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Chapter I. General Remarks

1. Introduction

The cutting of metals is frequently accompanied by vibrations of cutting tool

or workpiece, known as “chatter,” the action of which is at times extremely violent
and produces undulations on a work surface. The existence of chatter is a serious
problem because it is detrimental to the life of tool, to the surface finish and to

117
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the accuracy of the machined parts. In these respect, an elucidation of the
problem is very important. In recent years, chatter has become of increasing
importance as a result of the increase in cutting speeds made possible by the
development of the cemented carbide tools, because the ecconomic application of
these tools are often prohibited owing to the risk of fatigue fractures in this
material notwithstanding that it has high hardness at high temperature.

Chatter vibration occurring in machining metals are of two kinds, forced
and self-excited. »

Forced vibrations are those which occur under the action of a periodically
Varying force on the cutting tool or on the workpiece, the variations being due
to mechanical causes such as unbalanced rotating members, rough spindle bearings,
or headstock gears of insufficient accuracy. Such vibrations occur at a frequency
dictated by the mechanical source of which frequency may be quite different from
the natural frequencies of the vibrating members and will change in proportion to
the speed of the spindle or machine.

Self-excited vibrations occurring in practical machining operation are classi-
fied into two types: One due to flexible cutting tools; the other to deflection of
main spindle of lathe or workpiece. The frequency of self-excited chatter vibration
is independent of the spindle speed but is very close to the natural frequency of
the vibrating member.

Further, these self-excited vibrations are devided into the following two
groups because of the circumstances under which chatter vibration occurs, z.e.,
primary and regenerative. The so-called primary chatter is. that occurring in the
cutting conditions as where there is no interaction between the vibratory motion
of the system and any undulatory surface produced in the preceding revolution
of workpiece. The so-called regenerative chatter is that occurring in such cutting
conditions as where the vibratory motion of the system is subject to the effect of
undulatory surface produced during the preceding revolution. This effect of undu-
latory surface on the vibrationl system is called “feed-back.”

Of these two vibrations, i.e., forced and self-excited, the latter is generally
~ more severe than the former, and ordinally chatter is commonly of the self-excited.

In addition, the elimination of forced vibration is usually straightforward in com-
parison with that of self-excited vibration. Then, many investigators who con-
cerned themselves with chatter vibration have studied on chatter of self-excited
type, which is also the subject of this paper.

2. Work of previous investigators

Even though the elucidation of chatter vibration is very important, many in-
vestigators have concerned themselves with the theory of the metal cutting process
for many years but very little work has been done on chatter vibration because
chatter is of a very complex nature. In recent years, however, many investigators
of various countries have become to study on chatter vibration.

In 1946, R. N. Arnold? carried out experiments on chatter vibration of a
cutting tool and reported that the chatter is a self-excited vibration caused by
the falling characteristic of cutting force depending upon cutting speed, the same
as is self-excited vibration due to dry friction. In 1949, A. J. Chisholm? stated

the same theory.
By the author® and S. Doi, however, it was clarified experimentally that the
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chatter resembles the frictional vibration in character, and that the former can
hardly be caused by the effect of cutting speed on cutting force. R. S. Hahn? in
1953 and E. Salje® in 1956 also reported that chatter is not caused or influenced
by the falling characteristic of cutting force depending upon the cutting speed.
R. S. Hahn said that chatter is believed to be caused by lag of temperature and
stress in the vicinity of the shear plane. According to E. Salje, chatter is caused
by the cutting-angle-variation effect and the chip-thickness-variation effect on the
cutting force during vibration.

Further investigations on chatter vibration have been made by J. Thusty®
(1935), A. P. Sokolowski™ (1955), N. H. Cook® (1955), W. Holken® (1956) and
S. A. Tobias and W. Fishwick® (1958).

By these investigations, it can be said that many characteristics of occurring
chatter vibration and the effect of various cutting conditions on chatter vibration
have been ascertained fairly well, but that the fundamental cause of chatter vi-
bration has not yet been made clear. .

To ascertain the cause of chatter vibration, the lateral vibration of rotating
workpiece and the fluctuations in cutting force must be measured simultaneously.
In this respect, S. Doi’s work™ is most significant. He measured the laterel vi-
bration of rotating workpiece and the fluctuations in cutting force in each period
of 0.001 sec. using a well-devised experimental apparatus, and reported that the
fluctuation in horizontal cutting force lags slightly behind that of horizontal vi-
bration of workpiece, and that because of this lag some amounts of energies are
available for maintaining vibration. As a result, it was proved experimentally
that chatter is a kind of self-excited vibration caused by the lag in fluctuations
of horizontal cutting force existing behind the horizontal vibration of workpiece,
which finding seems to be in good agreement with Hahn’s opinion.?

However, it is not yet clear whether this lag of cutting force appears as an
effect of occurring chatter vibration or whether it is an essential characteristic
of machining metals. In other words, there is no critical data to show whether
this lag is a cause or an effect of occurring chatter vibration. For this reason, -
the author® 1 together with S. Doi carried out the following experiments.

3. Preliminary experiments on the cause of chatter vibration

(3.1) Method of experiments

The scheme of experimental apparatus is illustrated in Fig. 1. 1In the figure,
workpiece A, diameter 70 mm, length 500 mm, is held by bearing B supported only
in a vertical position by means of a steady rest. The bearing, together with the
workpiece, is deflected periodically by eccentric roller C, driven by shaft D, and
the thickness of chip is thus changed periodically. To verify whether the fluctu-
ations in cutting force do or do not lag behind the variations of chip thickness,
the horizontal oscillation of rotating workpiece and the fluctuations in cutting
force must be measured simultaneously.

First, to measure precisely the horizontal oscillation of workpiece which is
rotating, a ring of mild steel is fitted on the workpiece near the place at which
the workpiece is to be cut. On this ring, mirror 4 (see Fig. 1) is glued and its
surface is sooted. Rotating the workpiece, the soot is scratched so as to draw
precisely a fine lined circle. A vertical bright line in the matrix can be observed
when the small segment of the circle most laterally situated is lighted by vertical



120 Shinobu Kato

illuminater 3 and is magnified by a
microscope. The center of the circle
drawn on the mirror coincides ex-
actly with the axis of rotation of
the workpiece, so that the vertical
line segment is stationary and is not
affected in any way by rotation of
the workpiece. When this vertical
line segment is illuminated, the re-
flected light forms an image point
on rotating film 6 passing through
microscope and cylindrical lens 5. i
The microscope used in this experi- F1G. 1. Method of experiment.

ment magnifies about 20 times.

Next, the cutting force is measured optically by the deflection angle of the
tool end. A small mirror 10 is fitted to the lower nose of tool with glue, as shown
in Fig. 1. The light, passing through small circular hole 1, reflecting on mirrors
7 and 8, and through condensing lens 9, is reflected on mirror 10, and this reflected
light is recorded on rotating film 6. Lens 9 is adjusted so as to bring the focus
of small hole on the rotating film.

To measure the horizontal displacement of workpiece and the cutting force
simultaneously, two lights are derived from the same light source, as shown in
Fig. 1. One is reflected by mirror 10 fitted to the tool end, and the other is re-
flected by the fine line of the ring mirror fitted on the workpiece; these lights
are recorded simultaneously on the same rotating flm 6. To find the relation
between the fluctuations in cutting force and the oscillation of workpiece in each
phase, the light source is interrupted by time-marker 2 at intervals of 0.04 sec.
To record these two lights at the same instant, thick marks are made at intervals
of 0.4sec. The cutting force and the horizontal oscillation of workpiece in each
phase are noted at each period of 0.04 sec.

(3.2) Experimental results

In order to simplify the cutting manner, an orthogonal cutting is operated on
the flange of mild steel with a side lathe tool, as shown in Fig. 1. ,

Fig. 2 is an example of experimental records obtained in cutting conditions
where the cutting speed is 1.0 m/min., cutting angle of tool 80°, thickness of flange
3 mm, and the frequency of oscillation of workpiece is 1.5/sec. with an amplitude
0.14 mm. In the figure, curve (a) represents the horizontal oscillation of workpiece.
The upper displacement of each dot corresponds to the approaching movement of
workpiece toward the cutting edge. Curve (b) represents the fluctuations of
cutting force. The displacement of each dot in perpendicular direction corresponds

FIG. 2. Experimental record.
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to the fluctuations of cutting force in horizontal direction, and transverse dis-
placement corresponds to cutting force in vertical direction. The heavy dots
spaced every 10 dots in each curve indicate the same instant and are connected
by lines to make them quickly identifiable in the figure.

Measuring the position of each dot in curves (), () in Fig. 2 by a sensitive
comparator, we obtain Fig. 3. Curves

(@), (b) and (c¢) in Fig. 3 represent oz l ]
the horizontal oscillation of work- O ~ HWOMZAE N sza)
piece, fluctuations of cutting force in 02[(E |

& i

horizontal direction and those in verti-
cal direction respectively. Each dot
on the same vertical line is the same ol

instant. 80{ /\x o £ A)\
The upward displacement in curve 40;@ / ‘i\ Vertical Cu[;’mg.‘ Force / \

(@) corresponds to the approaching L / \ y .

movement toward the cutting edge. it g &

At point A the workpiece moves FiG. 3. Horizontal oscillation of work-

nearest to the cutting edge and the piece and fluctuations of cutting force.

thickness of chip must be a maximum

value. In curves (b) and (¢), B-C-D-E and B'-C'-D'-E' represent one cycle of the
fluctuations of cutting force in horizontal and vertical directions respectively. At
intervals B-C and B-C’, the cutting forces remain zero so that the workpiece in
this period is completely apart from the cutting edge. As the workpiece ap-
proaches the cutting edge, cutting forces in both directions increase along curves
CD and C'D', and reach maximum values at points D and D' lagging about 0.02-
0.04 sec. behind point A at which the magnitude of chip thickness is considered
to be maximum.

Now, Fig. 4 shows the relationship between the horizontal displacement of
workpiece and the horizontal cutting force obtained from Fig. 3. The solid line
shows a previous cycle and the broken
line, the following cycle. The period 1-2
indicates the approaching stroke of oscil-
lating workpiece toward the cutting edge,
and 2-3-1 is the recess stroke. It is seen
in the figure that the horizontal cutting
force does not reach a maximum value
at point 2 where the workpiece moves
horizontally nearest to the cutting edge,
and that when the workpiece rotates a

N few times after this nearest point, that
Displacement of Work mm AN . . . .
. . RN N 1s at point 3, cutting force becomes maxi-
0 a7 az a3 . . .
FIG. 4. Force-displacement curve. mum. This lgg of cutting force exists
not only at point 2 or 3, but also at any
point of a cycle. Therefore, the closed
curves in the figure show somewhat elliptical forms, and the action of cutting
force in recess stroke is considerably larger than that in approaching stroke.

From the foregoing, it can be considered that even in cuttings without chatter

vibration, the fluctuations in horizontal cutting force also lag behind the variations
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of undeformed chip thickness in the same way as that observed in chatter vi-
bration by S. Doibh®

The cause of this lag of cutting force is here considered. The force system
acting on the tool-chip-work system in a cutting producing a flow-type chip without
built up edge is shown schematically in Fig.5. This force system is obtained by
considering the chip as a separate body held in equilibri-
um by the action of frictional force F along the tool face,
a normal force N perpendicular to the tool face, and force
R' equal and opposite to the resultant R of forces F and
N, acting on the shear plane. The force components
acting on the shear plane are F; and F,. Fs represents
the force required to shear the metal on the shear plane
and is known as the shearing force. F, acts normal to
the shear plane and results in a compressive stress being FIG. 5. Cutting mecha-
applied to the shear plane. The shear strength of metal nism.
depends upon the compressive stress on the shear plane,

as suggested by M. E. Merchant.® An approximate relation for shear strength
T is

T =10+ ko

where 7, and %k are constants for the metal being cut and o is the compressive
stress on the shear plane.

Then, if the undeformed chip thickness varied by the periodical motion of the
workpiece, the frictional force could not change instantly according to variations
of chip thickness. That is to say the frictional force lags behind the variations
of chip thickness caused by the oscillation of the workpiece. In addition, the
greater part of frictional force acts as the compressive force being applied to the
shear plane, as shown in Fig. 5. Therefore, it can also be considered that the
force required to shear the metal on the shear plane has the after-effect or lag.

When the machining of mild steel operates at high speed, the chip formation
will be as shown in Fig. 5. At comparative low speeds, however, the sliding of
the metal does not occur on a single plane, but in a zone extending from the
cutting edge to the work surface. Accordingly, the part extending from the chip
to the work surface is generally curved, which fact is closely connected with the
formation of built up edge. In those cuttings which produce the continuous chip
with built up edge, the presence of after-effect or lag in cutting force can be
considered.

Further experiments!®¥® were carried out to examine the relation between
the various cutting conditions and the properties of time lag of cutting force.
Without exception, in 21 experimental records similar to Fig. 2 in which the fre-
quency of oscillation of workpiece, amplitude of oscillation, cutting angle of tool,
or the cutting speed was changed, the presence of time lag of cutting force was
ascertained in machining of mild steel.

From the foregoing, it was proved experimentally that even in cuttings with-
out chatter vibration, fluctuations in horizontal cutting force lag behind variations
of undeformed chip thickness caused by the periodical motion of workpiece in
horizontal direction, and then that this lag of cutting force does not appear as an
effect of occurring chatter vibration but the presence of lag is an essential charac-
teristic of machining metals,
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Consequently, we can prove experimentally that the time lag of cutting force
is a cause and not an effect of chatter vibration.

Then, in this paper, based on this experimental results a differential equation
for chatter vibration is introduced, and theoretical analyses on chatter vibration
were carried out. By these theoretical analyses, the cause of chatter vibration
will be clarified theoretically and many characteristics of occurring chatter vi-
bration will be explained collectively by the theoretical expressions.

Chapter II. Chatter Vibration due to Deflection of
Main Spindle of Lathe—Linear Theory applied
to the Analyses on Primary Chatter™™

1. Differential equation for chatter vibration

We first consider our problem relating to the horizontal vibration of work-
piece. Following is an analysis of chatter vibration occurring in orthogonal cutting
operations. Our analytical results, however, include other cutting operations.

Let C in Fig. 6 denote the center of the workpiece before cutting. When a
cut is operated on the workpiece, center C displaces to point O. If we denote the
displacement by ¢ and the undeformed chip thickness by d, it would follow that

F(d)=ha 2.1)

where F(d) is the horizontal cutting force corresponding to the chip thickness d,
and ke is the spring force.

Hovizontal Cutting Force F{d-24)

[/ Thichness of Chip (d-Xy)

F1G. 6. Workpiece and cutting F1G. 7. Relation between thick-
edge. ness of chip and cutting force.

Taking 0 as the point of origin and indicating the displacement of workpiece
by x, when the movement is in the direction away from the cutting edge, it is
considered positive. Assuming, for the sake of simplicity, that the system has
one degree of freedom, the expression for the chatter vibration becomes

mi+ci+k(x+a)=Fd-—x({—h)} (2.2)

where m, ¢, and k are well-known physical constants, k(¥ + a) is the spring force,
F{d—x(t— h)} is the horizontal cutting force, and where the deflection of the tool
is neglected. In the expression for the horizontal cutting force, d — x is the unde-
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formed chip thickness during vibration, and % indicates the time lag in horizontal
cutting force existing behind the horizontal vibration of workpiece. Namely, based
on our experimental results in Chapter I, the horizontal cutting force is repre-
sented as a function of undeformed chip thickness having the time lag #.

Setting

= =2n, 52 =p° x(t—h) =2z
and (2.3)
7}{F(d—xh\) - --:%a:f(d—xh)
Equation (2.2) becomes
i+ 2n% + pPx— f(d~ x1) = 0. (2.4)
We will deal with our problem on the basis of Equation (2.4).

2. Chatter vibration occurring in the region d ~ x=0

We will now consider that the horizontal cutting force is proportional to the
magnitude of thickness of chip, as shown in Fig. 7, so that

F(d—xn) = K-+ (d— %xn), d—-x=0 (2.5)

in which K is the coefficient of proportion depending upon the cutting conditions,
and is expressed by

K=Fhsd (2.6)

where ks is the specific horizontal cutting force of the metal being machined and
b is the length of the cutting edge engaged in cutting.
On substituting Equations (2.1) and (2.5) into Equation (2.3), we obtain

Fld—xp) =—2xn (2.7)

where 1= % Substituting this Equation in Equation (2.4), we have the follow-
ing equation:
%+ 2n% + plx+ Avs = 0. - (2.8)

We try to satisfy Equation (2.8) by a solution of the form

X = % e%, z=a+jo (2.9)
where « is a decrement (if « <0) or an increment (if «>0), o is the frequency
and j=v—1.

On substituting Equation (2.9) for (2.8) we obtain
24 2nz+ P+ Ae =0, (2.10)

The real and imaginary parts of this expression yield

{ P — o+ at + 2na + e P cos wh =0 (2.11)
2a+n)o— e " sinwh =0, (2.12)
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For a harmonic vibration (« =0), we have

( PP—w+Acoswl=0 (2.13)
U 2160 — 2 sin wh = 0. (2.14)

The harmonic vibration can exist only when Equations (2.13) and (2.14) are

fulfilled simultaneously. Combining these equations, we obtain the following ex-
pressions

{ w1 = 0)(/2, 7, h> P) (2' 15)
&g, n, h, p) =0. (2.16)

Only when Equation (2.16) is satisfied, can a harmonic vibration with frequen-
Cy w: exist, and its amplitude should be decided from the initial conditions. If
we consider that the parameters #, %, and P (not 1) are assigned, Equation (2.16)
gives a certain value for parameter A, which is the so-called harmonic value A, te.,

_ 29’10)1
and the frequency of the harmonic vibration is given by
2 42
DD ot . (2.18)
21w

The value of w; can be obtained graphically as will be indicated later.

If the magnitude of 1 deviates from a harmonic value expressed by Equation
(2.17), the vibration ceases to be harmonic (a = 0). We are now interested only
in solution of Equation (2.8) not far from the harmonic solution (« =0). In that
neighborhood « is small. Let us consider here the small change 4 in the pa-
rameter 1 from its harmonic value A for which a =0, z=jw. For li+42, the
corresponding value of z will be

2= jw: + 4z, dz = da + jdo.

Substituting this value into Equation (2.10), separating the real and the imaginary
parts and carrying out calculations to the first order of small quantities 41, 4w,
and 4w, we have

da Bh+20" + o) (2.19)
40 T W{@u—Aihcosm )+ (2w + Ak sin w1 2)F) ’
dw _ 2w1(27’l2+ wi—pz) (220)

A2 T n{(@n—Mhcoswih) F (2w + Mk Sinwo k)2

The right-hand side of Equation (2.19) is always positive; hence da=0 for
44=0, but since a =0 for 41 =0, this means «==0 for 41=0. Therefore, if 41> 0
(that is, 2> A1) the motion occurs with increments, and if 42 <0 (i</i;) the vi-
bration dies out, and only for 44 =0 (that is, A=1,) the harmonic vibration exists.

Now, let us examine the foregoing results relating to Fig. 7. In the figure,
when the magnitude of K, which is the coefficient of proportion, is just equal to
Ky, ie, K= K, =ml, there exists a harmonic vibration, and when K> K; (that is,
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1> 2,) the motion occurs with increment («>0). and when K< K (A<2) the
vibration dies out (a <0). Consequently, the whole area above K= K line consti-
tutes an unstable range. '

For parameters #, |, and p, the same expressions as Equations (2. 19) and
(2.20) can easily be solved.

By the above, it is proved that the system given by Equation (2.8) are capa-
ble of self-excited vibrations due to the time lag h.

N. Minorsky,™ in 1948, derived an equation for stabilization of ships. His
equation includes the term of retarded velocity, and resembles our Equation (2.4)
in form. He reached the conclusion that the system expressed by his equation is
capable of self-excitation due to the retarded action.

We will now calculate the magnitude of 4 from Equation (2.17), where the
harmonic value 1; is the function of #, h, and p. Although it depends strongly
upon the structure of main spindle and main bearings of a lathe, the magnitude
of n (damping coefficient of system) is generally 30~ 200/sec. in practice, using
the experimental results reported by S. Doi'* and others.”® Employing the same
results,?’ the magnitude of % (time lag in horizontal cutting force existing behind
horizontal vibration of workpiece) is generally between 0.0005 and 0.001 sec. The
natural circular frequency p of the vibrational system is usually in a range from
200 to 1,200/sec.,”®1® although these values are closely related to the rigidity of
the main spindle of lathe and the mass of the chuck and that of the workpiece.

Figs. 8, 9 and 10 are obtained by numerical
calculations using these values. Fig. 8 shows the
relationship between the harmonic value 4 and
the damping coefficient n of the system, where it
is plotted for one value of p and several values
of h. Here it is seen that as the magnitude of »
increases, %; increases almost linearly. The whole
area above J-curve constitutes the range of self-
excitation for each vibrational system. We can
see that when the magnitude of n is small, the
self-excited vibration is likely to occur, which in
fact is reasonable.

The solid lines in Fig. 9 where they are plotted
for one value of % and several values of #, show Fic. 8 Relation between
’.che'relatwnship between p and 4. Ineach curve, dampi n'g coefficient 7 and har-
it is seen that even if the magnitude of p in- monic value 2.
creases considerably, the harmonic value A in-
creases very little, which means that the increase in rigidity of vibrational system
does not increase the stability of the system. This theoretical result seems to be
contrary to the actuality. The reason for seeming contradiction is that each curve
represented by a solid line is plotted on the assumption that # is constant while
p increases, but in practice the magnitude of % usually increases with increase of
p, i.e., the expression for the relationship between n and p is written

— Tfec
0 71/ R /S /M S/ /)

po Dlogv
T

where v is the damping ratio. If we here assume that the magnitude of » in-
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creases in proportion to p, the corresponding p— A curve would be represented
by the broken line in Fig. 9. The area to the left of the broken line constitutes
the unstable range. By this it can be seen that the increase in rigidity of the
vibrational system results in increase of the stability of system, which is in good
agreement with the observed facts.’®

Fig. 10 shows & — 1 curve, where it can be seen that the magnitude of 1; de-
creases sharply with increase of z. Thus the chatter is most likely to occur under
cutting conditions in which the time lag in horizontal cutting force is large. For
example, the machining operation using a round-nosed tool seems to cause a large
time lag in cutting force, because the lag in cutting force is presumed to be re-
lated to the degree of chip failure, as described in Chapter I. In such cutting
operation, the chatter that is most likely to occur is the one experienced by the
lathe turner.® Further, since the magnitude of time lag has a tendency to de-
crease with increase of cutting speed,” the chatter cannot occur when the cutting
speed is higher than a certain value, which fact is in good agreement with the
experimental results reported by S. Doi™ and E. Salje.®

8,
X
6 N A p=377/8ec, n=40,/sec
~ B: p=628 + n=70 .
C:p=942 + =00 :
Ak
2r K £=00005 + M=40 : P
A
e nr )
. ‘ ‘ P/ sec — /sec
4 400 800 1200 600 0 00005 ' 0001 000i5 0002
FI1G. 9. Relation between natural FIG. 10. Relation between time
frequency p and harmonic value 21. lag 7 and harmonic value 1.

The stability or instability of the vibrational system, according to the above
description, is illustrated in Figs. 8, 9, and 10. In addition, the magnitude of 1 is
large in such cutting conditions as where the magnitude of cutting angle of tool,
the length of cutting edge engaged in cutting, and the wear of the cutting edge
are all large, and where the specific cutting force of the metal being machined is
large. Accordingly, it can be said that the chatter is more likely to occur in
these cutting conditions. Moreover, we have dealt with our problem with the
proviso that the deflection of tool end during vibration be neglected. However,
we can say that since the tool which is apt to deflect, 7.e., the tool lacking rigidity,
causes the apparent decrease of 1, the chatter is not more likely to occur with
decrease of tool rigidity. These theoretical findings are also in good agreement
with the experimental results published by S. Doi»' and E. Salje® and others.

By the above description, it is proved that the system expressed by Equation
(2.8) is capable of self-excitation due to time lag % in horizontal cutting force,
and it is found that many characteristics of occurring chatter vibration can be
explained theoretically.
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Hitherto we have dealt with our subject in the region where d—x=0. Ac-
cording to our theory, in this region it is evident that the stable vibration (« =0)
can hardly exist, because the harmonic vibration can exist only for the condition
1= as described above. It is almost impossible to do the cutting operation under
such a cutting condition where the magnitude of 2 is just equal to 4. In most
cases the magnitude of 1 is either A< or 2> 4, and therefore, the vibration
usually dies out (1< 4, a <0) or the amplitude increases indefinitely (1> /4, a > 0).

3. Chatter vibration going beyond the region d — x=0

On the basis of our study outlined above, in region d — x=0 the amplitude
increases indefinitely if « >0, which seems to be contrary to the observed facts.
If the amplitude increases, however, the motin deviates from region d —xx0
for a certain time during one cycle at which time the workpiece leaves the
cutting edge. Hence in the region in which the workpiece leaves the cutting edge,
where d — x <0, the cutting force is zero, and the motion is a free vibration with
damping. The egaution for such vibration of large amplitude can be written

{55+2n5c+p2x+/th=0 for d—x20

This equation can be solved graphically by Jacobsen’s “phase-plane-delta” method*”
as follows: Writing Equation (2.21)

¥+ x+06)=0
in which

8 = ;2 (2nk+ ixp) for d—x=0

é‘=—p—2—+a for d—x<0.
Using the expressions
- & _ ¥ = py GV
X =X, P =17, x——pvdx

Equation (2.21) becomes

av _

’I)—d; +x4+d=0

which gives the relation

dc = —v

¥ el (2.22)
Taking the displacement x as ordinate and the velocity of motion as abscissa,
Equation (2.22) gives a field direction graphically at any point. Therefore, we
can approximate a solution curve through any given point in the following way:
Fig. 11 shows that the slope of the line R-P will be (x4 4)/v; consequently the
equation of the normal to line R-P is identical with Equation (2.22). Moreover,

in a step method § remains constant for the step since an integration of Equation
(2.22) gives the equation of a circle with its center at R.
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Let o= RP, ds= PQ, and df = L PR® in Fig. 11, and the following relation will

be obtained do = w‘i,s. = .‘%‘i

Consequently, the explicit expression for time 7 is

dat=% L or  d9=ypar

w P
This expression can be integrated for the duration of the step, and gives
6~ 0y =2t — to).
If we now use a step method by taking steps at intervals Z% (LV is any positive

integer), the last expression becomes 0§ — 0 =P7}\L7 .

Therefore, the graphical solution of Equation (2.22) can be obtained by a
stepwise construction. This step method should be started from the point x= %,
v =0 at which the value of x, can be considered nearly equal to x in good accuracy.

=

FiG. 12. Graphical solution of vibration,

0
|
d

F1G. 11. Phase-plane-delta
method.

T

Fig. 12 is an example of a graphical solution using the cutting conditions of
Doi’s experiments,’® wiz., d=0.00 mm, p=377/sec. (fy=60/sec.), n=40/sec., h=
0.0005 sec., and K= ksb=120x6 kg/mm (ks is specific horizontal cutting force and
b is thickness of flange or length of cutting edge engaged in cutting) and A =2.45
x 10°/sec.? The harmonic value of the parameter 1 in this case is

A =1.62x10%/sec.?
so that a>0.

As shown in Fig. 12, curves starting near the origin spiral away from it, while
those starting far from the origin spiral toward it, and there exist a limit cycle
a-b-c-d-a. In the segment a-b-c of the limit cycle, in which d — x <0, the workpiece
leaves the cutting edge during vibration. Thus it is evident that the amplitude
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cannot increase indefinitely even if « >0, and that there exists a stable limit cycle
with such an amplitude sufficient to cause the workpiece to leave the cutting edge
for a certain period of one cycle during vibration. In practice, this type of chatter
vibration is most common.’” The amplitude of the limit cycle is about 0.1 mm
which is in good agreement with the experimental results by S. Doi.’

4. On the vertical vibration

Previously we have dealt with our problem relating only to the horizontal
vibration of workpiece, because, as S. Doi reported, chatter vibration is caused by
the fluctuations in area of cut due to the horizontal vibration of workpiece. The
reasons given by S. Doi'® are as follows: (i) When the chatter is excited, the
horizontal amplitude of workpiece is enlarged faster than that of vertical direction;
on the other hand, when the chatter dies out the horizontal amplitude decreases
faster than that of vertical direction. (ii) According to experiments on prevention
of chatter, chatter can be effectively avoided by supressing both horizontal vibra-
tions of workpiece and of cutting edge. (iii) Even when the natural frequency
of the vibrational system in vertical direction differs from that in horizontal di-
rection, the frequency of chatter vibration in both directions is the same as that
related to the natural frequency of vibrational system in horizontal direction.

If the horizontal vibration of workpiece is initially started at its own natural
frequency, the area of cut will fluctuate with that frequency, causing the vertical
cutting force to do the same, and the vertical vibration will be set up. Therefore,
the workpiece generally vibrates in a somewhat elliptical orbit. The differential
equation of chatter vibration in vertical direction is then expressed by

mi+cy+ R (y+da)=F(d— xu) (2.23)

where m', ¢!, and %' are physical constants which are not always equivalent to
those in horizontal direction, and where F'(d—=x;) is the vertical cutting force
which is represented as the function of the chip thickness having time lag n'
The magnitude of this time lag in vertical cutting force, according to our previous
experimental results, is slightly smaller than that in horizontal cutting force.'®
We will here assume that the vertical cutting force is proportional to the
magnitude of chip thickness as well as in the previous treatment, so that

Fl(d—xp) =K'+ (d-—xn).

Using this expression, we have

J+2n'y+ "y 4+ Van =0 (2.24)
where
¢ 5, kB e K,
577"2”’ ﬁ?“p’ m =4

We confine our attention to the harmonic vibration so that the horizontal vi-
bration of workpiece can be expressed by x= x sin wt.
On substituting the last equation into Equation (2.24) we obtain

Y20y + Pty =— Nxsinw(t — ). (2.25)

A particular solution of Equation (2.25) will have the form
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y=yosin (wf —0) (2.26)

in which v, and § are constants. Substituting this expression into Equation (2.25)
we find that Equation (2.26) is satisfied when the constants y and ¢ fulfill the
following equations

)\IX()
= (2.27)
Yo Vo' = PP + An'e?
t
tan (ol +0) = %.%2_. (2.28)

In Equations (2.27) and (2.28), the physical constants of the system in verti-
cal direction, denoted by #' and p/, are not always exactly equivalent to those in
horizontal direction, because the condition of fitting the main spindle to the main
bearings, the factor having the most important effect on the magnitude of #/, and
the rigidity of main spindle are not always equal in both directions. The differ-
ence between them, however, is generally small. We then represent #' and 7' by
n =n+ dn, p'* = P* + 4p*, where n and p are in horizontal direction.

Substituting these relations into Equations (2.27) and (2.28), and carrying out
calculations to the first order of small quantities 4n, 4p% we obtain

¥ dn . ap* 5 v
{ Yo = Txo(l - -—nf—sm wh+ mCOS u)h) (2.29)
_ An 4p°
tan (wh, -+ 0) =tan ﬂ)h (1 -+ 7’“ -+ ’5’2*:52’> . (2. 30)

In Equations (2.29) and (2.30), the second and third terms in parentheses on
the right-hand side are generally of small quantity. When 4n=0 (thatis, n=7)
and 4p* =0 (that is, p=p'), these terms are vanished, and thus Equations (2.29)
and (2.30) become

{ Yo = J/{-xo (2.31)
0=w(h—NW). (2.32)

The vertical motion of the workpiece during chatter vibration is then ex-
pressed by
y=38in (wf — )

and the horizontal vibration of workpiece is, of course, written as
X% = % sin wt.

Accordingly, it can be said that when the harmonic vibration of workpiece exists
in horizontal direction, the harmonic vibration of the workpiece exists also in
vertical direction with the amplitude v, indicated by Equation (2.29) and the phase
difference # denoted by Equation (2.30), and that the frequency of vertical vibra-
tion is the same as that of horizontal vibration. Therefore, the workpiece vibrates
around an orbit in a somewhat elliptical form. This vibrating manner, however,
varies according to the various characteristics of vibrational system and cutting
conditions, as seen in Equations (2.29) and (2.30). This theoretical fact is in
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good agreement with the experimental results given by S. Doi'” and others.®®"

5. Conclusions

We have introduced a differential equation for chatter vibration based on our
previous experimental results that fluctuations in horizontal cutting force lag
slightly behind variations of undeformed chip thickness caused by the horizontal
vibration of workpiece. By this equation, it has been proved theoretically that
the chatter vibration is a kind of self-excited vibration caused by this lag. Further-
more, expressions for conditions of self-excitation have been introduced by our
equation. By these expressions we have been able to explain theoretically many
characteristics of occurring chatter vibration.

Chapter III. Chatter Vibration due to Deflection of
Main Spindle of Lathe —Non-linear Theory applied
to the Analyses on Primary Chaiter?"

1. Introduction

In the previous chapter, it was proved theoretically that chatter is a kind of
self-excited vibration caused by the time lag of cutting force, and that many
characteristics of occurring chatter vibration can be explained almost entirely by
our equation.

However, since the previous treatment was carried out on the assumption
(adopted for simplicity) that the cutting force was in proportion to the thickness
of chip, there were some theoretical facts which contradicted the actuality. These
seemingly contradictory facts are, in the main, as follows: (i) According to the
linear theory, a stable vibration can hardly exist in the region where d— x = 0,
In practice, chatter occurring in this region is, in general, undoubtedly unstable.
In most cases its amplitude either decreases or increases, but even in this region
the stable vibration can exist, to some extent, under certain cutting conditions.
Fig. 13 is an example of experi-
mental record showing such stable Time —=
vibration. In this figure, curves (a) ;
and (b) are the horizontal vibration : i _ ; _ }
of workpiece and the horizontal E ' ’ { ol |
component of cutting force respec- I : ! ! l —
tively, and stra}ght line (C_), repre- FIG. 13" Horizontall vibration of workbiece
sents the stationary position of nd borizontal cutting force.
cutting tool where the cutting force
is zero. It is seen that the cutting force does not reach zero in every cycle and
the workpiece does not leave the cutting edge at all during vibration. (ii) Ac-
cording to the linear theory, the amplitude of harmonic vibration (« =0) must
be decided from the initial conditions, which is contradictory to the actuality.

In this chapter, therefore, the analyses are made on the non-linear theory.

2. Equation of chatter vibration

The analyses are made relating only to horizontal vibration of workpiece for
the same reason as given in Chapter II. The equation for chatter is either
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mx + ¢k + k(x+ a)=F(d — xz) (3.1)
or

% +2n% + px—f(d — %) =0 (3.2)
where

2n= ", ?2:%’ xn=2(t—N), f(d—x;,):-}ﬁ-{l?(d~xh)—ka}.

As previously mentioned, we based our analyses for reasons of simplicity on
the assumption that cutting force was in proportion to thickness of chip as indi-
cated by .

Fd—x)=K+(d—=x3), d—x20.

In practice, however, the relationship between them is
usually non-linear (see Fig. 14). The non-linearity is
comparatively large particularly in horizontal cutting
force.

Expressions for the relationship between horizontal
cutting force and thickness of chip have been represented
in many ways.”” Convenient for the following treatment,
the characteristic is given here in the from

Non-Linear

Horizontaf Cutting Force

Thickness of Chip

0

Fi1G. 14. Relation be-
tween thickness of chip
and cutting force,

Fld—op)=K+ (d~xn) ~ K+ (d—x)’, d— 220 (3.3)

where K and K; are coefficients which are closely connected with cutting con-
ditions. Coefficient K; is generally small in comparison with K.
In the same sense as Equation (2.1) in Chapter II we have

Kd — K;d?® = ka. (3.4)
Consequently, Sd—xp) =— A%+ g(x8) (3.5)
where A= 5, A= % gxn) = Aexh — SAsdxh + 3hsd %,

On substituting the last expressions for Equation (3.2), the differential equation
for chatter vibration becomes

£+ 20% + PP x+ Axp — g(xn) =0. (8.6)

This equation includes the additional non-linear term g(xx) not included in the
linear equation.

3. Analyses

We now take up the non-linear Equation (3.6). In general, the magnitude of
coefficient K; is considerably smaller than that of K. Hence the term g(x;) is
usally considered to be of small quantity, and consequently we can deal with
Equation (3.6) as a quasi-linear difference-differential equation. We deal witht he
quasi-linear equation by means of Kryloff-Bogoliuboff method? in the light of
results of the linear treatment in Chapter II.

We assume the solution of Equation (3.6) can be made through form
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x=A()sinr(t), 71()=wi+B(1) (3.7)

where A is the amplitude and 8 the phase angle, both unknown functions of time
t. It is necessary that % is of the form

%=AwcosT (3.8)
which imposes an additional condition
Asiny+ Af cosy=0 (3.9)
Differentiating % in Equation (3.8) we obtain
¥= Awcosy— Ao’ siny — Awf sin 7. (3.10)
Substituting (3.7), (3.8) and (3.10) into Equation (3.6) we have

(Aw+2Anw) cost + (Ap* — Ao’ — Awf) siny + AAsin(y — ¢)
—g{Asin(yr—9¢)}=0 (3.11)
where ¢ = wh.

Combining Equations (3.9) and (3.11) and carrying out calculations, we obtain
the following two differential equations

. £
A+ M sinrcost+ A1 cogtr— Eocosr=0 (3.12)
w o )
g - ﬁ..sin2 r— Tsinycosy+ Sosiny=0 (3.13)
w ® wA o
where t=p"— "+ Acos g, 7=2n0—Asin¢ (3.14)
and g=gl{Asin (r —¢)}.

Thus, instead of the single differential equation of the second order (3.6) for
unknown x, we have two differential equations of the first order for two unknown
A, B.

In the case of the linear system, it was proved that there can exist a stable
vibration when the following relations are fulfilled simultaneously as by

PP —w'+Acos¢ =0, 2n0 — Asing =0

namely, when £=0, =0 in Equation (3.14) are satisfied.

In the present case of quasi-linear system, we restrict the treatment to a
small neighborhood around the condition in which the stable vibration occurs in
linear system. Then, wa can assume the quantities ¢ and 7 to be small. This

means that during one period T = «2-0—? of the trigonometric functions, the quantities

A and B vary very little, and that therefore we can apply the standard procedure
of averaging per period T which leads to the following equations
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At+T)— A1) | As (> . . Ay (T .
T -+ 273050 siny cos rdr + 2mo“jo cos” rdy
27
- 2"7;(6 . gCOSTdT"—:O

2 2

Blt+T) — B¢t S Y T A "
50 sin” rd; 5 L sin y cos y dy

T T 2no

1 2m 5
+ ‘2m 50 gsin Td’)’ =0,

If we consider slow variations in amplitude A and phase # in the course of many
periods 7, we can replace A(t+ T) — A(t) by 4A, etc., and can assume T of the
previous problem to be 4T of the present one.

Thus in the first approximation, we can write the first terms in the preceding

equations %?M and %f-, and can arrive at the following equations of the first
approximation :
dA 1 . _ 2. 3 3 .
.- {A(2no — 1sin 9) — 315d*A sin g + ThA'sing)  (3.15)
. 2
*gg@‘ = —%{(pg—wz—!—xcos $) —31:d’cos ¢ — %AgAzcosgs}- (3.16)

We now carry out analyses based on Equations (3.15) and (3.16) instead of
on Equation (3.6).

(3.1) Conditions for self-excitation
First, we introduce an expression for conditions of self-excitation based on
Equation (3.15). To excite the vibration beginning at the rest point, the following

condition must be satisfied a4 >Q.

dt
In the present problem, this condition for excitation becomes

A(270 - 2sin ) +3;d°A sin ¢ + Zg—ngasinq& <o0.

If the self-excitation proceeds from the rest point where the amplitude is A = 0,
the third term on the left-side of the preceding equation can be neglected. There-
fore, the condition for self-excitation becomes

2n0 — Asing + 3 Asd?sin ¢ < 0. (3.17)
Now we carry out calculations relating to the last equation in the light of the
results in linear treatment. In the linear theory, the condition for self-excitation

was expressed by Axh

in which the stable vibration occurs with frequency w: when 2=A4. In our non-
linear system, even if we restrict the treatment to a small neighborhood around

A=2 and o = wi, the critical value of A will deviate a little from A, and the fre-
quency will also deviate.
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Setting 2= A+ 44, 0 = o1+ do, ¢ = ¢1+4¢p (p1= w1k, 4¢ = hdw), and substituting
these expressions into Equation (3.17), and carrying out calculations by neglecting
the higher order of small quantities 42, 4o and 4¢ we obtain

(1= (g —nheotan) 57 a1 > sisd
Ao

42
Chapter II) into the last equation, the condition for self-excitation becomes

Putting the expression (obtained in linear treatment, Equation (2.20) in

41 > I3d’R or A> A+ 2ad’R (3.18)

3n{a(n? + ob) + Anh(P*+ ob) + 117}
1+ nh) (hi+2n(p*+ o)}

where R= (8.19)

which is a dimentionless quantity and is always positive, as seen in this expression.
Consequently, vibration can start from the rest point only when 2 > Ja+ Asd’R.
The term Jlsd®R is an additional one owing to the no-linear term glxp) in Equation
(3.6) and is not included in the linear equation. Of course, if the non-linear term
be vanished, i.e., if 23 =0, then the additional term Jsd?R =0, and thus the ex-
pression for excitation coincides completely with that in linear treatment.

(3.2) Stationary amplitude and frequency
Stationary amplitude A is determined by putting 44 _ 0 into Equation (3.15),

o dt
resulting in

2w — A sin ¢+ 3d” sin ¢ + -z«x;».Azs'm¢ =0. (3.20)

Setting A = As, A=A+ 44 0 =w1+ 4o, ¢ = ¢+ 4¢, and putting these relations into
Equation (3.20), and carrying out calculations to the first order of small quantities

42, dw, and 4¢,

we obtain Ai=4 (7% - dz) or = Al= 4( Z;é* - d2> (3.21)
3

3n{40n* + o)) + 4nh(P* + o)) + 11}

in which R= o)+
whie ) i+ 2n P+ D)}

(3.22)

In Equation (3.21), stationary amplitude As is represented as a function of pa-
rameters 2, n, h, p, As and d, etc; which are closely connected with the cutting
conditions or with the characteristics of vibrational system. The non-linear
theoretical finding that the stationary amplitude is a function of the various cutting
conditions and is related to characteristics of vibrational system is considered to
be a reasonable result, while in linear theory, the stationary amplitude must be
decided only from the initial conditions, as described in Chapter IL '
Next, in order to ascertain whether the stationary amplitude is stable or not,
it is necessary to differentiate the right-hand side of Equation (3. 15) with respect
to A, viz.: :
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. 2
PA) = — A(2n0— 2 sing) + 32;d°A sin ¢ + »z—/lgAgsin 0.

dyg . . .
If —% <0 the stationary amplitude is stable, and if -2~ >0 it is unstable.

dA ’ dA

. ,
Hence we have 5% = — g A3 Ak sin ¢
. . . g

Since sin ¢, > 0, we obtain <0.

dA

Therefore, in the present case the stationary amplitude is stable.
The frequency of stationary vibration (ws) can be calculated from Equation
(3.16). In the stationary state, it is clear that

Zzi =+ Z,Zf = const. = ws.

Setting ws = + dos

where w: is the frequency of stationary vibration in the linear theory and 4dws is
a correction of frequency which can be expressed by

dws = dw + do.

Here 4w may be given by Equation (2.20) in Chapter II, viz.,

— 2601(2” "*‘(,01 p)
dw = M{(@n =Tk cos g1 + (2w1 + Ak sin ¢r)? 74 (3.23)

where 42> 0. This 4o (component of correction) is, therefore, the frequency shift
due to the increase of % in the linear theory. The other component, dw, is the non-
linear frequency correction which can be calculated from Equation (3.16), wviz.:

1 2 3, e
dw = 2—5{(? — o’ + 1 cos ¢) — 34d’cos ¢ — ZZ;;A cosq)}-

Setting A=A+ 44, o =w;+ do, ¢ = ¢+ 49, A = As, and placing these relations into
the preceding equation and carrying out calculations, we have

RAE(P = 0)) — 49727 ( PP+ o)) + 20481 — nk)

dws = : 45, (3.24)
s 2hno {40’ + ol) +Anh(P°+ o)) + 1K)
Therefore, the stationary frequency can be expressed by
ws = w1 + dws. (3.25)

(3.3) Condition causing stationary vibration in region d —x» 0
Hitherto our analyses have been made in region d — x = 0 in which the vibrating
workpiece does not, during any cycle, leave the cutting edge at all. We will here
examine the condition in which the stationary vibration occurs in this region.
~ We begin by taking Equation (3.21) and calculating the condition for A% > 0,
we now have
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42> 2d?R or  A>h+hd'R (3.26)

which coincides with Equation (3.18) previously introduced, expressing the con-
dition for self-excitation.

Because of the condition that the workpiece while vibrating does not leave the
cutting edge at all during any cycle is given by A%< d? it follows that

Jsd*R > AR or it S hadPR > A

= O
> O

Consequently, the condition in which the stationary vibration occurs in the
region d—x = 0 can be expressed by

S Wd R > 1>+ d?R. (3.27)

i&sdzR > 41> Wd'R or Mty

Hence it can be said that when the magnitude of 1 is in the range expressed by
Equation (3.27), there can exist a stationary vibration during which the workpiece
leaves the cutting edge at no time. Amplitude and frequency of this stationary
vibration are calculated by Equations (38.21) and (8.25) respectively.

Furthermore, it is clear that when 4> A+ 52); A d’R the vibration occurs with

an amplitude sufficiently large to cause the workpiece to leave the cutting edge
for a certain time during one cycle, and that when 1<+ Ad'R the vibration
dies out.

So far we have made analyses regarding parameter A only. The same treatment
can be given as regards the other parameters #, h, and p, and expressions for
conditions of self-excitation can also be obtained for them.

4. Numerical calculations and considerations

We begin by calculating the conditions for self-excitation. For numerical values
of parameters », ki, and p, etc.,, we make use of Doi's experimental data.® For
an example, by employing values n=40/sec., h=0.0005 sec., p=377/sec. (f,=60/sec.),
magnitudes of harmonic value 2, and frequency w: are obtained, giving

Ji=1.62 x 10°/sec.?, w1 = 546/sec.

Calculating the magnitude of R from Equation (3.22) by using the preceding values,
we obtain R = 3.02, which is a dimentionless quantity.

K
m
zontal cutting force, depends on various cutting conditions, Z.e., on the properties
of metal being machined, on the cutting angle of tool engaged in cutting, on the
nature of the vibrational system and other conditions. According to results of
experiment? in which mild steel was machined, the magnitude of 1; is about

The magnitude of 13<x3= ) which represents the non-linearity of hori-

1= 0.23 ~ 0.92 x 10°/sec.?mm®

where the cutting angle of tool varies from 80° to 60°. The magnitude of s is
large when the machining is done with a tool having small cutting angle, which
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is a matter of common knowledge.

20

Fig. 15 shows results of calculations A.B: A=092 x 105 secimt
from Equation (3.27) when the preceding 24r C.D: AF025 2
values are used. Curves A and B corre- § E : AF0 (Linear Case)
spond to the condition in which 1:=0.92 - %
x10°, A indicating the curve of 1=/ <

A
|

+ %lgng and B representing that of

A=x-+Ad*R. Curves C and D corre- L
spond to the state in which 25=0.23x 105, /
straight line E standing for the case
where 2;=0.

As for non-linear case: In curves A,
B corresponding to condition of large ‘ (

X3, the vibration does not occur when 0 ai 02 03 02 a5
the magnitude of 1 is below curve B; FIG. 15. Relation between feed d and 2.
when the magnitude of 1 is in the range

between curves A and B, there can occur the stationary vibration during which
the workpiece does not leave the cutting edge at all at any period of each cycle.
When the magnitude of 2 is above curve A, vibration occurs with a sufficiently
large amplitude to cause the workpiece to leave the cutting edge for a certain time
during one cycle. These facts can be said to also relate to curves C and D corre-
sponding to the condition for small 2.

In the linear case represented by straight line E, on the other hand, only when
A= can there exist a stationary vibration during which the workpiece does not
leave the cutting edge at all. Moreover, according to the previous analyses, the
amplitude of this stationary vibration is decided by the initial conditions. In
practical machining operations, it is almost impossible to operate a cut where the
condition 4 = 4, is just satisfied. This means that theoretically for linear case there
can hardly exist a stationary vibration during which the workpiece does not leave
the cutting edge at all, which in fact contradicts the actuality. Furthermore, it
is contrary to actuality to say that the stationary amplitude must be decided only
by the initial conditions.

In the linear case, moreover, the critical value of 2 (de. A) is independent of
the magnitude of the feed d, as seen by the straight line E in Fig. 15. It can
consequently be said that in the linear case the comparative difficulty for chatter
to occur has no connection with the magnitude of feed. It is a fact,'™ however,
that the chatter is more likely to occur in cuttings with a thin chip, 7.e., with a
small feed, than in cuttings with a thick chip, a large feed.

In the present treatment of the non-linear case, the magnitude of 1 have a
certain width where there occur stationary vibrations during which the workpiece
does not leave the cutting edge at all (see Fig. 15). It can also be noted that this
range has a large width when the magnitude of 1; and the feed are large. Conse-
quently, the stationary vibration is more likely to occur in such cutting condition.
It is additionally clear that the width of the range in which the stationary vi-
bration occurs is relatively large when the magnitude of 4; is small in contrast
to Zs, as seen in Equation (8.27). We have shown in Chapter II Fig. 8 that the
magnitude of 1; is small when the damping coefficient of the vibrational system

AA62%70°

—— 0 mm




140 Shinobu Kato

is small. For example, when the workpiece being cut consists of a long bar held
by both centers, the corresponding value of 1; is small because the damping coef-
ficient in this case is very small. In such a case the stationary vibration is most
likely. This theoretical fact is in good agreement with the experimental results
reported by S. Doi.!®

By Equation (3.21), the amplitude of this stationary vibration is decided as
being a function of parameters n, k, p, 4;, and d, etc. which are closely connected
to cutting conditions and characteristics of vibrational system. This theoretical
fact is considered to be a proper conclusion. "

Moreover, since the whole area above curve B or D in Fig. 15 constitutes
the range of self-excitation for each vibrational system, it is reasonable that when
the magnitude of feed is large, chatter is not likely to occur. This conclusion
explains the nature of chatter vibration occurring in practice, although this nature
may be caused partially by the following fact: The workpiece is likely to leave
the cutting edge during vibration when the magnitude of feed is small. In the
cutting conditions such as where vibrating workpiece leaves the cutting edge for
a certain time during one cycle, the magnitude of time lag in cutting force is
larger than that in cuttings where the workpiece does not leave the cuttng edge at
all, as found in other experiments by the author'® and S .Doi.

From the foregoing, it was ascertained that the characteristics of occurring
chatter vibration which could not be expressed by the linear theory could be well
explained by the non-linear theory.

Furthermore, Equation (3.18) which we introduced through the non-linear
theory, is a general expression for the conditions of self-excitation and includes
the linear theory. Consequently, it can be said that this Equation explains many

characteristics of occurring chatter vibration as well as explaining the linear
treatment.

5. Conclusions

An analytical research on chatter vibration was made on the basis of the non-
linear theory through which we have introduced the general expression for the
conditions of self-excitation, including the linear state. Theoretically we proved
that some facts which could not be expressed by the linear theory were verified
by the non-linear theory.

It is believed that chatter vibration is a kind of self-excited vibration caused

by the time lag in cutting force existing behind the horizontal vibration of
workpiece.

Chapter IV. Chatter Vibration due to Deflection
of Main Spindle of Lathe—On the Frequency
of Primary Chatter®

1. Introduction

In the present chapter, the frequencies of chatter vibration are calculated based
on the differential equation introduced in Chapters II and III. Some research
works relating to the frequency of chatter have been made by S. Doi,® R. S. Hahn,"
E. Salje® and others. According to their results, it was reported that, in general,
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the frequency of chatter vibration is almost always slightly higher than the natural
frequency of the vibrational system, although sometimes it may be lower. - How-
ever, it seems to the author that a comprehensive study on the frequency of chatter
vibration has not yet been reported.

Calculations on the frequency of chatter vibration are presented in this chapter
and are discussed with the aid of experimental results, which are here examined
in comparison with those of other investigators.

2. Frequency of chatter vibration introduced by the linear theory

As stated in Chapter II, the differential equation for chatter vibration is ex-
pressed by

420+ pix— f(d—xp) =0. (4.1)

Assuming that the cutting force is in proportion to the thickness of chip, Equat’ion
(4.1) becomes

X+ 205+ pPx+ Axp = 0. (4.2)

We have proved that the vibrational system given by linear Equation (4.2)

is capable of causing stationary vibration in the region d — x> 0 where the work-

piece does not leave the cutting edge at all when the following conditions are
fulfilled simultaneously :

{ P—o’+2cosp=0 (4.3)
20w — Asing =0 ' (4.4)

where ¢ = wh.
Accordingly, only when the magnitude of 1 has a certain value expressed by

= 2 ‘ (4.5)

wi= Pt _ (4.6)
T Znw, Ot ;

where ¢; = w; /.

Moreover, it has been verified that when 1 < A, the vibration dies out and when
A> 1 there is a stable vibration with a sufficiently large amplitude to cause the
workpiece to leave the cutting edge for a certain time during one cycle. The equa-
tion of such vibration of large amplitude can be written by

{ %420+ plx+ Axp =0, d—x=0

4.7
£+2n%+ P x+a) =0, d-x<0. D

(2.1) Frequency of stationary vibration which occurs in the region d —xx0,
ie., frequency v (w=27nf1)

For reasons which will appear later, frequency w;, of the stationary vibration
which occus in the region d—xx0 where the workpiece does not leave the cutting
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edge at all, has a fundamental meaning when we deal with frequencies of chatter
vibration.
Equation (4.6) can be written

1 1

onk ?T Ton g T 0L
Setting = ~é}1hw ¢, = 1;;? —; » and ys=cot¢
the preceding equation becomes
. =3 (4.8)
This equation can be solved by substracting the 6
ordinates of a hyperbola y. = j;‘h 31; from those = f
of straight line y, = ?};[h—gb which passes through 2;4'

the origin (see Fig. 16). The roots of Equation y |
(4.8) can be obtained by finding the abscissas of 2 g
the points of intersection of two curves y;— |
and y;. The roots are indicated by ¢, ¢z, .. -, '

as seen in Fig. 16. They correspond to the differ- @
ent modes of vibration. The most important of
these modes is generally the first one, and we -2 y
confine our attention only to this first mode.
The frequency an(a)l = fl;j—) is thus obtained ik

FIG. 16. Graphical calcu-

by graphical method. According to Equation (4.5), Jation of frequency.

since sin ¢, > 0, it is clear that ¢ may be either

in the first quadrant (g’->¢1>0> or in the

J_él',_
T .. =6,
second quadrant <7r> o> ~2~) When ¢; is in 9

?
the first quadrant, cos¢: > 0. Hence we have . A

w: > p from Equation (4.6), viz., ¢ > ¢o, where T
do=ph. If ¢ = —;— cos ¢ =0. Hence wi=p or
3

1= o= g— When ¢; is in the second quadrant,
. FIG. 17. Relation between
cos ¢ < 0, hence o < p or ¢ < ¢o. The relation- ¢1 and go

ship between ¢, and ¢, is illustrated in Fig. 17.

From the above description, it can be said that the decision as to whether fre-
quency o; is large or small in comparison with the natural frequency p, rests
firmly on in which quadrant ¢: is, whether it is in the first quadrant, or the second.
Because ¢ and ¢ are always in the same quadrant, as seen in Fig. 17, it can be

said that if ¢, is in the first quadrant, ie, —g— > ¢ > 0, frequency o, is larger than
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the natural frequency, p, viz., v1>p, and further that when ¢, = —’%, w;=p. More-

over, if ¢ is second quadrant, i.e., = > ¢ > %, frequency o; is smaller than the

natural frequency, viz.,, w1 <. }

In practice, the natural frequency p of the vibrational system is commonly
in the approximate range 200~1,200/sec.,”» 9% while these values are closely con-
nected with rigidity of the main-spindle of lathe, mass of the chuck, and mass
of workpiece. At the same time, the magnitude of & is in the approximate range
0.0005 ~ 0.001 sec.,’ in general, and is, of course, related closely to the various
cutting conditions. Consequently, it can be considered that, in practice, ¢o is
commonly in the first quadrant, which gives us w; > 9.

(2.2) Frequency of chatter vibration going beyond the region d-x20, e,
frequency we (we = 27fc)

In the previous section, we examined frequency w; of stationary vibration which
occurs in the condition where i1=4x4. We here calculate the frequency we of
chatter vibration which occurs in the condition where A> 4. In this latter case,
there exists a stationary vibration having such a large amplitude as to cause the
workpiece to leave the cutting edge for a certain time during one cycle. In prac-
tice, this type of chatter appears most often.’® In the region in which the work-
piece leaves the cutting edge, cutting force is zero, and thus the motion of the
workpiece is a free vibration. Therefore, in comparison to w;, the magnitude of
frequency w. of such vibration can be considered to approach that of the natural
frequency .

The total energy of the vibrational system is expressed by the sum of two
components, viz., potential energy P and kinetic energy K as represented by

E=Pt+K=tmit Jhx+ak
Differentiating both sides of this equation by #, we obtain
IE i+ M5+ a)).
Using this expression, Equation (4.7) becomes

-g—f— =mi( =20k — Axvn+ pla), d—x=0
JE (4.9)

Wr—m&(——Zm’c), d—x<0.

Since the system expressed by Equation (4.9) is considered to be an asym-
metric one, we assume that the stationary solution of Equation (4.9) is the form
x= b+ A sin wt. (4.10)

Hence wn=b+ Asin (ot — po) | (411)
where ¢c=wch,



144 Shinobu Kato

Fig. 18 illustrates the form of the
stationary solution. The solid line indi-
cates curve x and the broken line repre-
sents curve x;. The period 1-2-3 indi-
cates one cycle of vibration and in the
period 1-2 in which d—x,<0 where the
cutting force is zero, the motion is a
free vibration.

So far as we deal with stationary
vibration, it is considered that total
energy E of the system must not increase or decrease per one cycle. Therefore,

Fi1c. 18. Stationary vibration of work-
piece.

it follows that <§dE =0.

Referring to Fig. 18, this expression becomes
t? [3
§ap=ag+ [ az=o (4.12)
ty £

Substituting Equations (4.10) and (4.11) into Equation (4.9), using the last ex-
pression and carrying out calculations, we obtain

nwe Alty —t) — ﬂ—ngA‘ (sin2wcty — sin2wcty) + A(d — b) (sin wets — sin wet)
1 HACOS e (cos2aety— cos2aets) + AL (sin 2wty - sin2wcts)

+

Awe Azsm P (fy— 1) = 0.

By putting the following relations into this equation

2n
We

t.f;"‘tl:

d-b

ls—t= 7(3: (m+2sin™'p), where 7 = ~—

sin2wety —sin 2wet; =0

\ sin 2wets— sin 2wcts = 47 V1 — 72 cos 2 ¢

. T il 271'72?50 ~£. 4
we obtain 7Vl =1t +sin"'y Thsings T2 (4.13)

Since it is certain that e o O
singe  sing;

Equation (4.13) can be written

T so-l 2nng. .
rV1l =7t +sin™ 1 Ahsing: 2

(4.19)
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As seen in Fig. 18, itis clear that v is closely connected with the time rate
of free vibration period per one cycle, viz, when 7 =1, the vibrating workpiece
does not leave the cutting edge at all during each cycle, and when 7 =0, the
workpiece leaves the cutting edge just for the half period of one cycle, and when
v =-1, the vibrating workpiece is completely away from the cutting edge, which
in fact is impossible in practice.

In Equation (4.14), when A=A, we have v=1. This means that vibrating
workpiece does not leave the cutting edge at all, which fact is in good agreement
with our theory. When A= co, it follows that r=—1, which is a reasonable
result.

As described above, the magnitude of v which is closely connected with the
time rate of free vibration period per one cycle can be obtained as a function of
4 by Equation (4.14).

Now, let T denote the time during which the vibrating workpiece is away
from the cutting edge (see Fig. 18); its motion is then free vibration, and let 7%
denote the time during which the workpiece is not away from the cutting edge
and only at this time is the cutting operated. Setting

IO A {1eee Lo
T +T:° T+ T
and referring to Fig. 18, we obtain
= % - isin"lr. (4. 15)
T ,

Accordingly, the time rate ¢ of free vibration period per one cycle is obtained as
a function of v which is related to 4. Then, if the magnitude of 1 be given, the
corresponding value of ¢ can be obtained by Equations (4.14) and (4.15).

Fig. 19 shows the relationship between

e or (1—¢) and »/{‘ calculated by Equa-
1 . N
tions (4.14) and (4.15). As seen in Fig. 19,

when <=1 (1=4), e=0and (1-¢)=1,
1

which means that the vibrating workpiece

does ‘not leave the cutting edge at all

during each cycle and there is no free

. . . Ao / 2 3 4 S
vibration period. As b increases from 1, FIG. 19. Relation between 7 and

¢ increases sharply at the start and then e or (1—e).
gradually increases.

Frequency w. of stationary vibration during which workpiece leaves the cutting
edge for a certain period during one cycle can now be written as a function of
natural frequency p, frequency o, in cutting operation, and ¢ as follows:

wc=z:p+ (1 —¢)wr (4.16)

where ), is also a function of 4 and when A=/, it must coincide with wi, viz,
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wr=w; when A= 4. When magnitude of 4 is near 4, using expression j—;i ob-

tained in Chapter II, frequency w, can be written approximately as

201(27° + o} = p%)

Or = Ot S T S = Tk cos w k) + (Zwi + AT sin wi )L} (A=) (4.17)

When the magnitude of i is considerably large as compared with A;, although the
calculations are very troublesome, the expression for w, can be obtained from
Equations (2.11) and (2.12) in Chapter II as follows:

—n(p+1) (=Y +V{u(p+ ) (0l =) +2 pol P+ 4 pp0} 2 0+ 0}~ p°) + o' n'o}.
2 ows

)~:
(4.18)

where v= x;fl; p=1+nh(l4+v), u= — 2
L2

[

In Equations (4.17) and (4.18), it is clear that if A=4, it follows that wr=w,
which is a reasonable result.

According to the above, we can obtain the expression for frequency w of the
stationary vibration which occurs in the conditions where 2> 4 as a function of
2. Referring to Equation (4.16), it can be said that frequency w. depends not
only upon characteristics of the vibrational system, t.e., p, #, and etc., but also on
various cutting conditions, for example A, A, and others.

3. Frequency of chatler vibration introduced by the non-linear theory

In Section 2 of this chapter, the frequency of chatter vibration was introduced
on the basis of the linear theory. We will here examine it on the non-linear
theory.

As described in Chapter III, the non-linear equation for chatter vibration can
be written

X42ni+ P x+ Axn—g(xp) =0 (4.19)
where g (%) = Aexh — B2:dx) + 32 d%%s

in which s indicates the degree of non-linearity of horizontal cutting force.
By carrying out analyses on the basis of non-linear Equation (4.19), it has been
proved that

(i) when 2 < 11 + 13d*R, vibration does not occur;
(ii) when 2> A + %AgdzR, vibration occurs with a sufficiently large amplitude

to cause the workpiece to leave the cutting edge for a certain time during
one cycle;

(iii) when A+ %xgd2R> 2> A + X3d®R, there can exist a stationary vibration
during which the workpiece does not leave cutting edge at all.

The frequency of typé (iii) vibration has been introduced as
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ws = w1+ dws, dws= — QA — A1)

RA P — w}) — 4n™ (P + 0}) + 20251 — nh)
22 no i 40t + ob) + 4nh( P+ of) + AN} (4.21)

(4.20)
—Q=

where w; is the frequency of stationary vibration in the linear theory and Adws is
the correction of frequency in the non-linear theory.

We now examine the magnitude of dws. As seen in Equation (4.20), the
magnitude of dws depends upon that of @, hence we carry out calculations relating
to @ from Equation (4.21). Fig. 20 is an example of calculations using the follow-
ing numerical values: p = 377/sec. and h = 0.0005 sec. which are held constant, and
damping coefficient #» which is changed variously. These numerical values are
frequently used in Chapters Il and III. At this calculation stage of @, the magni-
tudes of 4 and w: for each value of n are preliminarily computed by Equations
(2.17) and (2.18) in Chapter II

As seen in Fig. 20, the magnitude of @ is
about (1~3) x 10-% sec., which is a very small
quantity even though it depends on various con-
ditions. Now, the magnitude of (41— 1) in Equa-
tion (4.20), although it is widely changed under
various cutting conditions, is generally considered
to be of the quantity (0~2) x 10°/sec.?, as seen 1 . |
in Fig. 15 in Chapter III. Hence the magnitude ‘ P 5020 leo ) SO 200
of dw; is about - (0~ 6)/sec., namely, it is at most and QIG - Relation between 7
about 1% of i, which can be considered a negli-
gible quantity. Consequently, although the frequency ws of type (iii) vibration in
the non-linear theory is slightly smaller in magnitude in comparison with frequency
w; in the linear theory, we can write approximetely

Co

N

— NS

ws = w1, (4.22)

Next, the frequency of type (ii) vibration must be considered. We can recog-
nize that the effect of non-linearity of cutting force on the frequency of type (ii)
vibration is far less than that on the frequency of type (iii) vibration, because
during type (ii) vibration, the workpiece is away from the cutting edge for a
certain time during one cycle. At the time while the the workpiece is away from
the cutting edge, the motion is a free vibration with natural frequency . On
the other hand, in type (iii) vibration the workpiece vibrates with frequency ws
during whole period of one cycle.

Consequently, so far as our study relates to frequencies of chatter vibration,
we need not calculate frequencies by non-linear theory, but it is justifiable to
examine them by linear theory.

4. Numerical calculations and experimental results

Here, we carry out numerical calculations of frequencies and these theoretical
results will be discussed in comparison with experimental records.

In the first place, frequency «: must be examined because it is basic to all
other frequencies. As seen in Equation (4.6), w: is a function of parameters #,
h, and p, etc.,, which are closely related with characteristics of the vibrational
system and various cutting conditions. The magnitude of %, according to experi-
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mental results of S. Doi,®® is generally about 0.0005~ 0.001 sec. The magnitude of
7 is closely connected with that of p, and both are decided by the state of vi-
brational system. We will then obtain them experimentally as regard to various
vibrational systems.

A series of tests are made, in which natural frequency p of lathe spindle
system is varied by clamping various masses to the chuck. Figs. 21 and 22 show
experimental recordings of free vibration for each vibrational system made by
means of optical method.® Fig. 21 shows recordings for lathe A, and Fig. 22 is
those for lathe B. Calculating magnitudes of #» and p from these recordings, we
obtain the following table.

1) No. A-1 System

2) No. A-2 System

- (3) No. A-3 System

FIG. 21. Free vibrations for various vibrational systems (Lathe A systems).

P a—

Time

=

. B-1 System

. B-2 System

. B-3 System

. B-4 System

F1G. 22. Free vibrations for various vibrational systems (Lathe B systems).

TABLE 1
] ;
No. of System Clamlzll?gg) Mass p/sec. . n/sec.
A-1 0 754 150
A-2 3.67 504 72
A-3 7.27 403 54
B-1 0 ; 880 100
B-2 3.67 666 45
B-3 7.27 ’ 540 34
B-4 23.76 | 352 ‘ 12
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Lathe A used in this experiments is of small size having a swing of 2300 mm
with diameter of main spindle 46 mm. Lathe B is of a medium size having a
swing of 400 mm with diameter of main spindle 52 mm. The two main bearings
of lathe A are common plane bearings, while those of lathe B are taper roller
bearings. It can be seen in Figs. 21 and 22 that amplitude of free vibrations for
lathe A systems decrease more rapidly than those for lathe B systems. Hence
magnitudes of » for lathe A systems are considerably larger than those for lathe
B systems, as seen in Table 1.

Setting these numerical values into Equation (4.8), and carrying out calcu-
lations relating to frequency w; by graphical method, we obtain Fig. 23. Curves
A, B in the figure are those of vibrational systems of lathe A and lathe B respec-
tively, and curve C indicates w; =5 line drawn for reference. Since ¢o is in the
first quadrant in any system treated here, it is seen in the figure that both curves

A, B are above line C, viz,, 1> p. The
1200 magnitudes of w; for lathe A systems,

—— ) (Cateutated .
4 Cabiutated) however, are considerably larger than
o °-®  w(Ezprimental) those for lathe B systems due to the
1000r . . . .
§ difference of damping coefficients in the
2 two systems.
soop
[ & e
. 1aoo} 3 8/ 5
600 w=p Line }
8
S
400¢ 7200“;?\
A Lathe A 3
B: Lathe B é{ _____ A.8:Caleutated by Eguation (4:18)
200} ook R A t(4r)
S .
— P/sec &K T A e
: VR 72 =5
0 200 400 600 80 7an0 e 2
F1G. 23. Relation between natural FIG. 24. Relation between 2 and .
frequency p and frequency of chatter
wi O we.
1100 w——  Cafcufated
” © ® Experimental
|4=1066

l
1000+ |
ooo{ P _ - A
3 i, 1 ]

) s AL NO Al System.

1% 1

S BN B

;T{ |‘,i s
a0 <= — AX 10 sec?

) 3 7

FIG. 25. Relation between % and we.

We next examine frequency w. of stationary vibration during which the work-
piece is away from the cutting edge for a certain period of one cycle by using
Equation (4.16) as, for example, relating to systems No. A-1 and No. B-1. In



150 Shinobu Kato

order to obtain we, calculations for w, must be preliminarily done. Fig. 24 shows
results of calculations for w, by using Equations (4.17) and (4.18). In the figure,
curves A, A' are for the system A-1, and curves B, B' are for the system B-1.
Curves A, B indicated by solid lines are obtained from Equation (4.18), and
straight lines A’ B/, represented by broken lines are calculated by Equation (4.17)
which gives an approximate value for w,. The magnitudes of 4 and w: for both
systems are as follows: ) ‘

A= 6.29 x 10°/sec.?, w1 =1,052/sec.  for No. A-1 systefn
A= 420 x 10°/sec?, w1 = 1,066/sec.  for No. B-1 system.

It is seen in Fig. 24 that the magnitude of w. increases with increase of 2
which fact seems to be reasonable, and further that the approximate results ob-
tained from Equation (4.17) (broken lines A, B'Y first coincide approximately
with those calculated from Equation (4.18) (solid lines A, B), but later the differ-
ence between them increases with increase of 1. In the following calculations
for we, the magnitude of w. obtained from Equation (4.18) is used.

The magnitudes of frequency w. for both systems (No. A-1 and No. B-1) can
be now calculated from Equation (4.16) by using the numerical values for g (1—e¢)
and o, which are shown in Figs. 19 and 24. Fig. 25 shows the results of calcu-
lations for frequency wc, and curves A, B are those for No. A-1, No. B-1 systems
respectively. In both curves, when 2=/, of course we= w;. In curve A which
corresponds to the system having a large magnitude of » in contrast to p, it is
seen that we is alway smaller than ;. In case of a system having small magnitude
of n (curve B), o becomes slightly larger than w: as the magnitude of 2 increases,
ie., in the neighborhood around 2 =42, although ¢ is smaller than o: at the
begining of curve B. (Of course, it is evident that curve B must converge toward
we=p line in A = oo, because it must follow that e=1 in 1= co). In curve B, this
tendency of wc to become larger than w. is remarkable when the magnitude of
n is relatively small in contrast to p. However, the damping coefficient n of the
vibrational system expressed by curve B is very small in magnitude. Furthermore,
chatter vibrations occurring in such conditions as where 4 =41 are so severe that
it is difficult to do the cutting operation. Accordingly, it can be said that the
magnitude of w. is generally smaller than i, unless the cutting condition is not
so severe. In this meaning, it is justifiable to say that frequency w. of stationary
vibration during which workpiece leaves the cutting edge for a certain period
during one cycle is generally smaller than w:. Consequently, wc is usually con-
sidered to be within the range between straight line C and curves A or B in
Fig. 23, although this range is variously changed by the characteristics of vi-
brational system. This theoretical finding can also be applied in the system in
which ¢, is in the second quadrant, although in this system w:-curve (which corre-
sponds to curves A or B in Fig. 23) is below the straight line C.

In order to examine the foregoing theoretical calculations for frequencies of
chatter vibration, the following experiments are now carried out on each vi-
brational system shown in Table 1. To experiment with the cutting condition
where the vibratory motion is not affected in any way by the undulatory surfaces
produced by the preceding revolution of workpiece, tests are made by cutting a
square thread which is preliminarily prepared on the workpiece of mild steel, as
shown in Fig. 26. The tool employed in this experiment is made from a 16 mm
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square rod of high speed steel with cutting angle 80° and
clearance angle 10°. The tool is fitted into the tool post
in the way shown in Fig. 26, and fed in longitudinal di-
rection corresponding to the pitch of square thread of
workpiece.

At the time of experiment, the magnitude of 1 is
changed by varying the width of square thread b. (As

Work

F1G. 26. Cutting

previously described, = E,. K= ksb, where Fk, = specific
71 manner.

7
horizontal cutting force.)

Fig. 27 shows an example of experimental recordings of the horizontal vibration
of workpiece during chatter by means of an optical method.’ Fig. 27 is for No.
A-1 system, and records (1), (2) and (3) correspond to conditions »=3, 4, and
5 mm respectively, where cutting speed and depth of cut are held constant. The
magnitude of 2, for this system (No. A-1) is 4 = 6.29 x 10°/sec.?, which magnitude
corresponds to width of square thread &= 2.4 mm.

From these experimental recordings, frequencies of chatter vibration were
obtained and are plotted in Fig. 25. Marks o and e in curves A, B are for systems
No. A-1 and No. B-1 respectively. It is seen in the figure that in tendency ex-
perimental results are in good agreement with results of theoretical calculations.

The same experiments are made on all systems shown in Table 1. F ig. 28
shows an example of experimental recordings. Here, (1), (2) and (3) correspond
to the systems No. A-1, No. A-2 and No. A-3 respectively, where all cutting con-
ditions are held constant. These results are plotted in Fig. 23 by marks o, e.
Mark o represents for lathe A systems, and mark e for lathe B systems. It is
seen in the figure that in both systems the experimental values of frequency are
almost in the range between straight line C and curves A or B. In lathe B
systems, however, it is seen that experimental values deviate slightly from this
range, which fact was discussed previously.

aofsec ) . =—Time

(1) b=3 mm

(2) b=4 mm

SAASANANAAA A AAAAN

> (3) =5 mm

ch
2
1

FIG. 27. Horizontal vibrations of workpiece.

aofssc ’ » v —~—Time

(1) No. A-1 System,
b=4 mm

- (2) No. A-2 System,

b=4 mm

(3) No. A-3 System,
b=4 mm

! ' . !
F1G. 28. Horizontal vibrations of workpiece.
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From the foregoing, it is ascertained that frequencies of chatter vibration
which are calculated based on the differential equation which we introduced in
Chapters II and III are in good agreement with experimental results. We will
now examine these results, comparing them with those of other investigators.

'R. S. Hahn* introduced the following empirical formula relating to frequency
of chatter vibration

LOc:wq\/1+ —%"—
q

where g = natural circular frequency which corresponds to p in this paper.
we = circular frequency of chatter vibration,
ko= rate of increase of thrust force with chip thickness ie., a workpiece
constant which seems to coincide with 2 in this paper,
kq = spring constant of vibrational system at tool point which corresponds
to % in this paper.

It is seen in his formula that frequency of chatter wc is larger than natural
frequency w, of the system, and that we is expressed as a function of kw (i.e., A
in this paper). These facts are considered to be in accord with our results. 1t
is also seen in Hahn's formula that frequency of chatter o is positively decided
only by kw, kq and w,, and further that the magnitude of . always increases with
increase of kw. The frequency of chatter, however, depends upon various cutting
conditions and characteristics of vibrational systems, as seen in our Equations
(4.16) and (4.18). Moreover, the magnitude of w. does not always increase with
increase of kw, but the relationship between wc and ke seems to vary in many
ways depending upon characteristics of vibrational system and on cutting con-
ditions, as, for example, seen in Fig. 25 in this paper.

The experimental results reported by the author® together with S. Doi also
show that in general the frequency of chatter is slightly larger than natural fre-
quency of the system, which fact is in good agreement with our results.

According to other experimental results reported by S. Doi** and E. Salje,”
however, there are some cases in which frequency of chatter is slightly smaller
than natural frequency. The reason for this is, we feel, that in these test con-
ditions ¢o (¢o = ph) appeared to be in the second quadrant. A still more important
reason may be that these tests were made in such cutting conditions that the
vibratory motion of the system was affected by the so-called “feed-back” effect
which caused an apparent increase of magnitude of time lag. It is therefore
considered that ¢, is more likely to be in the second quadrant in such cutting
conditions.

As for the so-called feed-back effect, we will take that up later in Chapter V
and will then go into frequency of chatter vibration again.

5. Conclusions

Frequencies of chatter vibration are examined based on the differential equa-
tion given in Chapters II and IIL Tt is ascertained that results of theoretical calcu-
lations for frequency of chatter vibration can well express the relationship between
frequency of chatter and various cutting conditions as well as the relationship
between frequency of chatter and characteristics of vibrational system, and then
that theoretical calculations are in good agreement with experimental results.
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Summing up, it has been clarified that by our differential equation for chatter
vibration, frequencies of chatter are well expressed, in addition to the charac-
teristics of occurring chatter vibration having been well expressed.

Chapter V. Chatter Vibration due to Deflection of
Main Spindle of Lathe — Regenerative Chatter

1. Introduction

In the foregoing chapters, we deal with so-called primary chatter which occurs
in cutting conditions where there is no interaction between the vibratory motion
of the system and the undulation previously produced on a work surface. We
proved that primary chatter is a kind of self-excited vibration caused by a lag in
horizontal cutting force existing behind the horizontal vibration of workpiece. In
addition, it was clarified that this lag of cutting force is an essential characteristic
of machining metals.

The magnitude of this lag, however, is greatly changed by the various cutting
conditions, and is considered to be closely related with the cutting mechanism.
Accordingly, we can guess that sometimes the magnitude of time lag is very small
and further that under certain circumstances, for example in cutting of brittle
metals such as cast iron, it appears to be zero. It can be considered that in a
cutting having small time lag the primary chatter is not likely to occur, and
especially that in a cutting having no time lag it cannot occur. However, it is a
fact that, even in a cutting of brittle metals such as cast iron, so-called regenera-
tive chatter occurs frequently in such cutting conditions as where the vibratory
motion of the system is subject to the effect of undulatory surface produced during
the preceding revolution of workpiece, i.e., in cuttings where the workpiece is sub-
ject to so-called “feed-back” effect. It is needless to say that regenerative chatter
can also be caused in a cutting having time lag of cutting force.

To find the reason for causing so-called regenerative chatter, we deal in this
chapter with regenerative chatter experimentally and theoretically.

2. On the time lag of cutting force in a cutting of cast iron

We first examine the time lag of cutting force in cuttings with cast iron by
using the same method as employed in Chapter I (see Fig. 1), where the work-
piece is oscillated forcibly in horizontal direction and the thickness of chip is thus
changed periodically.

Fig. 29 is an example of experimental results obtained in cutting conditions
where the cutting speed is 1.0 m/min., cutting angle of tool 90°, thickness of flange
5mm, and the frequency of oscillation of workpiece is 1.5/sec. with an amplitude
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FIG. 29. Experimental record.
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022 mm. Curves (a) and (b) represent the horizontal oscillation of workpiece and
the fluctuations of cutting force respectively. Straight line (c) indicates the
stationary position of cutting tool where the cutting force is zero. Measuring the
position of each dot in curves (@), (b) by a sensitive comparator, we obtain Fig. 30.

In Fig. 30, curves (a), (b) and (¢) represent the horizontal oscillation of work-
pice, the fluctuations in horizontal cutting force and those in vertical cutting force,
respectively. Each dot on the same vertical line is the same instant. It is seen
in the figure that point A, at which the workpiece moves nearest to the cutting
edge and the thickness of chip becomes maximum, coincides almost completely
with points B and C at which the cutting force reaches the maximum value, and
then that the time lag of cutting force in both directions does not exist (for refer-
ence see Fig. 3 which is a result of cutting with mild steel).
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Fi1G. 30. Horizontal oscillation of FIG. 31. Force-displacement
workpiece and fluctuation of cutting curve.

force.

It is a fact that, in a cutting of brittle metals such as cast iron, the continuous
chip which appears in cuttings with steel is not produced, but the discontinuous
or segmental chip is made, i.e., the cutting mechanism of cast iron differs com-
pletely from that of steel. Accordingly, in cuttings with cast iron the action of
frictional force along the tool face is considered to be small in comparison with
cutting of steel, and then the after-effect or lag of cutting force can hardly be
considered. , .

Now, Fig. 31 shows the relationship between the horizontal displacement of
workpiece and the horizontal cutting force obtained from Fig. 30. The solid line
shows a previous cycle and the broken line, the following cycle. It is seen in the
figure that the approaching stroke 1-2 of oscillating workpiece to the cutting edge
almost coincides with the recess stroke 2-3 because the time lag of cutting force
hardly exist (for reference see Fig. 4 which corresponds to a cutting of mild steel).

It can be noted that in many experimental records similar to Fig. 29 in which
the cutting conditions are changed in many ways, the time lag of cutting force
can hardly be recognized in cuttings with cast iron.

3. Experiments on regeneyative chatter vibration

From the above experimental results, it was clarified that, in cuttings with
cast iron, there can hardly exist the time lag of cutting force. Accordingly, in
practical machinings of cast iron, the so-called primary chatter cannot occur unless
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there is any other cause to excite the wbratlon above and beyond the time lag of
cutting force.

To vemfy th1s the followmg experiments are now carried out by cutting a
square thread which is preliminarily prepared on the workpiece of cast iron in the
same way as shown in Fig. 26. In this cutting oﬁeration, therefore, the workpiece
is not subject to so-called feed-back effect in any way. Fig. 32 shows an example
of experimental records measuring the horizontal vibration of workpiece during
cutting operation by using the optical method.’ For reference, Fig. 33 shows
the same record obtained by cutting mild steel. By these figures, it is justifiable
to say that so-called primary chatter can hardly occur in cuttings with cast iron,
while in cutting of mild steel it can occur because of the existence of time lag
of cutting force. Fi ig. 34 shows the experimental record obtained by cutting the
same square thread of cast iron, only an interruption is made purposely in one
part of square thread so as to cause a large disturbance during cutting. It is
seen in Fig. 34 that even though the workpiece is suddenly disturbed to a great
degree at point A at which the interruption is just cut, the transient vibration
dies out immediately and chatter vibration can hardly be observed.

i

- F1G. 32. Experimental record (cutting of cast iron).

Timeg ~—mm

F1G. 34. Expgrimentéi record (cut'tir’lgyéf ',casvf iron).

. From the foregoing, it is ascertained that so-called primary chatter can hardly
.occur in cuttings having no time lag of cutting force, and thus it is made more
clear that the fundamental cause of primary chatter is no more than time lag of
. cutting force.

- In cuttings- with cast 1r0n, however chatter v1brat1on occurs frequently in
~such cutting conditions as where the vibratory motion of workpiece is subject to
the effect of undulatory surface produced during the preceding revolution of work-
piece, ‘e, in cuttings where the vibratory motion of the system is subject to so-
called “feed-back” effect. Fig. 35 shows an example of recordings of chatter vi-
bration -occurring in such cutting conditions, where a flange of cast iron.is machined
with side lathe tool which is fed in a traverse direction by the cross spindle of
lathe, as shown in Fig. 36. In this cutting operation, therefore, the workpiece is
subject to feed-back effect,
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F1G. 35. Horizontal vibration of workpiece.

Fig. 35 shows the horizontal vibration of workpiece obtained
by using the optical method,"* where the cutting speed is 20
m/min., the thickness of flange 6 mm, the magnitude of feed 0.04
mm, and the cutting angle of tool is 90°. In the figure, vertical
lines indicate the revolution marks of workpiece. It is seen in
the figure that chatter vibration occurs even in a cutting of cast
iron. Furthermore, it can be seen that, at two parts indicated by FIG. 36. Cut-
A and B, small transient vibrations of workpiece are generated ting manner.
immediately after the begining of cutting, and that in the suc-.
cessive revolution the amplitudes of these transient vibrations are not only in-
creased just at the points corresponding to A and B but the vibrating regions are
extended around the circumference. The vibration of workpiece is thus heightened
step by step in the following revolutions and finally the vibration of large ampli-
tude extends around the whole circumference. This exciting manner of vibration
is quite different from that of primary chatter.

It can be noted that, even though it is very small, if some sort of transient
horizontal vibration of workpiece be generated (see Fig. 35 A, B), small undu-
lations could be produced to some region on the work surface. As the workpiece
continues to rotate, these small undulations will now produce fluctuating forces
on the workpiece and will excite the vibration, and thus the undulations will also
increase in size step by step in the successive revolution.

The following experiments are now made to ascertain how the undulations will
grow in each successive cutting. A square thread of cast iron is machined in the
same way as employed in Fig. 32, where the cutting speed is 20 m/min., the width
of square thread 6 mm, the magnitude of depth of cut 0.05 mm, and the cutting
angle of tool is 90°. Although the chatter vibration does not occur in the first
cutting operation, as indicated in Fig. 32, the chatter can be caused when the
cutting is operated repeatedly on the same square thread with the same cutting
conditiors. The chatter is heightened step by step just in the same way as in
Fig. 35, and the small undulations initially produced on the work surface become
large in each successive cutting operation. Fig. 37 shows the profiles of undu-
lation in every cuttings measuring by a sensitive dial indicator. It is seen in the
figure that the undulations increase in size with the following cutting operations,
and further that the phase of undulation always lags behind that of the preceding
undulation. The magnitude of phase lag, however, is not always equal, Z.e., first
it is about 90° and decreases gradually with every cuttings, as seen in Fig. 37.

Now, in Fig. 37 A-B-C indicates one cycle of vibration and A-B, B-C represent
the approaching stroke of workpiece toward the cutting edge, the recess stroke
respectively. It is seen that because of the presence of phase lag of undulation,
the area being cut in approaching stroke is less than that being cut in recess stroke,
and therefore that the action of cutting force in recess stroke is larger than that
in approaching stroke,
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F1G. 37. Undulationsfon work surface. ™~ [N
g Horizontal Displacement of Work X

F1G. 88. Force-displacement curve.

Fig. 38 shows the relationship between the horizontal displacement of workpiece
x and the horizontal cutting force F, both are obtained from Fig. 37. In Fig. 3§,
the period 1-2-3 corresponds to the approaching stroke of workpiece to the cutting
edge and 3-4-1 to the recess stroke. Solid line indicates the previous cycle and
broken one the following cycle. It is seen in the figure that the cutting force
does not reach a maximum value at the time where the workpiece moves hori-
zontally nearest to the cutting edge, and slightly after that time, it becomes maxi-
mum and subsequently sustains itself at a comparatively high value during the
recess stroke as if there is a time lag of cutting force. Thus, because of the
presence of phase lag, the energy corresponding to the closed area is furnished
to the vibrational system for exciting or maintaining vibration. It is needless to
say that if there was a time lag of cutting force, much more energy would be
furnished to the system.

It is well-known that when the
chatter vibration occurs in practi- N
cal maciining operations, orderly
patterns are produced on a work
surface. Fig. 39 shows the chatter
patterns produced in a common
outer turning of cast iron by a
roughing tool, where the workpiece
is subject to feed-back effect be-
cause the length of cutting edge
engaged in cutting is larger than
the magnitude of feed. It is seen
in Fig. 39 that the phase of undu-
lation of this pattern lags regularly behind that of previous passage in the same
way as in Fig. 37 and orderly spiral patterns are thus produced. When the di-
rection of feed is reversed, a pattern of counter-spirals is produced.
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Fig. 39. Chatter patterns

4. Theoretical analyses on regenerative chatter vibration

In the previous section, the reason for causing regenerative chatter was clari-
fied experimentally. Basing on these experimental results, we here deal with
regenerative chatter theoretically.

(4.1) Differential equation for regenerative chatter vibration
We analyze regenerative chatter relating only to the horizontal vibration of
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workpiece for the same reason as described in Chapter II.

It is clear that in regenerative chatter the instantaneous forces acting on the
workpiece depend not only upon the present state of motion of workpiece but also
upon the motion of the workpiece in the revolution immediately preceding. If
we assume a system with one degree of freedom, the expression for regenerative
chatter becomes

mi + et + k(X + a) = F{d — x(t — he) — %} (5.1)

where the same symbols as in Chapter II are used, and where F is the horizontal
cutting force, which is represented as a function of éhip thickness d — x(t — ho) — x.
The symbol %, represents the time lag corresponding to the phase difference 0
between the undulatory work surface produced in the preceding revolution and
the present motion of workpiece, and is expressed by

o= - (5.2)

[é2]

where o is frequency of vibration of workpiece.
If there be a time lag of cutting force, as seen in a cutting of mild steel, the
expression for regenerative chatter would be

mi+er+h(x+a)=Fld—x(t—hi—h) —x(t—=h)} (5.3)

where h is the time lag of cutting force.

In order to deal with generalities, we now carry out analyses based on Equation
(5.3). We here assume, as we did in previous chapters, that horizontal cutting
force is in proportion to magnitude of chip thickness, so that

{ Fld—x(t—ho— 1) ~x(t——}’i)}':K’{d~x(t—ho—-h)—x(t-h)} :

. 4
d—(t—To—h) —x(t— 1) =0 (5.4)

in which K is the proportion coefficient depending upon cutting conditions.
By substituting Equation (5.4) into Equation (5.3), and using the relation
ka = Kd, we obtain the following equation:

%420k + PP+ Axn+ Axe =0 (5.5)

where 2n= 521 P= o A= —g—, xn = x(t—h), x;f:x(tfH), H=Tho+h.

We now deal with out problem on the basis of Equation (5.5).

(4.2) Analyses and considerations
Even though Equation (5.5) includes the additional term Axy which is not
included in linear Equation (2.8) of primary chatter, it is still linear and we can
apply the same method as that used in Chapter IL
We will try to satisfy Equation (5.5) by a solution of the form
¥ = x0€”, z2=a+Jjo, j=y=1. (5.6)
On substituting (5.6) for (5.5) we obtain

Par2nz+pi+ile P +e) =0, (5.7)
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The real and imaginary parts of this expression yield

{ P+’ + 2na + /’.(e_h"f cos wh+ e ¥ cos wH) =0 (5.8)

2(a +1)w — Me " sin wh + ¢ sin wH) = 0. (5.9)

For a harmonic vibration (a =0), we have

I j)z—w2+2,lcos%cos(g»+¢>=0 (5.10)
1 g . (8 _ :
nw—lcos§sm(—2— +¢)-—0 (5.11)
where ¢ = wh, &—who

When we assume the time lag of cutting force to be zero, Equatlons (5.10) and
(5.11) become : ‘

P+ (14 cos0) =0 . - (5.12)
U ono —Asing=0. , (5.13)

Combining Equations (5.10) and (5.11), expressions for harmonic value iy and
frequency ‘of harmonic vibration wi, become

Ay = L (5.14)
cos J sin (6 +¢ ) -
2, 2 17 .
2 2 - h ’
Wir "‘2‘ = Q ) :
G~z o) G
Wher ¢1r = a)1rh

When % =0, the corresponding expressmns become

b=y (5.16)
wlr—ncotz + /n cot? g +p2 - (5.17)

Only when 2 is equal to /hf expressed by Equation (5.14) or (5.16), can the har-

monic vibration exist with frequency w:, indicated by Equation (5.15) or (5.17).
Let us now consider the small change 41 in the parameter 1 from its harmonic

value 1i, for which « =0, z = jwi,. For Ay + 44, the corresponding value of z will be

2=jon+ 4z, dz=da+jdo.

Substituting this value into Equation (5.7), and carrying out calculations to the
first order of small quantitiesﬁx da, ‘and dw, we then have the following equation:

da 2 n( wlr+p)+l1r(H+h)(1+cosﬁ)
ar /ZM (272 Ayl cos ¢1r—xercos(0+¢1r)) +(2wir+ A hsin ¢+ i H SIn (0+¢17) )
: , , (5.18)
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x
da 2wl + %) + A1 ho(1+ cos §)

2’7 - }ur{(z’}’l"Z]rhoCOSl9)2+(ZU)lr‘f‘AlrhoSinﬁ)z} ’

When 7% =0, the corresponding expression for ,,j“ become

(5.19)

The right-hand side of Equations (5.18) and (5.19) is always positive; hence a=0
for 4A=0. Therefore, it can be said that the system given by Equation (5.3) is
capable of causing chatter vibration due to both time lag % and phase lag §. In
a system having no time lag of cutting force, however, chatter vibration can be
caused by only phase lag 8. The condition for causing vibrations is then expressed
b

Y A=A (5.20)

We now calculate the magnitude of i,
from Equations (5.14) and (5.16). Fig. 40
shows the relationship between ;- and 6
obtained by numerical calculations. This
figure is for the system p=377/sec., n=40/
sec., which is frequently employed in Chap-
ters II~IV. Curve A shows /,—0 relation- asy
ship obtained from Equation (5.16) and is
for the condition having no time lag of

P=377sec, T=40/sec

At 10)/5ect

cutting force. On the other hand, curves = § aegree

B, C and D are obtained from Equation O o @ a0
(5.14), where the time lag of cutting force FIG. 40. Relation between phase
& are 0.0005, 0.001 and 0.0015 sec. respec- lag 0 and harmonic value A1

tively. The whole area above each curve
constitutes the unstable region (4 = Air) for each vibrational system.

It is seen in curve A that the magnitude of i, is infinity when 0 =0° and
§ =180°, and that when 6 =90 the magnitude of 1, is minimum. Therefore,
chatter cannot occur when 360° >0 >180°. If chatter vibration could occur, it
could be said theoretically that the magnitude of phase lag must be in the range
180°>6>0°. In curve B, C or D, this range extends a little to the left. At the
same time, the point at which the magnitude of A, is minimum shifts to the left,
and this tendency to shift to the left is large when & is large. In the machining
of mild steel, the magnitude of % is generally considered to be in the range
1 = 0.0005 ~ 0.001 sec., as described in Chapter II. When % = 0.0005~ 0.001 sec., the
magnitude of § at which i is minimum is about 60° ~75°, as seen in the figure.
Therefore, it can be considered that chatter is most likely to occur when @ = 60°
~75°.

The author? and S. Doi reported that chatter vibration (regenerative) has a
natural tendency to maintain a certain magnitude of phase lag, and that the
magnitude of this phase lag is such that it can feed energy into the vibrational
system at the maximum rate, and further that, in their experiments made by
cutting mild steel, its magnitude is usually about 60°. = This experimental result
seems to be in good agreement with our theoretical finding.

Next, we compare the harmonic value 4, in regenerative chatter with 4 in
primary chatter. Fig. 41 is obtained by numerical calculations using the same
values as those used in Chapter II, where we assumed that the magnitude of »
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(damping coefficient of vibrational system) 8
increases in proportion to p (natural fre- | Al A (Regenerative, A200006.5c)
quency of system). B:s( ¢ LA=0) )
In Fig. 41, curve A represents the har- 6F  C:i A (Primary, A7000055ec)
monic value 1, calculated by Equation
(5.14), where 12=0.0005 sec., §=60°. Curve
B is obtained from Equation (5.16), where
n=0, §=60°. For reference, curve C is the
same one as shown by broken line in Fig. 9, Pl
where it is for the primary chatter. It is
seen in all curves that the magnitude of
lir O A increases with increase of p, but
that the magnitudes of A, of curves A, B PiG. 41 Relation between natu-
are considerably smaller than the magni- ral frequency p and harmonic value
tude of curve C, and further that the in- 21 OF A
creasing manner of curves A, B is different
from mode of curve C. The whole area above each curve constitutes the unstable
region. It can therefore be said that in curve A, chatter is far more likely to
occur than in curve C, and that even in curve B in which the time lag =0,
chatter is more likely to occur than in curve C. In other words, in cuttings where
the work surface produced during previous revolution of workpiece has an effect
on the present motion of the vibrational system (in cuttings, being subject to so-
called feed-back effect), chatter occurs remarkably in comparison with the cuttings
in which the motion of vibratory system is not subject to the feed-back effect.
Furthermore, chatter vibration can be caused by so-called feed-back effect even
in cutting where there is no time lag of cutting force, for example, in cutting of
brittle metals such as cast iron. These theoretical results are in good agreement
with the practical experiences.

— B/sec
0 W&o 7200 7800

(4.3) Frequency of regenerative chatter vibration

The frequency of regenerative chatter vibration can be obtained graphically
from Equation (5.15) by the same method as that used in Chapter 1V, as shown
in Fig. 42. The frequency for the case of =0 is given immediately by Equation
(5.17).

Equation (5.15) can be written

Yi—Y2=1s

_ 1 _rn 1 oot (Xl
where _Vl—“é‘ﬁﬁ'q)y o= o ¢, ys—cot<2~+¢>- (5.21)

In Fig. 42, ¢, can be obtained by finding the abscissa of the point of intersection

of two curves y — v, and y:. Since curve y; = cot( +¢) shifts to the origin in

the amount of —g\ in comparison w1th curve y;=cot¢ for primary chatter, it is
seen that the frequency of regenerative chatter w;, must be smaller than that of
primary chatter ;. The difference between them, however, is influenced by the
magnitude of phase lag ¢ and by the other conditions.

We now calculate both frequencies wi and w by the above method, and com-
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pare them. Fig. 43 shows the results of calculations for two vibrational systems,
one is p =942/sec., n=100/sec., and the other is p =377/sec., »=40/sec. In the
figure, wi» and w; are plotted for k. - Curves indicated by the mark o are for
regenerative chatter in which 6 =60° and those indicated by the mark e are for
primary chatter; for reference, the broken lines are wy,=p. It is seen in the
figure that frequency wir is always considerably smaller than o for each system,
and that in the system p =942, n =100, w:;r becomes smaller than the natural
frequency p when & is large. This tendency to become smaller than p is con-
sidered greater when 6 > 60°.

5. Conclusions

The exciting manner of so-called regenerative chatter vibration has been found
experimentally. Namely, small undulations initially produced on a work surface
by the occurrence of transient vibratoin of the workpiece become more and more
large and herewith the undulations extend the whole work surface because the
phase of undulation always lags behind that of the preceding undulation. It has
been proved that owing to the existence of this phase lag, some amount of
energy can be furnished to the system for exciting or maintaining vibration.

Then, a differential equation for regenerative chatter vibration was introduced
based on the experimental results. By this equation, it has been proved theoreti-
cally that regenerative chatter is a kind of self-excited vibration caused by the
phase lag of present motion of the vibrational system existing behind the undu-
latory work surface produced during the preceding revolution of workpiece, al-
though it is subject to some influences like a forced vibration. Moreover, the
expression for conditions occurring regenerative chatter vibration has been intro-
duced on the basis of our differental equation. By this expression, many charac-
teristics of occurring regenerative chatter vibration were examined comparing
with those of primary chatter.
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Chapter VI. Chatter Vibration due to Flexible Cutiing
Tool having One Degree of Freedom

1. Introduction

Hitherto we have dealt with chatter vibration caused by deflection of the
main spindle of a lathe and the workpiece. We now examine the chatter vi-
bration caused by flexible cutting tool. Generally speaking, the frequency of
this latter vibration is considerably higher than frequency of the former. Chatter
caused by flexible cutting tool is usually accompanied by shrill sound and produces
fine pitched undulations on the work surface by which we can distinguish it.

The first comprehensive treatise on chatter caused by flexible cutting tool was
“by R. N. Arnold." Further papers on this subject were separately published by
A. ]. Chisholm® R. S. Hahn* and E. Salje.”

R. N. Arnold and A. J. Chisholm reported that the chatter of cutting tool is a
self-excited vibration caused by the falling characteristic of cutting force, which
depends upon the cutting speed, in the same way that the self-excited frictional
vibration is caused by the dry friction, which depends on the rubbing speed. We
agree that the chatter of the cutting tool may in some cases be caused by the fall-
ing characteristic of cutting force. The author, however, feels that the fundamental
cause of chatter vibration does not depend on this characteristic of cutting force,
as suggested by R. S. Hahn and E. Salje.

To verify this, the author® together with S. Doi carried out experiments on
the self-excited frictional vibration of a flexible rubbing tool similar to those on
the chatter vibration of flexible cutting tool, and the character and cause of chatter
vibration were examined and compared. As a result, it was ascertained that the
character of chatter caused by the flexible cutting tool resembles that of frictional
vibration (flexible rubbing tool), but that it was not caused by the falling charac-
teristic of cutting force. We feel that the fundamental cause of the chatter vi-
bration of a flexible cutting tool may be considered to be the same as that of the
deflection of the main spindle of lathe or of the workpiece. In other words, chatter
due to a flexible cutting tool is a kind of self-excited vibration caused by lag in
Auctuation of horizontal cutting force existing behind the horizontal vibration of
cutting edge.

In an ordinary cutting operation, it is possible for the cutting edge to move in
both directions, i.e., horizontally and vertically (see Fig. 44). The cause of chatter
can be said to depend on the horizontal vibration of the cutting edge by which the
area of cut fluctuates. It is the fluctuations in cutting area that produce the time
lag in cutting force.

S l
3
Foud ! &
(1) (2) (3) (1) (2)
FIG. 44. Cutting manner (several FiG. 45. Cutting manner

degrees of freedom). (one degree of freedom).



164 Shinobu Kato

The chatter vibration, however, occurs frequently and is accompanied by undu-
lations on the work surface even in the cutting operation in which such tools as
shown in Fig. 45 are used, for example, even in the cutting operation using cutting-
off tool in which the cutting edge is capable of moving only in a vertical direction,
i.e., the system having one degree of freedom.

To find the answer to the question “What can be the reason for these undu-
lations?,” we deal in this paper with the problem relating to chatter vibration due
to the flexible cutting tool having one degree of freedom as a reason for undu-
lations. We first make clear the way in which chatter vibration causes undulations
on the work surface and then we elucidate the fundamental cause of this chatter.

2. Experiments and considerations

Tests are made under the orthogonal cutting condition as shown in F ig. 46.
A flange machined preliminarily from a mild steel bar is held on the lathe by the
chuck and machined with a tool 13.4 mm square and 130 mm long. The tool is
always placed normal to the periphery of flange and is fed by the cross spindle
of lathe in an axial direction. To ensure a complete elastic deflection of the
tool, a special tool post with no upper slide is employed and the upper and lower
surfaces of the tool are ground to secure rigid clamping of the tool. Vertical vi-
brations of the tool end are measured by means of vertical deflection angle of the
tool.”  Fig. 47 gives an example of records of experiments measuring vertical vi-
brations of cutting edge where the cutting conditions are as follows: Cutting angle
of tool 80°, clearance angle of tool 10°, thickness of flange 1 mm, feed 0.01 mm,
diameter of flange 65 mm, and cutting speed 51 m/min. Fig. 48 is a photograph of
undulations produced on the work surface by the occurrence of chatter shown in
Fig. 47.

In cutting operations such as shown in Fig. 46, it is impossible for the cutting
edge to move in horizontal direction; it can vibrate only in vertical direction.
Notwithstanding the fact that it is impossible for the cutting edge to move in hori-
zontal direction, so-called “chatter marks” are usually produced on the work sur-
face as shown in Fig. 48. The wave length of this chatter mark corresponds exactly

FIG. 47. Vertical vibration of cutting tool.
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F1G. 48. Chatter mark. FIG. 49. Analysis of fluctuation

of chip thickness during vibration.

to the frequency of the vertical vibration of cutting edge. It is not possible for the
workpiece and the tool post to vibrate at such high frequency. Therefore, the
chatter mark must be the result of the vertical vibration of cutting edge.

We will now examine the causes producing the chatter mark. When the cutting
edge moves downward to displacement ¢, it follows that the cutting edge is dis-
placed slightly to displacement e as shown in Fig. 49, and the fluctuations in area
of cut could be produced. Of course, the magnitude of & is considerably small,
and depends not only on the position of the cutting edge with respect to the neutral
axis of the tool shank and the tool support design, but also on the modes of vi-
bration of the system.

We will try to calculate & assuming that the tool is an elastic body with one
end built in and the other end free. The expression for the deflection of elastic
bar to its normal mode of vibration is?®

y = A(cos ki x — cosh by x) + B(sin b x — sinh Z1 %) (6.1)
where A and B are the arbitrary constants decided by boundary conditions, and
ki is a well-known physical constant. In this case, it follows that A = g, =

0.3671 0 and % !=1.875, in which & denotes the vertical displacement of cutting
edge and [ the length of tool. Setting

A A 1
_ ay
L= jm/l—k(?ﬂ—) ax (6.2)
the magnitude of ¢ (see Fig. 49) is expressed by

¢=L—-1 (6.3)

Substituting Equation (6.1) into (6.2) and carrying out calculations by means of
Simpson’s first rule, we obtain the following expression for L

L=1+01733 K5 15° (6.4)
2
Accordingly, it follows that &= iﬁO?i‘)‘* (6.5)

The deflection angle (denoted by ) at the free end of neutral axis is expressed by

_(ay _ 1.3764 45
tan 6 = (—d}‘)x;-l = »T—“'“' (66)
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Consequently, because of the vertical motion of the cutting edge, the magnitude
of horizontal displacement & becomes

g =£&—7ptand. (6.7)

Substituting Equations (6.5) and (6.6) into Equation (6.7), we obtain
o= (06008 5 — 13764 7) (6.8)

where 7 denotes the height of the cutting edge with respect to the neutral axis
of the tool shank, as shown in Fig. 49.

Further, the fluctuations in area of cut are
also considered to be caused as follows: As shown
in Fig. 50, when the cutting edge is set up lower
or higher than the center of workpiece and the
cutting edge vibrates with certain amplitude in
vertical direction, the fluctuations of chip thick-
ness produced will be in the magnitude of & owing
to the curvature of the workpiece. Of course,
the magnitude of & depends not only on the radius
of curvature of the workpiece and the amplitude FIG. 50, Analvsis of fluctu
of vibration, but also on the setting height of the ation of chip thicykness during
cutting edge with respect to the center of work- vibration.
piece. As the expression for e, we can lead with

= s (s 9,4233" (6.9)

where 7 is radius of curvature of workpiece, and s is setting height of cutting
edge with respect to center of workpiece and is positive when set below the center

of workpiece.
The expression for total fluctuations in area of cut then becomes

cmete (O609a&—1;>764r)~1— fii%f-“t@ (6.10)

Consequently, even when the cutting edge is able to move only in vertical direction,
the fluctuations in area of cut can be produced by the vertical vibration of cutting
edge.

Now, the wave form of the chatter mark can be calculated by Equation (6.10).
Fig. 51 shows an example of calculations assuming that the cutting edge vibrates
harmonically in vertical direction as 0 = A sin wt.

In the figure, (1), (2) and (3) correspond to the conditions s=4.28, 2.92 and 1.35
mm, respectively, where [, 4, 7, A and o are held constant: [ =130 mm, » = 4.5 mm,
27 =65mm, A=027mm and o=27f =628 x 504==3,165/sec. These numerical
values of s, [, etc. are of the test conditions of experiments which will appear later.
Tt is seen by these figures that in each profile there is a protruding part denoted
by P in one pitch which is produced by the most downward displacement of cutting
edge, and that the wave forms are to some extent unique. It is also seen that the
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Onz Piteh =,

height of waves denoted by m increases
as the magnitude of s increases. The
wave form of (3) in Fig. 51 differs con-
siderably from those of (1) and (2), in
as much as there is a second small
prominence at point @ in the same pitch,
the reason for which is as follows: The
magnitude of = which corresponds to
total fluctuations of chip thickness is the
sum of & and = as seen in Equation

——
Cutting Direction

(6.10). In general, ¢ is a negative value, (2) $=2.92 mm

because the second term of right-hand a0 & - .

. . " . , . Afg Q

side in Equation (6.8) is commonly oL 77 T

larger than the first term, while = is a
positive value when s> 0. The absolute
value of & is, in general, considerably FiG. 51. Profiles of chatter mark ob-
larger than that of & especially when s tained by theoretical calculations.

is large. On the other hand, if the

magnitude of s is small, the absolute value of & becomes larger than that of ¢ at
some points in one cycle during vibration. Thus in the neighborhocd of point @
in Fig. 51-(3), the absolute value of s exceeds that of =, and another prominence
is formed. In Fig. 47-(1), (2), since at all points of a cycle during vibration, e
is always larger than &, there is no prominence other than P.

Next, to ascertain the foregoing considerations, the following experiments are
carried out. The profile of the chatter mark (shown in Fig. 48) is recorded opti-
cally by means of a tracer method.® Fig. 52 shows an example of the experi-
mental recordings. In the figure, (1), (2) and (3) are the results for the con-
ditions s=4.28, 2.92 and 1.35 mm respectively, where I, %, v, A and « are held
constant: /=130 mm, »=4.5 mm, 27 =6> mm, A=0.27 mm and o =2x/=2,165/sec.
It is seen by these figures that the wave forms of these experimental recordings
are to some extent unique and that they resemble closely those of Fig. 51 which
are calculated theoretically by Equation (6.10).

For reference, Fig. 53 shows the profile of chatter marks produced by the
chatter vibration occurring in such cutting operation as shown in Fig. 44-(3), i.e.,
the system having two degrees of freedom. In this case, the cutting edge vibrates
in both directions, horizontally and vertically. Therefore, the fluctuations of chip

(3) s=1.35 mm

—— Cutting Direction

: [ o \.‘f h\\_//ﬂwm‘/ (1) s=428 mm
€0

e WP L e < " ok,

" pmmmnmmess (3) 5= 1.35 mm

F1G. 52. Experimental records of profile of chatter mark.
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<—— Cutting Direction

FiG. 53. Experimental record of profile of chatter mark (2 degrees of
freedom).

thickness are large compared with those of Fig. 52 and thus the height of wave
is considerably large. Moreover, the wave form in Fig. 53 is in sharp contrast to
those in Fig. 52. Accordingly, the unique form of chatter marks shown in Fig. 52
is considered to be a special feature of chatter vibration due to the flexible cutting
tool having one degree of freedom.

Further investigations were made relating to the height of wave denoted by
m in Fig. 51. The magnitude of m is closely connected with various conditions as
seen in Equation (6.10). Figs. 54, 55, and 56 show the relationships between m
and various conditions. The curves indicated by broken lines in these figures give
the results of theoretical calculations by using Equation (6.10), and the solid lines
indicate the experimental results obtained by measuring the height of chatter
marks using the sensitive dial indicator.

012 \
\
£\
E 1 —o— Eiperemental .
\ £
E ‘\‘ cmeme Cafeutated 08 ; —o0— Laperimental .
ao8r g ‘\\ E, == (alcufaled ,//
L& \\\ 3 ’//
% \ B et ~
C \, - e
aos} o0t T o 0/
r \‘~ - ! ,//
Radius of Carvatare T mm ST, N —w Setting Height of Tool S mm
: L L " L L - oL 1 L 1 ]
0 0 a0 7/ 7 3 3 4 3
FIG. 54. Relation between radius FIG. 55. Relation between set-
of curvature of workpiece » and height ting height of tool s and height of
of wave m. wave m.
In Fig. 54, it is seen that the magni- a08; ) y
. . —o—
tude of m decreases with increase of £ “perimente A
R : . . F oy e (afcufoted e
diameter of workpiece, which is reason- H
. . S e
able. Fig. 55 shows that the magnitude o0at = e 5
of m increases in proportion to s, s de- % Pl
. . . . T -
noting the setting height of cutting edge ) )/o'/ ,
with respect to the center of workpiece. b —= Cutting Speea m/min
Fig. 56 shows the relationship between 0 20 @ & o
the height of wave m and the cutting FIG. 56. Relation between cutting

A € speed V and height of wa .
speed. It is well-known that the ampli- P € vem

tude of vertical vibration of cutting tool is in proportion to the cutting speed as

|4

023y —= ——
expressed by A= Snf
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where A is the amplitude of chatter vibration in vertical direction, and V denotes
the cutting speed. Therefore, it can be said that Fig. 56 shows the relationship
between m and A. It is seen in the figure that the magnitude of m increases
with increase of cutting speed. Then it can be said that the magnitude of m
increases with increase of the amplitude of vibration.

In Figs. 54 ~56, the experimental results have the same tendency as the
theoretical calculations; but the former are slightly lower than the latter in magni-
tude. One reason for this is that the profile of chatter marks has a protruding
part denoted by P in one pitch, as seen in Fig.51. In cutting operation this part
may be partially broken away together with the chip. As another reason, we can
mention the effect of measuring pressure of dial indicator on the chatter marks.

From the above description, it has been ascertained that the horizontal dis-
placement relative to the workpiece can be caused by the vertical movement of
cutting edge even in the cutting operation as shown in Fig. 45 where the cutting
edge of tool is able to move only in vertical direction, and thus it has also been
clarified that the fluctuations in area of cut can be caused by the vertical move-
ment of cutting edge during vibration even in the system having one degree of
freedom. When the fluctuations in area of cut are caused by the vertical vibration
of cutting edge, the phase of variation in vertical cutting force lags behind that
of fluctuation in area of cut, as described in Chapter I of this paper. Of course,
the magnitude of lag in phase in vertical direction is generally small compared
with that in horizontal direction. Accordingly, the energy which must be available -
for maintaining the vertical vibration of cutting edge will be furnished to the
vibrational system by this lag in vertical cutting force in the same way that the
chatter vibration due to the deflection of main spindle of a lathe and of a work-
piece is caused by the time lag in horizontal cutting force.

In Fig. 57, let line O-O denote the center of vertical vibration of cutting edge,
and assume that the fluctuations in area of cut are caused by the vertical vibration
of cutting edge as shown in the figure. At point
1 where the cutting edge reaches just to the center
line vibrating downward, the cutting force corre-
sponding to the area of cut denoted by a-a will
act on the system, because the time lag in ver-
tical cutting force exists. On the contrary, at
point 2 where the cutting edge reaches just to
the center vibrating upward, the vertical cutting
force corresponding to the area of cut denoted by
b-l? will act on the systgm. It can there'zfore be FIG. 57. Vertical displace-
said that during the period when the cutting edge ment of cutting edge and fluc-
moves downward, the action of the vertical cut-  tuation of area of cut,
ting force of large magnitude is in the same di-
rection as the movement of cutting edge, while in the period during which the
cutting edge moves upward, the cutting force of comparatively small magnitude
acts against the movement of cutting edge. Hence, the vibrational system gains
the energy necessary to maintain vibration. However, the magnitude of fluctuation
in area of cut and the manner of its fluctuation during one cycle of vibration are
closely connected with the various cutting conditions, as described previously.
Thus, there is a considerable increase or decrease in the amount of available
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energy according to the cutting conditions. 15

We will now examine the amounts of available
energy versus various cutting conditions by means
of numerical calculations using Equation (6.10).
Fig. 58 shows an example of calculations assum-
ing that the vertical cutting force can be repre-
sented as the linear function of area of cut having

324 kgm m/eyche

3

S e
Sr Cutting Force F Ky

Dispfacement & mm

—

constant time lag. In the figure, (1), (2) and (3) a2 ad
are the results of calculation corresponding to (1) s=428 mm

the conditions s=4.28, 2.92 and 1.35 mm respec- 1or

tively, where all conditions except s are held con- 176 Kgmom feycle

stant the same as conditions in Fig. 51. In our st
calculations, the numerical values used for the w
magnitude of time lag in vertical cutting force ot dmm , ’
(1) and that of the specific vertical cutting force 0 a2 04
(ks) are as follows: (2) s=2.92 mm
5 NS
I = 0.0002 sec.”™ ks =300 kg/mm® !i 2 aas tymn gt
. . . . . sl I —— L
In Fig. 58, the cutting force is plotted in the ordi- v 4 mm
nate and the displacement of cutting edge is v o
plotted in the abscissa, and in each figure the (31 s=135 mm
displacement to the right in direction corresponds Fi6. 58. Force-displacement
to the downward movement of the cutting edge. curves.

The arrows indicate the rotational direction in
each figure. It is seen that each curve in Figs. 58-(1) and (2) forms an ellipse,
but that the curve in Fig. 58-(3) is quite different somewhat bottle-shaped, the
reason for which is the same as described previously relating to Fig. 51-(3). The
closed areas within these forms correspond to the amount of energy available for
maintaining the vibration. In Fig. 58-(3), the available energy is expressed by the
remaining area 2 after removal of area L Consequently, it is found by these
figures that the chatter vibration is apt to occur in such conditions where s is large.
To verify the foregoing considerations, the following experiments were carried
out. Fig. 59 shows the experimental recordings measuring the vertical vibration
of cutting edge. In the figure, (1), (2), (3) and (4) are the recordings for con-
ditions s = 4.28, 351, 2.92, and 1.35 mm respectively. where all conditions except s
are held constant the same as conditions in Fig. 47. Fig. 60 is the record measur-
ing the free vibration of tool end. The frequencies of these chatter vibrations do
not in any way depend on the cutting conditions; they are almost the same as
natural frequency of the system. It is seen in Fig. 59 that the chatter vibration
is stationary when it occurs in the condition where s is large; and that it becomes
unstable gradually with decrease of s, and finally it almost dies out. It is evident
that these facts sustain the foregoing considerations. However, the occurrence of
chatter vibration depends not only upon the setting height of tool s, but also on
various conditions such as the diameter of workpiece, the length of tool shank,
and other conditions. Further, although the foregoing experiments were carried
out by cutting a thin flange 1 mm in width, we can assume that in a cutting oper-
ation with a thicker flange, the chatter would be more likely to occur even when
s is small.
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aofsec

'ffaém*zgfam%gﬁg@i&ﬁ&ﬁg&ﬁiﬁﬂﬂwh% (4) s=1.35 mm

FI1G. 59. Vertical vibrations of cutting tool.

|

F1G. 60. Free vibration of cutting tool

Now, if we accept the theory that the chatter vibration due to flexible cutting
tool having one degree of freedom is caused by the falling characteristic of cutting
force depending upon the cutting speed, the relative difficulty of occurring chatter,
as described above, cannot be explained by this theory.

From the above description, it is found that the horizontal displacement relative
to the workpiece can be caused by the vertical movement of cutting edge even in
the cutting operation where it is impossible for the cutting edge to move in hori-
zontal direction. In other words, it has been clarified that the fluctuations in area
of cut can be caused by the vertical movement of cutting edge during vibration
even in the system having one degree of freedom in vertical direction. When the
fluctuations in area of cut are caused by the vertical vibration of cutting edge,
the phase of variation in vertical cutting force lags behind that of the fluctuation
in area of cut. The energy available for maintaining the vertical vibration of
cutting edge is furnished by this lag in vertical cutting force. Consequently, it
has been ascertained experimentally that the chatter vibration due to the flexible
cutting tool having one degree of freedom must be a self-excited vibration caused
by the lag in vertical cutting force existing behind the vertical vibration of cutting
edge.

3. Theoretical analyses

We will now introduce a differential equation expressing the chatter vibration
caused by the flexible cutting tool having one degree of freedom based upon the
foregoing considerations.

In Fig. 61, let O denote the position of cutting edge before cutting, and s;
denote the setting height of cutting edge with respect to the center of workpiece
indicated by €. When a cut is operated, the cutting edge displaces to the point
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0,. If we denote this displacement by s, and
the undeformed chip thickness by d, it follows

that F(d)=Fk»+sa (6.11)

where F(d) is the vertical cutting force corre-
sponding to the chip thickness d, and k- sz is
the spring force of tool. Taking O: as the point
of origin and indicating the vertical movement
of cutting edge by y, when the movement is in
the downward direction, it is considered to be Work
positive. The expression for the chatter vibra-
tion then becomes

F1G. 61. Analysis of vibration.
my+cy+k(y+sa)=F(d, »). (6.12)

For the sake of simplicity, we will assume that the vertical cutting force denoted
by F(d, ») is in proportion to the magnitude of area of cut, and that the vertical
cutting force has a constant time lag . Then the vertical cutting force during
vibration must be expressed by

2
— K. — 2 — w o
F(d, y) =K+ {d— (arh = fyn) — 2200} (6.13)
where yi=9(t—h), s=si+Sas «a= ~06?93, B = % (1.37647 - 2 % 0.6093 54).

In Equation (6.13), the second and third terms within the braces of the right-hand
side correspond to & and e defined previously. Using Equation (6.11), and sub-
stituting Equation (6.13) into (6.12), we obtain

F+2ny+ 0y +uyn+ vyh =0 (6.14)
_C. ek (s - (L _ K
where 2n—m, P"m’ u—l(y B), v-—l(Zr +oc>, /1—«17?

In Equation (6.14), the non-linear term vy} is generally negligibly small compared
with the linear term wuys. Therefore, we will first deal with the problem relating
to the linear equation which neglects the non-linear term. T he differential equation
of chatter vibration is then expressed by

4209+ P2y + uyn = 0. (6.15)

This equation is just the same in form as Equation (2.8) in Chapter II of this
paper. Consequently, it can be said that, by using the same treatment as in
Chapter II, the system given by Equation (6.15) is capable of self-excitation be-
cause of the time lag 5, and that the expression for the condition of self-excitation
is of the form

U =1 or P %)\1 (6 16)

where u; or J; is the so-called harmonic value which is represented by



Theoretical Research on Chatter Vibration of Lathe Tools

ot
-~
w

27’1(,01_
sin wih

291w
A= 20O

( ,f - B) sin wlh

(6.17)

In Equation (6.17), it is found that the magnitude of 4 is small when s is large,
and when 7 and » are small, 1; is also small. Therefore, it can be said that the
chatter vibration is likely to occur in such conditions where s is large, and 7 and
#n are small. This is in good agreement with the foregoing considerations and
also with our experimental results.

Hitherto we have dealt with the problem relating to the linear Equation (6.15).
However, in as much as we have restricted our discussions to the problem of the
conditions of self-excitation, it is reasonable to consider that the analysis should
be made on the basis of linear Equation (6.15) neglecting the term vy} instead of
on the faultless Equation (6.14). The reason for this is that if the self-excitation
develops from a rest point where the initial movement is y = 0, the term of higher
order can be neglected.

Based on the above description, it has also been ascertained by theoretical
analysis that the self-excited vibration can be caused by the time lag & in vertical
cutting force existing behind the vertical vibration of cutting edge even in the
system having one degree of freedom, as shown in Fig. 48 in which the cutting
edge is capable of moving only in vertical direction.

4. Conclusions

It has been found that the horizontal displacement of cutting edge relative to
the workpiece can be caused by the vertical movement of cutting edge even in
the cutting operation in which such tools as shown in Fig. 45 are used; for ex-
ample, in the cutting operation using the cutting-off tool in which the cutting
edge is capable of moving only in a vertical direction, f.e., the system having one
degree of freedom. In other words, it has been ascertained that the fluctuations
in area of cut can be caused by the vertical movement of cutting edge during
vibration even in the system having one degree of freedom in vertical direction.
When the fluctuations in area of cut are caused by the vertical vibration of cutting
edge, the phase of variation in vertical cutting force lags behind that of Auctuation
in area of cut. The energy available for maintaining the vertical vibration of
cutting edge is furnished by this lag in vertical cutting force. Consequently, it
has been proved that the chatter vibration due to the flexible cutting tool having
one degree of freedom must be a self-excited vibration caused by the lag in verti-
cal cutting force existing behind the vertical vibration of cutting edge.
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