fixed, a type of surging changes into another type at a
certain value of discharge. And for each value of &, the pressure amplitudes
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of s=1 and s=3 type are plotted in the same figure, where the former is
measured at the tank and latter, at a node of s=3 type respectively. Compar-
ing (@)~(d), we can see that the magnitude of surging amplitude of each type
varies with the value of £ in the same manner as the preceding examples.
The feature of the change of the type of surging with the discharge is also
observed and the result is as follows. Around the transition discharge, there
is a period during which only one of the two types is dominant followed by
another period in which two types coexist temporarily before either of them
overcomes the other and this sort of transition repeats irregularly.

Further, in this experiment for the pipe-line IV, the static pressure of
blower is about 337 kg/m? in the cut-off state ©=0.

4. Considerations on results of experiments
(4-1) Relation between blower position and amplitude of surging
As mentioned in Section 2, we may presume that the position of the
blower in the pipe-line affects the state of surging through two mechanisms.
One is related to the fact, as discussed in Chapter I, that the contribution of
the blower characteristic to the vibrating air column has a close connection
with the blower position, and the other is that, as shown in Chapter II, the effect
of the blower as a resistance for the vibration depends on the blower position.

In the first place, we examine the latter.

In Fig. 4.8 and Fig. 4.9, the damping effect of the blower on the free vibration
of air column is shown in the same manner as that used in Chapter II. Fig. 4.8
is obtained from the results of experiment carried out with the pipe-line I in Table
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FIG. 4.8. Relation between damping of free vibration and
blower position (pipe-line I).

FIG. 4.9. Relation between damping of free vibration and
blower position (pipe-line IV).
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4.1. Here the features of damping are shown for various values of ¢, and two
groups of curves in the figure correspond to the exit opening diameter 0 mm and
20 mm (these openings are attached at the tank-wall) respectively. And Fig. 4.9
corresponds to the pipe-line IV in Table 4.1, and the experimental results for the
types of vibration of s=1 and s=3 are shown in the same graph. Further, as shown
in these figures, since the frequency is almost independent of the value of &, the
damping of vibration is larger when the curve describing the damping comes
towards left.

From above figures and the experimental results shown in Fig. 4.2 and Fig. 4.7,
we can conclude that the change of the amplitude of surging due to the value of £
can not be attributed to the change of damping. As an example, in Fig. 4.8, when
the exit opening is 20 mm, the damping for ¢=0 is larger than that for £=0293,
however, as seen in Fig. 4.2, the amplitude of surging is larger in the former. The
similar inference can be done for Fig. 4.7 and Fig. 4.9.

In the following, we consider the other mechanism which affect the change
of the amplitude of surging with the value of &.

Table 4.5 shows the relation between the value of the blower position &
and the velocity amplitude vm.x +]cos ksl| (cf. Eq. (4.1)) at the blower position
of a normal mode corresponding to the type of surging occured, where the
value of ¥ua. is taken as unit. Comparing this table to the figures given above, it
can be seen clearly that the surging corresponding to a normal mode becomes
violent when the blower approaches the position of a loop of that mode. And as
seen in the table, for the case of s=1 type, the value of |cos k£]| varies only slight-
ly with ¢, and corresponding to this fact, the amplitude of surging does not vary

TABLE 4.5. Velocity Variation at Blower Position

Pipe-line & 3 fcos ksl|
Pipe-line I 0 1
s=1 0.393 0.993
F1=0.07910 0.654 0.965

0 1

o 0.1348 0.898
sPip§-11ne II ggggg 82%9

=3 ; .428
k3=0.1384 0.5015 0.126

0.9254 1

0 1
Pipe-line III 0.1348 0.994
s=1 0.2270 0.983
£1=0.03291 0.3335 0.964

0.9254 ( 0.734

s 0 1
fiple-hne v 851-,513% 8,995

=1 ) .968
k1=0.02451 0.9795 0.891

. 0 1
Eipée-hne v ’ 8%?,?% 82?2
k3 =0.15360 0.9795 0.981
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too much either (cf. Fig. 4.2). On the other hand, for the case of s=3 type, the
value of |cos k]| varies remarkably with ¢, that is it diminishes from 1 to 0 and
increases again to 1, and corresponding to this, the surging is the greatest in two
blower positions where the value of |cos k£l is nearly equal to 1.

In conclusion, we can say that the change of the amplitude of surging with
¢ is solely due to this mechanism mentioned above. In other words, the magnitude
of velocity (or discharge) variation in the blower is determined by the relation
between the mode of vibration and the blower position, and this mutual relation
governs the amount of energy given by the blower to the air column, and this
energy plays the key role in determining the magnitude of surging.

From above discussion, we can expect to diminish or prevent the surging by
adequate selection of the blower position in the pipe-line. And when the type of
surging occured in the pipe-line is that which corresponds to a higher mode (s=3,
5,...), we may expect to prevent the surging entirely, selecting the blower po-
sition at a node of that mode. However, when the type of surging is s=1, the
above method of preventing the surging may be less effective than the other cases.

(4-2) Change of type of surging

As shown in Fig. 2.6, in the pipe-line which has an exit opening at the tank-
wall, the damping effect of opening on the vibrating air column increases rapidly
with increased diameter when the type of vibration is s=1, however when the type
of vibration corresponds to a higher mode, the increase is not so rapid.

From above fact, the phenomenon of the change of the type of surging, shown
in Fig. 4.7, may be explained as follows. In the range of small discharge, the
damping effect on the vibration of s=1 type is small because the exit opening is
small, so the surging of this type occurs, but it becomes difficult to occur due to
the rapid increase of damping with the increase of area of the opening (namely
increase of discharge). On the other hand, the increase of the damping effect of
the opening with the discharge is not so rapid for the vibration of s=3 type so the
surging becomes to occur in this type rather than in s=1 type. However, the de-
tailed analysis is left to Chapter VI.

5. Conclusions

The results are as follows:

1. The index |cos k:él| of the amplitude of velocity variation at the blower po-
sition in the pipe-line is an important factor in determining the state of the surging.

2. When a blower is placed at a position of the loop of a mode of free vibration
of air column in the pipe-line, the surging corresponding to that mode is most
violent.

3. By placing a blower at a node, the surging can be lessened or checked en-
tirely.

4. The position of the blower has almost no effect on the frequency of surging.

5. The type of surging may change with the position of the blower and the
working discharge of the blower.

Chapter V. On an Approximate Solution of Surging®®

1. Preliminaries
As was shown in Chapter III and Chapter IV, the air column in a pipe-line vi-
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brates in the surging state, in a manner similar to that of a normal mode of vi-
bration.

This fact suggests the possibility that, in dealing with the surging phenome-
non, we may regard the blower as an energy source that supplies the air column
with energy for vibration of the type which corresponds to a normal mode deter-
mined by the dimensions and boundary conditions of pipe-line.

Even though we can not deduce the exact solution of the surging phenomenon
from this standpoint, it enables us not only to recognize the phenomenon as the
self-exciting vibration of continuous body, but also to deduce various aspects of
the phenomenon by relatively simple calculation. This approximation method may
be powerful for solving the surging problem in a pipe-line of complex construction,
for which the exact solution is difficult to obtain.

The approximation method in which the self-exciting factor (the blower, in
this case) is regarded as an energy source, is usually used in many other fields of
vibration problem. Here we examine the effectiveness of this method for solving
the surging problem, refering to the experimental results obtained in Chapter 1II
and Capter IV.

2. Discussion on qualitative standpoint

First, based on the assumption that the characteristic of the blower is ex-
pressed approximately by a cubic curve, a formula for determining the amplitude
of the surging is derived. Then the validity of the formula is examined qualita-
tively by comparing its predictions with the experimental results.

We consider the pipe-line of the shape shown in Fig. 3.1. As was mentioned
in Chapter IV, when the opening at tank is nearly cut-off (cf. Eq. (4.1) in Chapter
1V, here we use g instead of p, in Eq. (4.1) and v instead of v.), the vibration of
normal mode is as follows;

g = a sin ksx ¢ sin wst, (5.1)

U =

aw =@, .
N ksx * COS wst = o0 cos ksx * cos wst (5.2)

where ks is a root of following equation

ksl tan ksl = Al/V (5.3)
and
ksc = ws =2nfs , (5.4)

(hereafter we omit suffix s for simplicity).

We assume here that, in the surging state, the air in the suction and delivery
pipe vibrates in such a manner that its velocity and pressure are represented by
the sum of the mean value and variable component represented by (5.1) and (5.2).
That is; denoting the pressure and the velocity of the air in the pipe-line by »
and w, and the mean values by p, and #, respectively, we can write

P=p+q wu=wu+v. (5.17)

If #, is small, we can put p =0 for suction pipe, taking the atmospheric pressure
as the datum.
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Under above assumption, and the assumption that the blower can be regarded
as an energy source, we can derive the formula which represents the amplitude
of surging by equating the value of vibration energy supplied by the blower to
the air column, to the value of vibration energy which dissipates from the air
column. The process is as follows. The characteristic curve of the blower is
represented in the p, # plane (pressure versus velocity plane) as p=f(#). Shifting
the origin of coordinates along the characteristic curve to the point corresponding
to the working discharge (velocity ), the characteristic curve is written as g(v),
where the variable velocity » is taken as the independent variable. Using Eq.
(5.2), the vibration energy T, suppulied by the blower to the air column during
one period of vibration, is evaluated as follows;

Ty = §Ag(vx=il) Ug=xr * di

Aa 27w

= ?cos ksljo g(ﬂ—

cos k&l - cos cot) cos wt ¢ di. (5.5)
oc

Next, we consider the dissipation energy from the air column during one period
of vibration. Even though the value of dissipation may be affected by many fac-
tors, such as the condition of exit opening, the dimensions of pipe-line, disconti-
nuity of cross sectional area of pipe-line etc, it is expected that, if the energy
supply from the blower is absent, the pressure variation of the air column around
the static pressure level would die down in a manner represented by Eq. (5.6)

q = asin kx - e” % sin wt. (5.6)

Here, ¢ is the equivalent damping coefficient.

Then the value of dissipation energy E: is evaluated as the decrement of
potential energy of air column during one surging period. That is, bearing in
mind that the amount of work needed for compression of the air at the point x
in the pipe-line to the pressure of py is

D
§ st Adsi B dpe = (1/2)(AIK) pla,
and reffering to the Eq. (5.6), we obtain

.
Ey = (1/2)(A/K)j‘o{(ae’s"z“lz"” sin kx )2 — (e "**2) sin kx)’) dx

+ (1/2)(VIEK){ (a2 gin k1)* — (ae™ " 2™ sin kI)®} (5.7)

where, the first and second term represent the values of decrease of potential
energy of air in the pipe and the tank respectively (here the bulk modulus K is
regarded as constant). Now, assuming ¢ is small, and neglecting the higher terms
(above the second) of series expantion of exponenrial functions, and using Eq. (5.3),
Eq. (5.7) reduces to the following form;

Ey =2 Ad%/ (46Kf) = Ad’c/ (250c°f) (5.8)
where
_ il AUV )
f=of2m  o=I1+ (Al/V)2+(kl)2}
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The amplitude of surging is obtained as the value of ¢ which satisfies the
equation Ty = E,.

For the qualitative comparison of this theory with the experimental results,
we assume that the shape of characteristic curve can be represented by a sym-
metrical cubic (shown in Fig. 5.1),

P

U

F1G. 5. 1. Approximate representation of characteristic
curve of blower by a cubic.

j=ay— Py (a, F>0).

And taking the origin of coordinate at an arbitrary point (M, N) on the curve,
this can be written as

g(v)=(a — 3BM?*) v — 3BMv* — 08 (5.9)

And the amplitude a is obtained as

a=V{(a—38M?) cocos’kzl(c/K) — ¢}/{(3/4) Bes cos® k2l(c/ K)%}. (5.10)

Alternatively, representing the characteristic curve by the non-dimensional form
by following formulae

¢ = Q/nDbuy = 6.079 Q/nD’2,
(2 =0/D, n: the number of revolutions r.p.m.)
@' = P'/(1/2) puly = 7295 P!/ on’ D,

(P!: effective static pressure)

Eq. (5.10) reduces to the following form

_ nD*Qoc 0.008333(An/D2) (1 — 3ps¢;) o cos’ kEl— ¢ (5.11)
~ 6.079 A cos? k£l (3/4) x0.008333(An/DR2) pso

a

where pi, p3 and ¢ correspond to «, § and M respectively when g(v) is repre-
sented in ¢, ¢’ plane, and

a = (pub/2) » (A/nDbup)p1, B = (pu3/2) * (A/nDbup)’ps, M = (xDbup/A) .
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Especially if the damping factor does not exist in the pipe-line (e=0), then Eaq.
(5.11) takes the following form

a = (nD*Qpc/6.079 A cos E2DN (p; — 30:9%)/ (3/4.ps). (5.12)

In the following, we shall compare these formulae with the experimental re-
sults shown in Chapter III and IV.

Fig. 5.2 shows the relation between the pressure amplitude of surging and
non-dimensional working discharge ¢. In this figure, the curves (1), (2), (3) indi-
cate the measured values of pressure amplitude (at tank). They are shown as
the examples for comparison and correspond to the cases in which 7=13.00 m,
V=12781 A =0.01335 m? £ =0, the blower being B: (vane-wheel No. 1) and n=
3,890, 3,395 and 2,650 r.p.m. respectiveiy. The curves denoted by the numbers 1~6
(without parenthesis) are obtained by calculating Eq. (5.11), where the type of
surging is taken as s=1, because the curves (1), (2) and (3) also correspond to
the case where s=1. In the calculation of these curves, the coefficients of odd
powers of approximate cubic for the measured characteristic curve are adopted
as the values for p; and ps, and the curves are plotted by adequately selecting
the zero point of abscissa. For other parameters in Eq. (5.11), the actual dimen-
sions of experimental apparatus are used, and the value of ¢ is selected ade-
quately.
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FIG. 5.2. Qualitative comparison between evaluated values

of pressure amplitude of surging by approximation theory and
experimental values.

In Fig. 5.2, the curves 1, 2 and 3 correspond to the different values of # (num-
ber of revolutions), and as we can see in the figure, both the correlation between
the amplitude and working discharge, and the decreasing tendency of the amplitude
and the surging zone with decreasing » agree qualitatively with those of experi-
mental results (cf. curves (1), (2) and (3)).

The curves 1, 5 and 6 correspond to the different values of & and the de-
creasing tendency of the amplitude and the surging zone with increasing ¢ agrees
with the experimental results shown in Fig. 4.2.

The curves 1 and 4 correspond to the different values of ¢, and these curves
show that the amplitude and the surging zone decrease with the increasing e in
accordance with the physical consideration.
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Further, Eq. (5.12) indicates that, when ¢=0 and the working discharge o
is held constant, the amplitude of surging is proportional to the value of number
of revolutions #, and as is seen in Fig. 3.8, the experimental results alsc show the
similar facts: in Fig. 3.8, for the small value of working discharge, which corre-
sponds to the small value of ¢ the amplitude is proportional to the value of n
(other examples are seen in the report of H. Kusama and S. Tsuji®).

3. Discussion on quanititative standpoint

In this section, we examine the approximate theory by the quantitative com-
parison with the experimental results,

Two aspects of comparison being made here are the condition of self-exci-
tation (or condition of unstability) and the pressure amplitude of surging. First,
the condition of unstability is deduced from Eq. (5.5) and (5.8) as (To—Ep)as0>0,
or

(a —3BM?) o cos? k2l — pe > 0.

Here the value (« —38M?) is, as is seen from Eq. (5.9), the inclination of the
characteristic curve of the blower at the point corresponding to the working ve-
locity M, and denoting this as pm, we obtain the following formula

mg cost kel — &> 0. (5.13)

Incidentally this representation coincides with that shown by Y. Shimoyama?®;
who deduced the same formula from the ordinary differential equation of second
order which describes the surging phenomenon approximately.

The calculated values (mo —¢) from Eq. (5.13) are shown in Table 5.1 in
comparison with the experimental results. In the calculation, as the value of ¢,
we adopt the measured value obtained from the experimental data of free vibration
of air column. And as the condition of stability, the formula o — ¢ <0 was used,
because for all cases in this experiment, the value of £ was zero (or the blower
is connected to the suction end of the pipe-line).

Further in the last column of the table, the measured values of maximum
amplitude of pressure in the pipe-line are shown, for the cases in which the surg-
ing occurred. As is seen in the table, Eq. (5.13) gives a fairly good criterion for
stability.

In the following, we compare the calculated values of the pressure amplitude
by the approximate theory with the measured values.

Fig. 5.3 shows the relation between the pressure amplitude of surging and
the non-dimensional discharge ¢, where the number of revolutions » is fixed. In
the figure, the abscissa is the non-dimensional discharge ¢ of the blower, and the
ordinate is the maximum pressure amplitude of surging in the pipe-line. In the
calculation of the amplitude, the value of 7% (cf. Eq. (5.5)) is obtained for
each value of @ by the graphical integlation, using the measured characteristic
curve (graphical integlation is carried out by the method given by Y. Shimo-
yama?®). On the other hand, E;, (cf. Eq. (5.8)) is evaluated for each value of a
using the actual dimensions of pipe-line. The value of amplitude @ of surging is
determined as the value which satisfies 7T = E,.

In the figure, the curve 3 represents the experimental results, and the curves
1, 2 and 4 are the calculated ones; where, in the case of the curve 1, the measured
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value of damping coefficient of the free vibration is used for the value of ¢ and
for the curve 2, the dissipation energy E; is estimated to be approximately 30%

TABLE 5.1. Comparison of Condition of Self-excitation with
Experimental Results

Dign;tiir of " Measured value of
Pipe-line (griﬁcg) 2 mo ¢ | mo—e | pressure amplitude
(mm) (r.p.m.) | | (kg /m?)
1 cut-off ‘ 4640 § 0 1—0.34 07 | —1.04 surging does not occur
20 4640 10,0081 O 0.7 —(0.7 | surging does not occur
33 2400 10.0227; 1.40 1.1 0.30 6
33 2895 [0,0227, 1.69 1.1 0.58 39
1=6.69 m 33 3645 10.0230; 2.11 1.1 1.01 84
V=12781 33 4140 10.0230] 2.40 1.1 1.30 101
E=0 33 4890 10.0229, 2.84 11 1.74 136
Orifice 43 3150 |0.0415 1.50 0.7 0.80 8.5
position S 43 3395 10.0420, 1.60 0.7 0.90 80
43 4390 |0.0419, 2.06 0.7 1.36 178
53 3150 10.0671} 0.92 0.7 0.22 0~20
53 3890 10.0670] 1.14 0.7 1.14 100
66 4390 10.114 |—0.45 0.7 —1.15 | surging does not occur
33 1800 10.0229; 0.765 | 0.80 —0.035 surging does not occur
1=10.49 m 33 2150 {0.0229] 0.917 | 0.80 0.117| surging does not occur
V—— 12781 33 2400 |0.0229] 1.02 0.80 0.22 11
E=_0 ’ 33 3890 10.0229, 1.65 0.80 0.85 103
Orifice 43 2150 [0.411 | 0.743 | 0.980! —0.24 | surging does not occur
position S 43 2400 |0.411 | 0.828 | 0.980| —0.15 | surging does not occur
43 2895 10.411 1} 1.00 0.980 0.02 20~ 80
43 3395 10.411 | 1.18 0.980 0.20 135
/=991 m 33 2400 |0.0229 1.60 | 1.83 | —0.23 | surging does not occur
X/—:—-bl 33 2895 10.0229 1.94 1.83 0.11 | surging does not occur
E——O 33 3395 10.0229 2.27 1.83 0.44 | surging does not occur
O;iﬁce 33 3890 10.0229, 2.59 1.83 0.76 0~26
osition S 33 4390 10.0229; 2.93 1.83 1.10 87
p 33 4640 0.02295 3.10 1.83 1.27 86~ 102
o 200 <
£ 2=13.00T ~
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FIG. 5.3. Quantitative comparison between evaluated values
of pressure amplitude and experimental values,
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less than that of curve I, and the curve 4 corresponds to the case where ¢=0 (in
this case, the amplitude of surging is determined by the characteristic of the
blower only).

As is seen in Fig. 5.3, the agreement of the curve 1 and 3 is not satisfactory,
but if we note the difficulty of estimating the dissipation energy in the surging
state, this result is considered to be unavoidable. However, if we make allowance
for the estimation of the dissipation energy Ei, as is seen in the case of the curve
2, we may obtain a sufficiently accurate result.

In Table 5.2, the culculated values of pressure amplitude for various values
of n are compared with the measured values, where the value of non-dimensional
discharge ¢ is fixed for respective group of 7. As is seen in the table, the agree-
ment is fairly good when the value of ¢ is small; the small value of ¢ corresponds
to the small area of exit opening or to the small value of energy dissipation from
the opening, and in this case the characteristic of blower plays an important role
in determining the amplitude.

From the results shown in Section 2 and 3, we can conclude that the approxi-
mation method is fairly effective in dealing with the surging problem.

TABLE 5.2. Comparison of Calculated Values of Pressure
Amplitude with Measured Values

Number of revolutions| Calculated values of Measured values of
Conditions of of blower pressure amplitude pressure amplitude
experiment n . - )

(r.p.m.) (kg/m?) (kg/m?)
1=20.98 m 2400 surging does not occur | surging does not occur
V=01 2650 40 20 ~53
©=0.0225 2895 69 70
£=0 3395 90 102
Orifice 3890 112 119

position S 4140 124 132
Pipe-line is

same as 2895 50 57

above 3150 60 102
©—0.0592 3395 70 140
1=10.49 m 2400 ! surging does not occur | surging does not occur
V-— 127.81 2650 45 24 ~50
©— 0.0225 2895 54 55
5’_‘0 : 3395 71 84

. 3890 86 103
Orifice 4390 100 123

b 4640 108 131
IV=~]%20708r§1 2650 " surging does not occur surging does not cccur
© :O 095 2895 i 50 22 ~44
5:0 1973 3395 63 76
O;iﬁ.ce 3890 78 103

position S 4390 93 129

Chapter VI. A Consideration on the Type of Surging®®

1. Preliminaries
As we have seen from the discussion in Chapter III and IV, the surging oc-

curs in such a manner that only a component of vibration corresponding to a
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normal mode is dominant. And as mentioned in Section (4-2) of Chapter IV, the
dominant component may change with the value of discharge.

We have given there the qualitative discussion as to the causes of these ex-
perimental results, but in this chapter, we treat the problem of the type of surg
ing raher more theoretically but with some experimental emphasis.

2. Approximate differential equation of surging

To treat this problem by the method used in Chapter I, is practically imposi-
ble, with the exception of the case of a very simple pipe-line. Even for such a
simple pipe-line, if we take into account of the damping factor in the pipe-line,
which always exists in actuality, the handling becomes very difficult.

So we treat the problem by another method.

In the first place, we deduce the differential equation which describes the
surging phenomenon (in the process of deduction of equations, we refer to the
method given by Y. Shimoyama?®). It is however difficult to treat the problem
from the viewpoint that the system has infinite degrees of freedom, so an ap-
proximate treatment is used.

We consider the pipe-line of the shape shown in Fig. 3.1 in Chapter III. And
we use the following nomenclature,

: pressure of air in the pipe-line,

: velocity of air in the pipe-line,

: velocity of sound,

: bulk modulus of air,

: static pressure of blower,

: time,

: area of cross section of the pipe-line,

: length of pipe-line,

: volume of tank connected to the pipe end.

ot S L

In advance of the deduction of the differential equation of surging, we express
the nature of the vibration of air column in the pipe-line. When the amount of

variation of %, p and p are small, the differential equations which describe the
vibration of air column are as follows,

azu 9 82u

S =5 (6.1)
82 aZ
aﬁ =¢* ax’; (6.2)

where ¢*= K/p.

Leaving the blower out of consideration, and assuming that the exit openning
at the tank acts on the reflection of the wave in the same manner as that in the
cutt-off state, and bearing in mind that, at the suction end or x=0, the condition
of open end is fulfilled, we can write the solution of Egs. (6.1) and (6.2) in the

following form

P =>.¢ssin ksx, w=>,qscos ksx (6.3)

where ¢s and ¢i are the functions of time determined by Egs. (6.1) and (6.2).
Moreover in the equation of continuity
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90 L 00 Bw

5 tugy Tog . =0, (6.4)
we neglect the small term #2p/2x and using the expression dp/dp=¢® =K/ 0, we
can write Eq. (6.4) in the next form

P ot (6.5)

From Egs. (6.3) and (6.5) we obtain the formula which shows the relation between
gs and gs as following

a5 = Gs/ ks K. (6.6)

As to the value of ks, putting the Eq. (6.3) into the following formula, which
expresses the condition at the junction of the pipe and the tank

(%'?‘>x~[ = KA‘;fx:Z ’

Wwe can see that ks is a root of following equation
ksl e tan ksl = Al/V, (6.7)

where in the expression ks =& ¢+ sn/ (20), s is an odd interger.

In the following, using the equations obtained in the preceding discussion, we
deduce the differential equation of the surging. Now, we indicate the position of
blower in the pipe-line as x =2/ Then refering to the Eqgs. (6.3) and (6.6), we
can represent p and » in the following forms, in which we use ¢ as a generalized
coordinate,

D=0+ 21¢ssin ksx, u =1+ > (§s/ks K) * cos ksx, (6.8)

where for the suction pipe (x<£I), we may put $0=0. Now we take account of
the effect of the blower on the system, as a generalized force which acts at a
point x =&/,

Then the differential equations which describe the surging phenomenon may
be deduced by use of Lagrange’s equation of motion

0Tm/ogs) _ oTm , OF | 2B, _
e ot T Bgs T og =9 (6.9)

where the kinetic energy 7., the potential energy E, the dissipation function F
and the generalized force Qs are calculated in the manner which will be mentioned
later. Since we try to solve the surging problem approximately, we regard the
system as that of two degrees of freedom, or in other words, take account of only
two values of s (s=1 and s=3). Even if we handled the problem from the stand-
point of infinite degrees of freedom, the differential equations would be deduecd
without difficulty, but it would be impossible to solve them. This is why we assume
that the system has two degrees of freedom, from the beginning.
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The kinetic energy T is obtained as follows; with Egs. (6.8) and (6.7)
H
Tm(l/Z) pA gouzdx = (1/2) pAlu% -+ ((JA%()/K) ; (q's/kg) sin ksl
R §=1,3

+ (pA/4K?) gg(éé/kzas), (6.10)
where

1/as =11+ (AL V)/{(AL V) + (BsD)®}].

In above evaluation, the energy of air in the tank are neglected.

Next, the potential energy Vi, may be evaluated as follows, assuming that the
working pressure of blower is low or bulk modulus K is constant. When the
pressure rise at the position x is 4P, the amount of compression of a thin layer
of air of thickness dx is (Adx/K)4p. And the work done required to raise the
pressure to the value 7 is

fIJ(Adx/ K)dp = (A/2 K)P’dx

and using Eq. (6.8) we have

!
Ey= (A/ZK)L(%(]S sin ksx)*dx + ( V/ZK)(%QS sin &s)*),

where the first and second terms indicate the energy in the pipe-line and in the
tank respectively. Then, by use of Eq. (6.7), we have

Ey= (A/4K)1§;(£]§/as). (6.11)

We leave the discussion of the dissipation function F for later paragraph and,
for a while, assume that there is no damping in the system.

Next, the generalized force Qs is evaluated as follows. The pressure variation
8p, corresponding to an infinitesimal variation of the generalized coordinate ¢s is
85, =04, 8inksx (cf. Eq. (6.8)). And the volume change of air column in the pipe-
line, the range of which is &/<x </, and of air in the tank corresponding to dp, is

!
0% = [ (00, Adn)/ K+ (09,) et + (VIE) = (A]Khs) cos hstlda,.

Denoting the delivery pressure of blower by P, the work provided by the
blower to the system is (P — o) 8¥, corresponding to d4,. Equating this value to
Qs38,4,, we have

Qs = (P —) A cos ks&l/ ks K,

where P is determined by the characteristic of the blower, and using the working
velocity of the blower #, and working delivery pressure po, we can write as follows;

P=po+ glatx=x1— to) =pi+g(v) =Po+g{123c_73 cos ks£l/ (ks K)}.

Here g(v) represents the form of characteristic curve of the blower, where the
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origin of coordinates is taken so as to coincide with the working point of the
blower on the characteristic curve. Then we have

Qs = Acos ks&l » g{%éscos Rstl/ (Rs KD} » (1/BsK). (6.12)

Inserting the values of T, E, and @s given in Egs. (6.10)~(6.12) into the
Lagrange’s equation of motion, we have

Gi+ B g —2c%kioicos k2l glincos kil (B K) + gzcos ke 21/ (B K) Y =0, (6.13-a)
s+ B qs — 2 ks o5 cOS Bsfl + gldicos B8l (B K) + s cos ks 21/ (B K) ) =0, (6.13-b)

where ¢k and cks are the angular frequencies of normal mode of vibration of the
air column, as easily seen by putting the value of p of Eq. (6.3) in Eq. (6.2); so
we write as cki = w1 and cks = ws.

In the process of deduction of above equations, we left the dissipation function
F out of consideration. As the energy dissipation from the vibrating system de-
pends on various factors as discussed in Chapter II and III, so it is a vexed ques-
tion to introduce a damping term into the differential equations of surging, in an
adequate form. Here we introduce the damping term by the following consider-
ation. Neglecting the third therms of above equations, they reduce to the equa-
tions which describe the vibration of normal mode of s=1 and s=3 respectively.
Now, in the actual free vibration of air column in the pipe-line, it may be con-
sidered that the state of damping is expressed approximately as below,

D =poe % sin wit (wh = ws) (6.14)

where suffix 0 indicates the initial value.

By the experiment in Chapter II, we know that the value of ¢ varies depend-
ing on the mode of vibration even in the same pipe-line. From preceding consider-
ation, introducing the damping terms 2&¢; and 2e¢; into two equations of (6.13)
respectively, we express the damping characteristic of the system, and have

G+ 0iqu+2ed1 — 2coiw1 cos ki £l - glgicos k£l (ki K)

+gzcos ka2l (R K)} =0, (6.15-a)
s+ 035+ 28343 — 2oz cos kafl » g{qu cos ki&l/ (B K)

+ gscos kellf (B K)} =0. (6.15-b)

Above equations are the foundamental ones for the approximate treatment of
the surging problem.

3. Representation of characteristic curve of blower by polinominal

To solve the Eq. (6.15), we must give the definite form to the function g(v).
The measured characteristic curve of the blower B: (indicate this as I) and an
approximated curve by a sextic (indicate this as II) are shown in Fig. 6. 1, where
the curve I is measured under the conditions that the diameter of pipe-line is 5
inchs, the number of revolutions of the blower is 4,390 r.p.m. In the figure the
abscissa is the velocity of air flow (m/s) and the ordinate is the pressure (kg/m?),
and the origin is selected adequately.
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FI1G. 6. 1. Approximate representation of characteristic
curve of blower by a sextic.

It may be said that the agreement is satisfactory, but when we use this re-
presentation of a sextic, the discussion of Eq. (6.15) becomes very complex. So
we adopt a cubic having the form g = ay — By («, #>>0) as the approximation for
the characteristic curve of the blower. Choosing the origin of the coordinates at
the point corresponding to the working velocity on the characteristic curve (cf.
Fig. 5.1 and Eq. (5.9), we can express the approximate cubic as

g(v) = (a —3BM?*) v —3BMV* — Bv. (6. 16)

Further, in Eq. (6.15), the fourth terms may be assumed to be small in general
and we write a = g’ and 8= uf' (#<{1), then Eq. (6.16) reduces to

g) =p{{a' =35 M*) v —35 Mv* — p'v°). (6.17)

Here we examine whether it is adequate or not to base our discussion of
surging problems on Eq. (6.17), by taking an example from the system of one
degree of freedom. If the adoption of Eq. (6.17) is justifiable in the case of one
degree of freedom, the same equation is equally or more adequate for the case of
two degrees of freedom.

Now in Eq. (6.15-a), taking only the dependent variable ¢: into account, we
have

'q'j_ -+ w?ql-}- 261@1 —2¢o1 w1 COS kl&‘l ° g(q1 CcoSs klgl/(le)} =0
where
glaicos k8l (B K)} = pl(a' — 3B M*){Gi cos ki 61/ (RK) }

— 38 M{§icos ki 2l/ (R K) ) — B! {1 cos ki 81/ (B K) }1.
Assuming that the damping term is also small, we put 2e = pr. Furthermore if

it is assumed that the third and fourth terms are both small, we may handle the
problem as quasi-linear, and the solution of the above equation may be writen as
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g1 =acos wiH{wl = w). Then using the method of the first approximation given by
N. Kryloff and N. Bogoliuboff,*® we obtain the equation which represents the
variation of ¢ as follows

a=pa{(a' =3 M*)(c*/K) » 201 cos? ki8]
—(308'/4) » 2¢co1cos k2l - (¢/K)*a® —71}. (6.18)
Thus the condition of self-excitation is obtained from the condition (%thz > 0) )
as follows, s
u{(a! =38 M*)(c*/K) » 201 cos® k18l — 11}
=2{(a —3BM?*) (/K)o cos® k&l —e1} > 0. (6.18")

The stationary value of g, or the amplitude of sustained vibration, is obtained as
the value of @ which fulfills & =0, namely

a = {{a = 3BM?) co1 cos? b El(c/K) —e1}/{(3/4) Bear cos* kaél(c/K)*).  (6.19)

This formula coincides with the formula (5.10) which is deduced by simple energy
consideration. It was already shown in Chapter V that this formula (5.10) gives
the qualitative representation of the nature of surging phenomenon fairly well.
From foregoing consideration, we can say that the adoption of Eq. (6.17) in the
discussion of Eq. (6.15) for the case of two degrees of freedom, is also justifiable.

4. Solution of differential equation
Using the formulae cki = w1, cks=w; given in Section 2, and considering that

1/ K) =cos/ (rw: K) and 1/(kK) =cor/(miw:K) and putting ¢/ (om0 K) =5,
Bcos kr&l =Ry, hcoskitl=hs 2coicos kifl=A1, 2ca5c08 ksfl=As, 2a=p11 and 2&
= urs, Eq. (6.13) reduces to
g1+ ol qy— pAiod(a' =38 M%) v =38 M — p'V°) + prién =0, (6.13"-a)
Gs+ wiqs — pAsws{(a! =3B M) v — 38/ MV* — f0°} + 13z =0 (6.13-b)
where
v =hiws 1+ hsw1ga. (6.20)

In above equations (6.13'-a) and (6.13'-b), if 2 =0, we have
ﬁl‘i‘w?(_h:o, él'3+w§€13=0-
And the solutions are

g =acos (o1t + ¢1), gs = bcos (wst -+ gs).
For the case of =0, if we can assume that p is small, the equations may be
considered to be quasi-linear, and the solutions may be written as
g1 = acos (wit+ ¢1) + ucib cos (st + ¢3) + a1, (6.21-a)
gz = b cos (w3t + ¢3) + pez @ cos (w1t + ¢1) + g5 (6.21-b)

where ¢; and ¢: are functions of @ and b in general, and ¢ and g} are the terms
which contain higher harmonics and combination harmonics. Hereafter we indi-
cate the small term of order u as 0(n).
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In solving the Eq. (6.13), we linearize the nonlinear terms by the method of
N. Kryloff and N. Bogoliuboff. Namely, reffering to Eq. (6.17), we put

Ne= (a' =38 M*) v — 35 Mv* — 0.

Using Eq. (6.20), and we replace the ¢ and ¢; in this formula by Egs. (6.21-a)
and (6.21-b), and the N; reduces to

N;=—Liaw: sin (w1t +¢1) — Lsdws sin (wst+ ¢3) + K1+ K, (6.22)

where K; is the harmonic term of 0(g), and K, is the term containing higher
harmonics and combination harmonics and is also of 0(z). K, contains terms
with angular frequencies 2w: = ws, 2ws+ @1 and so on and we assume that none
of these angular frequencies are equal to w1 or ws. For the pipe-line having a
tank, the angular frequencies corresponding to the normal modes are incom-
mensurable in general (cf. Eq. (6.7)), and the above assumption is reasonable.
And for the pipe-line without tank also, the above assumption may be considered
adequate in many cases, by reason of the existence of the volume (for an ex-
ample, a volute chamber of blower) in the pipe-line. So we confine our discussion
to the cases where the above assumption is correct.
Further, L, and L; in Eq. (6.22) are expressed as follows

L;:thlcoa~B-a)fw§(h§a2+2h1h§b2), : (6.23-a)
Li=ahso; — Bl ol 2 W hsa® + H3D%) (6.23-b)
where @ =a' — 47 M?, B = (3/4)8".

Here taking into account only the harmonic terms of w; and w; which are
quantities of first order (indicate this as 0(1)), Eq. (6.22) is written as

Nt = LGy + Lsgs. (6.24)

We consider the linearized equation shown below in place of the original Eq.
(6.13"),
.q.1+01§q1_‘/J.A1601(L1C.]1‘+L3(;’3) + urigr =0, (6.25-a)

Gs+ w3 — pAsws(Lidn+ Ls@s) + prsés = 0. (6.25-b)

In above equations, putting ¢: = [1e” and ¢s = Le™, we have

s={u/2)(Arw1 L1 — 71) * jor, (6.26-a)
s={u/2)(Asws Ly — 13) £ jws. (6.26-b)
And putting,
mi=(1/2Y(Aro1Li—71), L=jor (Gi=—1), (6.27-a)
my = (1/2)(Asws Ly —13), Iy = joos, (2.27-b)

the solutions of Eq. (6.25) may be written as

_ (wrmy+1)t (prmy—1y)t (ungt+ls)E (pmta =Lyt .
g =Eque + Ene + Fie + Fpe , 6.28-a
g = E31 e(i—‘mﬁ'li’t + E‘32 emml'lx)t T Fgle(um3+l3)t + Faze(pm3—lz)t (6 28'b)
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or alternatively

q = "™ @1 cos (w1t + §1) + ™ by cos (wst + B4), (6.29-a)
gs = "™ @y cos (w1t + p1) + € By cos (wat + Ps). (6.29-b)

The ratio of amplitude @/a@ and 5:/0:, and the difference of phase angles
$1— ¢ and $; — ¢; may be determined as follows:

FulFoso = (L] B)s=ymps1, = U + jW
where

U= #2A10)1L3m3<#2m§ - 2ﬂ2m1m3 -+ (wi - wg)} + 2/12/11 UJILSCUg(ma - ml)
(2mi — 2 pmyma + 0] — 03)® + 445 05 (ms ~ m1)*

b

W= 1Ay w1 Lyws{ 2 — 2 Py + (0F — o)}
(dEmh = 2 pmy s+ w0} — 032+ 4 1 whlms — m)?

(6.20)

and
Frof Foo = (L) I)s=pmy-1, = U — jW

and other two ratios are obtained similarly and using these four ratios we have

b1/bs={(Fu+ F)*+ j(Fuy — Fi) Y2/ Foy 4+ Fn)® + JH(Fay — Fyp P32
= (Fy * Fp/Fay » F)"? = (U + w2z,

As seen in Eq. (6.30), U=0("), W=0(z) and using these, we have

b1/bs = 1 W = [(nAioi0s Le/ (0f — o) = 0( ), (6.31-a)
similarly

@/a = (pAsor0s L/ (03 — o)) = 0(p). (6.381-b)
The difference of phase angles ¢ — ¢; is obtained by Egs. (6.26) ~ (6.28),

¢4 — ¢ =tan”  {j(Fa — Fa) /[ (Fay + F) ) —tan™ ' {j(Fy — F)/ (Fuu+ Fie) }
=tan"*( ~ W/U) =tan™ " (0(2)/0(4*)) = tan™ = oo,

where the sign must be selected considering the sign of W/U. Namely, we have

pr—gs= = (n/2) (6.32-a)
similarly

P1—¢1= = (n/2). (6.32-b)

Equation (6.29) represents the solution of the linearized differential equation
(6.25), and we may consider that the nature of the solution of the original differ-
ential equation (6.13') resembles to that of Eq. (6.25) so far as the harmonic
terms are concerned, because the magnifude of non-linear terms of (6.13') is 0(u).
Accordingly comparing Eq. (6.29) with Eq. (6.21), and reffering Egs. (6.26) and
(6.31), we can write
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a=e"'a,  b=e""h, (6.33)
ucs = as/ a, ucs = b1/ bs, (6.34)
and
da/dt =@, * pm, "™ = pma= (p/2)(A10:Li —11) a, (6.35-a)
db/dt = b3 * tum, ¢t = smab = (1/2) (Asws Ls — 73) b. (6.35-b)

And using the relation of Eq. (6.34) and reffering to Eq. (6.31) we can put
03=A3w1w3[41/(w§—w§), 61=A1w1w3L3/(w§—a)f). (6?(’))

As discussed above, we have deduced the solution of the original differental
equation (6.13') from the solution of linearized differential equation (6.25). On
the other hand we can prove that the solution of (6.13') may be written in the
form of (6.21) and this form of solution satisfies the (6.13") within the accuracy
of 0(?), if @ and & fulfill Eq. (6.35), and ¢;, ¢z and &5 — ¢3, ¢} — & take the values
of Egs. (6.36) and (6.52) respectively. Here, we omit the proof.

5. Existence and stability of stationary solutions

As the feature of pressure variation of the surging may be represented by
Eq. (6.8), and ¢ and ¢; are written in the form of Eq. (6.21), so we can realize
the feature of pressure variation in the surging state, if we can solve the Eqg.
(6.35). We examine this equation presently.

Replacing L; and L: of Eq. (6.35) by Eq. (6.23), we have

dd/dt == (p/Z){Zx‘AL h1¢o - _B-A1 (,f)g(hiaz +2 h{h%bz) - T1> a, (6.35-a)
dbldt = (/2 @Ashago— B Asp3i(2 Wi had® + W3D*) — 121 b (6.35"-b)
where ¢o= wiws. Andfrom above equations we have

al@Aihigo— BA1gY( W@ + 2 IEb) — 11}
b{aAshsgo— B As¢s(2hihsa® + Bi0*) — 715}

da/db = (6.37)
The manner in which ¢ and b vary with time, is obtained from Eq. (6.35')
and the mutual relation of ¢ and b is deduced from Eq. (6.37).
Now we are concerned most about the stationary solutions of Eq. (6.35"), and
the condition of stationary solution is da/di=db/di=0. It is easily seen that four
stationary solutions are posible, namely

a=0,
(i) {
b=0,
(i) { @A Tgo— FA gs(Mia® + 2R 13 — 71 =0,
1 — .
§A3h3¢o“ﬂAs¢g(2h§h3az+ nib*) —rs =0,
(ni) { a= O, (6. 38)
67A3h3¢o—§/13¢g(2h§h302+ b’) — 13 =0,
. §A1h1¢o“‘EA1¢g(h§dz+2h1h§bz) —ri=0,
(iv) {

b=0,
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Indicating a set of @ and & which satisfies the respective group of equations

as (a, &), we have
ay =0,
bo=0.
ay = hs{(2 D3 Aihy — D1Ashs) [ (3B 93 A1 AsTing) 12

= {( D15 cos® kstl — 2 D3y cos® ki£1) /3 cos® Bl + cos® kstl + (2% 0100/ K°) )2,
bo=hi{(2 D1Ashs — DsAihy)/ (33 63 A As TE 1) V2

= {( D301 cos® ks&l — 2 Dyos cos® ksfl) [3F cos® ka2l + cos® kitl » (2¢%0105/ K°) Y12,

(i) {
(ii)

ao = Oy
(iii) _ _
{ by = (Ds/B Aspih3)? = [{2aas cos? katl( P/ K) — 13} /B * 2¢a:(c/ K)? cos® ka2l
ay= (Dy/B Aol = [{2&0; cos® BL1( P/ K) — 11}/B » 2¢a1(c/ K)? cos* k2112,

(iv){b .
0= 0,

where Dy =aAihigo — 11, Ds = &Ashsgo — 713,
or changing the notations we have

D, = (a/ =38 M*) (¢*/K)*2 g cos® B1&1 — 11,

o \ (6.39")
D; = (a' — 3B'M') (¢ /K) *2 03 cOS” k&l 73

D,>0, D;>0 represent the condition under which the vibration corresponding
to the normal mode s=1 and s=3 exist respectively, when we treat the surging
phenomenon from the viewpoint of one degree of freedom. And in that treatment,
the stationary amplitude of surging coincide with a, of (iv) or b of (iii). These
facts may be verified by comparing Eq. (6.39') and (iv), (iii) with Eq. (6.18)
and Eq. (6.19) respectively. Accordingly we may say that D, and D; are the
indices which measure the degree of easiness of the occurence of self-excitation.

As an example, when D; <0, as seen from Eq. (6.39), the stationary value of
b (excepting b=0) does not exist, and at the same time if D;>0 is satisfied, a,
of (iv) alone has meaning as a stationary value of ¢ and this value of @, coincides
with the value of @ of Eq. (6.19). Similarly when D;> 0, D; <0 are satisfied, &
of (iii) alone has meaning and this value coincides with the value of stationary
anplitude which is obtained from the treatment in which ¢ is the only dependent
variable. When D:<0, D;<0, the stationary values of ¢ and b excepting zero
does not exist.

Accordingly, we confine our discussion to the case where the conditions D;>0
and D;>0 are both fulfied. In this case, it is seen that the set of solution (as, )
of (ii) can exist only under the following condition, by reason that the numerators
in the radical signs must be positive,

DiAshs/2< D3 Aihi <2 D1 Ashs. (6.40)

In the next paragraph, we examine the stability of the four sets of solutions
shown above. A solution (@, &) is nothing but a singularity of Eq. (6.37), and
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we examine its stability by the Poincare’s theory.®» Namely, in the coordinate
plane g, b, taking the origin on a singularity, and putting ¢ = a,+ 7% and &= b+ &,
we have

dy _ —2 B Aspian( ahi + 2 Mhibe€ ) + 7{D: — B Avgi(hias + 2 huhiiby) + 0(27, 7°) ,
dE — E{Ds; —BA:¢3(2 hihaai + hiby) ) — 2 B Aspa bo( bolig + 2 BihsaoT) -+ 0(&%, 7°)
(6.41)

where 0(Z% %°) indicates the terms of higher degrees of 2 and 7.

Poincare’s theory shows that the characters of singularities of above equation
are similar to those of the equation which has not the terms 0(2% %°), and that
the singularities of the differential equation

dq/dé = (UE +97)/(CE + b7)
are classified as follows, under tne condition AUd— Q& =x0;

stable if @+&<0

nodal point if Ad — LE <O % .
unstable if +€>0

saddle point if %d — &>0
0 ( center if ¢+€E=0
{ focal point if Q-6 =0 {

(I (g—-6)?4+4%A >0 {

(1) (-6 +4U < stable if @+ 6<0

unstable if E+E&>0

9 , i { stable if L+ E<0
(Il (+€)*+4 Adb =0 nodal point | unstable if 24650
unstable i .

Eq. (6. 41) reduces to the following forms corresponding to four cases of Eq.
(6.39),

(1) d7/dz = Di/(Dsf),

(ii) d7/dZ = {aAi (2 Wb + aoliiT) )/ {0y As(DoBEE + 2 Wi haao?) )},
(iii) d7n/dz = 7{Di— BA1¢: (2 hhibD)}/( — 2 BAagibihig),

(iv) dp/dé = (=2FAigias 7))/ E{Ds— BA:05 (2 Wi aai3) }.

And the characters of singularity are as follows respectively.

(i) (Q—=C)2+4%Ub= (D1~ D3)* =0,
Wd — Q8 =—-D;D; <0,
LQ+EC =D+ D;>0.

Taking account of D:>0 and D;>0, we see that (0, 0) is an unstable nodal point,
namely the vibrations of amplitudes ¢ and & build up.

(ii) The singularity (a, &) is a saddle point (except the case of b — Q€ =0),
namely this stationary value, which is limited within the existence range by Eq.
(6.40), is theoretically possible alike the case (i), but is unstable and can not
exist actually.

(iii) The singularity (0, &) is a saddle point if D;A3hs >2 D3 A1hi, and a stable
nodal point if the inequality sign is reverse.
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(iv) Resembling the above, (as, 0) is a saddle point if Ds;A;h >2 D;Ashs, and
a stable nodal point if ‘the inequality sign is reverse.

From above discussion, we can see that the character of singularity changes
depending on the relation between the value of D,Ash; and D;Ai. The results
of above discussion is described in Fig. 6.2. In the figure, the features of change
of the character of singularity which corresponds to each stationary value, which
is indicated in the left side of the figure, are described against xo=D;Ashs/ (D:;A1h).
Hereafter we examine this figure.

@ (0,0) b e Tnstable nodal paini - -=—————=mom 2 00
i Existence range
i (La,be) o Car b, Scddle poirk |
@ (0, ba) o Stoble rodsl p&a‘nt——ﬂ‘.Sadd’le pounte+ 00
@ (o,0) [+Saddle poénf-!-‘—v Stable rodal poini T—-*4 -+ OO
1
0 ] 2 s

F1G. 6.2. Relation between nature of singularity and o
(x0=D1Ashs/DsA1h1= Dic3 cos? ksél/ Doy cos? kiél).

As mentioned already with regard to Eq. (6.39'), in the treatment of one
degree of freedom, if D;>0 the vibration of angular frequency w:; builds up and
a stationary value of amplitude exist (in the treatment of two degrees of freedom,
the situation is same if D;< 0 is also satisfied). But in this case, where D;>0
and D;>0 are both satisfied, as seen in (iv) of this figure, the stationary value
(@, 0) is unstable (saddle point) under the condition D,;>0, and can not exist
until the value of D; becomes large compared with D; and the condition , >1/2
bocomes to be fulfilled.

Similarly, in the case (iii), the condition under which the stationary value
(0, &) which corresponds to the vibration of angular frequency ws is stable, is
not D; >0 only but both D:;>0 and x<2; where D; has a certain magnitude
relative to D;. And in the case (ii), the stationary value (a, &) is unstable
(saddle point) in all range where it can exist, accordingly the state, in which
the two vibrations of finite applitudes corresponding to the angular frequencies
w: and ws exist simultaneously, is actually impossible.

Further, in the range of 1/2 <k, <2, both (iii) and (iv) are stable, but it is
impossible to know which state appears actually, from above consideration. In
the next section, we treat this problem.

6. Solution curve of differential equation (6.37)

The relation between the amplitudes @ and &, which correspond to the vibra-
tion of angular frequencies w; and ws respectively, is obtained by solving Eq. (6. 37).
But as it is difficult to solve this analytically so we adopt a graphical methed.

First we rewrite the Eq. (6.37) in non-dimensional form, namely denoting
the stationary value a, of the case (iv) as @, and putting

¥y =a/Go, ¥ =0b/ds, Ashs/Ai1hi= (03 cos? ks&l)/ (o1 cos® ki&l) =6,

we have
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dy/dz
=p[1 —{7*+2 % (cos?® ks&l/cos® kutl) }1/ZE[(1/ ko) —{2¥*+%*(cos® kstl/cos’ RED ]
(6. 42)

Especially for £ =0, where the blower position is at the suction end of pipe-
line, Eq. (6.42) reduces to the next form, because cos ki&l=cos k:fl=1,

dy/dx =y{1— (" +2%)}/x0{(1/k) — (25" + X*)}. (6.42")

Two examples of solution curves of Eq. (6.42') are shown in Fig. 6.3 and
Fig. 6.4. The value of @ is 1.5 for both curves (this value is calculated with
the real dimentions of experimental apparatus), and ko, is 0.2 for the former and
1.0 for the latter. In Fig. 6.3, the singularities corresponding to (i), (iii), and
(iv) exist, as known from Fig. 6.2, however the (iii) alone is stable and because
of this fact, the solution curves converge into this singularity. And in Fig. 6.4,
all singulsrities (i)~ (iv) exist, and two of them, namely (iii) and (iv) are stable,

¥ b
B=L5
47
S A Ho=0.2
Singulor
<petnt (v
— .
o
Singular - N
pornt (v =
N \
o .
Heo
: v )
Singuler point (i Singuler poin iy z Singular point «iy Singular point i) XL
FIG. 6.3. An example of solution curve FIG. 6.4. An example of solution
of Eq. (6.42') (r0=0.2). curve of Eq. (6.42") (r0=1.0).

and the solution curves converge into either of the two, depending on their initial
values. The coodinate plane is devided into two domains in which the solution
curves conveges into respective singularities, and the ratio of domains is decided
by the value of k;; namely the domain corresponding to the singularity (iv)
increases with the value of k, and when & =2 the singularity (ii) coincides with
(iii) and all solution curves in the coordinate plane converge into the singularity
(ivy. That is, we can recognize as follows, under the condition 1/2<£,<2, both
singularity (iii) and (iv) are stable, however there is, so to speak, a degree of
stability, and the singularity (iv) becomes more stable comparing with (iii) nearer
the value of # to 2. Further under the condition & >2, we obtain the figure in
which all solution curves converge into the singularity (iv), in contrast with
Fig. 6.3. We can summarize the results of analytical discussion carried out in
preceding sections as follows.

(1) Both vibrations corresponding to the angular frequencies w: and ws can
not have the finite amplitudes simultaneously (the singularity (ii) is a saddle
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point), accordingly the surging does not occur in such a feature.

(2) When we consider the suring problem from the standpoint that the system
has one degree of freedom, the condition under which the vibration corresponding
to wy or w; occurs, are D;>0 or D; >0 for respective cases and if either jof the
two is fulfilled, the surging of corresponding type sustains stably.

(3) When D:>0 and D;>0 are fulfilled at the same time, the condition, under
which the vibration of angular frequency w: sustaines with stable amplitude a,
is not D;>0 but #,>1/2, where D:/D; has a certain magnitude. Similarily, the
condition for stable amplitude of vibration of ws is not D:>0 but x<2. That is,
the selection of the type of vibration, so to speak, arises. In other words, the
surging occurs in the type in which the occurence is easier. In addition, it must
be emphasized that above statement does not mean that the wave form of surging
is always a sinusoidal corresponding to a normal mode, but means that, because
the components of higher frequencies which are contained in the wave form of
surging are apt to be influenced drastically by the damping factors in the pipe-
line, and the surging is observed in a certain type in which one of components
corresponding to the normal modes of low degree is dominant.

(4) Under the condition 1/2<ky<2, both vibrations of angular frequencies of
w1 and w: are stable, however, only one vibration arises actually depending on
the initial condition, and the value of &, indicates the degree of stability.

The conclusions mentioned above are deduced with the aid of a cubic as an
approximate curve for the real characteristic curve of the blower. And because
the real characteristic curve is of asymmetrical in form, an algebraic equation of
higher degrees is required for the more accurate approximation, and we have
shown that a sextic is sufficient. Making use of a sextic as an approximation
curve for the real characteristic curve, we proved that above conclusions hold
grood, however the discussion is omitted here.

In addition, we may say that the representation of characteristic curve by a
cubic of the form given in Eq. (6.16) is adequate for many blowers, but it may
be possible that above conclusions do not hold for a blower with the characteristic
curve of special form.

7. Experiments

To examine the conclusions mentioned above, we compare these with the
experimental results shown in Fig. 4.7 of Chapter IV, and in addition we show
the results of experiment carried out newly.

In Fig. 4.7 (a) or (b), the type of surging changes from that corresponding
to s=1, into that corresponding to s=3 at a certain discharge, and both types of
vibration of constant amplitude can not exist simultaneously, and this fact sup-
ports the conclusion (1).

And in the range of small discharge, the vibration of s=1 type is dominant
and s=3 type arrises at a discharge, the value of which is almost equal to the
value in which the s=1 type becomes unstable. This phenomenon may be ex-
plained as follows. As we have already mentioned about this phenomenon in
Section (4-2) of Chapter IV, the increase of discharge is accompanied by the
increase of the exist opening area, and this increase of opening area has the
powerful damping effect on the vibration of s=1 type but rather small effect on
the s=3 type, because the position of opening is near a node of s=1 type and a
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loop of s=3 type. Accordingly, when we give attention to the values D: and D,
which are indices expressing the degree of easiness of the self-excitation, we may
say as follows: D; decreases rapidly from a certain velue of D:>0 with the
increasing discharge, and on the other hand D; decreases rather more slowly.
And considering that the experimental results shows e;>¢ when the exit opening
is entirely closed, and also that the surging is apt to occur in the type of s=11in
general, we may consider that D;> D; is fulfilled in the range of small discharge.
Accordingly the discharge range in which the s=1 type is dominant corresponds
to the confines of k,>2 in Fig. 6.2 (here, we pay attention to the line (iil) and
(iv)), and with the increase of dicharge, the value of ko moves to the left and
finary comes into the confines of £ <1/2, and this state corresponds to the dis-
charge range in which the s=3 type is dominant, but in a certain part of large
discharge D:<0 possibly holds.

Further by the observation of transition, it is clarified that, for a discharge
near the transition, the one of both types is dominant in a certain duration and
soon the other becomes dominant and these state repeat irregularly. We may
consider that above range corresponds to the confines 1/2< ko <2, however the
theory shows that, in this confines, two types are stable and one of two is realized
depending on the initial condition. ~Because in the actual phenomenon, various
disturbances exist in the flow, for example, the separation of flow in the vane-
wheel, and it may be considered that these disturbances induce the change of
dominant type. That is, experimental results do not contradict the conclusions
(3) and (4).

In the next place, we add another experiment carred out for the confirmation
of the theory.

In this experiment, we use the pipe-line of the form shown in Fig. 3.1 of
Chapter III, where [=24.45 m, V=390.3 / and A=0.01335 m?.  And the blower B
is connected to the suction end of the pipe-line and driven in the speed n= 4390
rpm. The outlet openings F and S (cf. Fig. 8.1) are used simultaneously, and
these diameters are selected so that the sum of discharge through the openings
is held constant. By this method, we can controll the damping effect of the
openings on both types of vibration, say s=1 and s =3, while fixing the value of
discharge, because the opening S has only slight damping effect on both types as
its position is near the loop for both vibrations and the damping effect is decided
mostly by the magnitude of opening F only. That is, in both equations of (6.39),
fixing the first terms and varing the second terms 7 and 73, we can vary the
values of D; and D; and accordingly the value of «o.

The results of experiment is summarized in Table 6.1, where & and e indi-
cate the measured values of damping coefficients of free vibrations corresponding
to the type s=1 and s=3 respectively. As seen in the table, the value of ¢ in-
creases rapidly with the diameter of opening but e increases slowly with it. In
cases where & is rather small, the surging of s=1 type is dominant and the
component of s=3 are unstable, and when the s=1 type bocomes unstable, the
s=3 type arrises stably, in spite of the increase of e, and in no case the surging
with both components stable can occur. In above experimints, the change of con-
dition from I to VI is equivalent to the change of the value of ko from a large
value to a small (see Fig. 6.2), and the experimental results show good agreement
with the theory.
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TABEL 6.1. Change of Type of Surging

Opening Damping i
diameter coefficient Pressure amplitude
No. (mm) (rad./s) (kg/m?) Remarks
| r as b
S | F ] a | = (s=1) L (s=3)
1 | 33 0 0.46~056 1.3 123 unstable
0~18
I 2951 | 1480 | 154 1.6 99 unstable | frequencies (for case I)
| - (c/s)
II | 2554 @ 2085 2.0 66~ 82 unstable | surging

0~26 | f1=1.69, fs=6.93

|
|
|
v 20.85 25,54 i 2.0 rather unstable 28 ~54 free vibration

0~17.3 f1=1.73, f3=7.24
? : unstable
V1480 @ 2951 | 2.0 oae 50~79
increases
rapidly
Vi o 33 1.9 unstable 68~73

8. Concusion

In this chapter, the vibration of air column is treated theoretically as a
system of two degrees of freedom, and the condition which decides the type of
surging is deduced. The theory is confirmed by experiments. As a conclusion
we may say that the surging is observed in a certain form in which only one of
the components corresponding to normal mode of lower degree is selected and
builds up.
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