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I. Preliminaries

In recent years, it has been made clear that the liquids! under high frequency
oscillations undergo the mechanical behaviours different more or less from the one
expressed by the classical Navier-Stokes equation, and many experimental evidences
have been accumulated® concerning the fluids of polyatomic molecules, which
actually show remarkable absorption and dispersion of high frequency sound wave.

In some highly viscous solutions of high polymers, which do not obey the
ordinary Newton’s viscosity law, stating that the shearing stress is proportional to
the deformation of velocity (often called gradient of velocity), it has been presumed
that such non-Newtonian liquids actually have the 7igidity of fugitive nature. The
pure liquids or crystalloidal solutions, also, may be considered to have some 7igi-
dity under sufficiently high frequency oscillations.

Some solids such as metals, glasses, or asphalts, undergo plastic deformation
by a force acting sufficiently long time. .Recently the mechanical and elastic pro-
perties of solids of high polymer have been investigated® and they also show the
anomalous dispersion and absorption of high frequency sound wave and the
dielectric losses. These effects are interpreted by the delay of the finite time of
cutting off loose bindings or closs-linkages of the constituent molecules.

The molecular kinetic theories to interprete these phenomena in liguids® # and
solids® ® as well as gases™ %! of polyatomic molecule, have been tried, and up
to the present the quantitative explanation of these phenomena especially in liquids
from the modern molecular kinetic theories has not yet been quite satisfactory.

On the other hand, the treatment of the oscillatory charactors of the continua
for such a high frequency mechanical motion, has been tried by Oshida'® (Osida®)
and Frenkel and Obratzov,’’ **' being based on the phenomenological model of the
stress-strain relations. Osida® developed a theory to explain the high velocity of
the waves of thermal motion in liquids, which, often called hypersonic waves
found by Raman and Venkateswaran'® in 1939. His theory, was soon found to be
a special case of Frenkel-Obratzov’s. Recently, however, taking into account the
finite number of relaxation times and rheological constants, he extended his theory®
so as to include Frenkel-Obratzov’'s as a special case.

It is the absorption and dispersion of sound wave in liquids with which the
present author intends to mainly concern under high frequency regions of mechanical
oscillation. In this paper, considering the thermal expansion in liquids under such
a high frequency of mechanical oscillation, the author presents a theory by postu-
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lating finite number of relaxation times for the stress occuring in liquids, which
originates both from the displacements of materials and from the thermal ex-
pansion in liquids. Considering the Maxwellian relaxational process occuring in
. liquids, a generalized thermodynamical equation of state is presented. The thermal
expansion coefficients and rheological constants are all considered as operators of
Maxwellian type accompanied by relaxation times. The generalized stress-strain-
temperature relation, thus obtained by the present author, is conveniently applied
for plasto-elastic bodies, and this relation includs both Oshida’s and Frenkel-Obratov’s
as special cases.

The internal energy (in the macroscopic sense) not in a thermal equilibrium,
is attempted to be expressed by temperature and strain (or temperature and stress)
as two kinds of independent variable of state. The dependence of the internal
energy on the two independent variables (i.e. temperature and strain) is assumed
to be subjected to the Maxwellian relaxational process*’ And it is noteworthy
that the results obtained are formally very similar to the expression obtained by
Kneser® ¥ and Rutgers™ from the bases of the molecular collision between the
normal and the excited molecules.

Considering that the equation of state is a generalization of the one obtained by
Oshida and Frenkel, and further the expression of the internal energy used here is
very similar to that of Kneser's, the present theory has the favourable characters of
both Frenkel’s and Kneser’s. Accordingly. the temperature dependence of the absorp-
tion of the supersonic waves, for example, shows the collective features of Frenkel’s
and Kneser’s. In another words, in some normal liquids such as benzene and carbon
dioxide, the absorption of the sound wave rises with increasing temperature, show-
ing that the mechanism considered by Kneser plays rather an important role. On
the contrary, in some anomalous liquids (in most cases the constituent molecules
having hydrogen bonds and being called associative liquids) such as water and
acetic acid, the absorption decreases with increasing temperature, showing that the
effects of the internal viscosities including the compressional and the shearing ones,
are supposed to predominate rather than that of the specific heat terms.

The mechanical behaviour of liquids under the supersonic and the hypersonic
regions of frequency can be interpreted by this theory. The possibility of the
existence of the transverse wave (shear wave) in liquids is also discussed. In this
case, however, owing to the appearance of temperature only in the diagonal terms
of the stress tensor, the temperature terms have no influence explicitly on the
dynamical equations of the shear wave, except through the expression of the in-
ternal energy. The equation of conservation of energy, in this case, plays the role
of determining the relation between the displacement and temperature. Then the
term of specific heat similar to that of Kneser’s is also rather important.

The double refraction is supposed really to appear, owing to the compressional
and shearing rigidities appearing in liguids under high frequency mechanical oscil-
lations. The compressional ones may appear above the frequencies of the order
10 or 10" cycles per second, which corresponds to the order of the appearance of
the compressional rigidities of fugitive nature in most kinds of liquid. On the

other hand, however, the flow birefringence due to the shearing rigidities may
appear about the 10° cycles per second. Thus the one of the experimental methods
is offered to determine the existence of the shear wave at these regions of fre-
quency. The experimental evidence of the birefringence due to the compressional
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moduli of fugitive nature has not yet been discovered at the present, because of
the experimental difficulties of generating the mechanical oscillations of such an
extremely high frequency sound wave. The frequency at our hand being under
the order 10° Herz at present, the possibility of the existence of this kind of refrac-
tion is pointed out in most liquids under the supersonic regions of frequency (above
10" Hz.). The experiments in those supersonic regions of frequency are especially
of great interest and now are left to the further investigations in future.

The relation of the author’s present theory to the molecular kinetic theory is
not discussed in the present paper. Later, the discussion about this relation shall be
extended along the line similar to the one which we owe mainly to Kneser.

The existence and the high velocity of the hypersonic waves, or the elastic
waves of extremely high frequencies caused by thermal agitation in liquids, as
found in solids,” were also explained from the present theory, which may be com-
prehensible by the theory of the collision of the constituent molecules in liquids.

In the present paper, the mechanical properties of liquids under the supersonic
and the hypersonic regions are mainly focused to describe and are discussed in their
general features. The generalized theory proposed here for the expression of the
rheological phenomena, however, finds itself not only useful for the liquid states
(pure liquids. liquid mixtures, and solutions), but also conveniently applicable,
mautatis mutandis, to the plasto-elastic bodies in any phase, and the solids of high
polymeric substances as well as the gases and their mixtures of polyatomic molecules.

II. Notations

xi: rectangular coordinates, (=1, 2, 3)
&i . components of displacement,
1 (a,:j , 9%

): components of strain tensor, (7, j=1, 2, 3)

U=\ G T Bx;
~ 1 ( o5 o5 ) . : :

j = | =2 — =L )1 components of rotation of displacement,
V5= T\ B o%x; P p

Aij: components of stress tensor, including explicit temperature terms,
Al components of stress tensor, no influence of the thermal stress being con-

sidered,
t: time,
0 = po-+ p: density, po: density in static state,

D =D+ D pressure, Do pressure in static state,

7T = To+ T: temperature,

T: temperature deviation from the original temperature 7.

U: internal energy per unit mass (in the macroscopic sense), including both
translational and vibrational energies of constituent molecules,

qj: components of heat current vector, possibly put = —ngI;,

£ : thermal conductivity, corresponding to the transfer of the translational energy
to the translational energy of molecules,

ky: static volume modulus,

A . partial volume modului, Jr: partial volume viscosities,

tr: partial shearing rigidities, 1 partial shearing viscosities,

%’»: coefficients of partial cubic thermal expansion,
0



4 i Ei Iti Takizawa -
o o, o, o and ¥ : relaxation times,
C,: specific heat at constant volume, corresponding to the static state,
C,: partial specific heats at constant volume,
& and e, i;: material constants,
y : circular frequency =2 rmw; - »i-frequency; - - -
v velocity of wave,
@: amplitude absorption of wave per unit length.
For the abbreviation, we shall write the differential operator with respect to time
as follows:

i)

d _ dxj 9
ar = + d :

D= dt ox;

As usual in the tensorial notations, one should sum up over double indices.

III. Dynamical Equation of State

A. Stress-Strain Relations

Let us derive the general stress-strain relations in a plasto-elastic body by
considering the hysteresis function of Volterra, 15119 which include Maxwell’s rela-
tion'* for plasto-elastic body as a special case. At first we shall confine ourselves
in the -stress-strain relations accompanied by no explicit temperature effect. Then
in the section B of this chapter the effect of temperature shall be taken into ac-
count. The stress components, no temperature effect being considered, shall be
denoted - by the superscript % It would be better to consider that the shearing
stress AY (i % j), consists of many components A, Ajj, AP, ..., each of which
is prportional to the shearing strain gij (i3 7) with different coefficients p1, s, #,

Taking # components for the stress, we obtain

Ay = SAP. %)) (1)
If the deformation obeys the ordinary Hooke’s law, we obtain
Al = =2 preaij, (r=1,2,8,...,m) (2)

where u,’s are constants which express, so to speak, the partial shearing rigidities.
In the plasto-elastic body, however, we suppose that any component Aif’(#) of the
shearing stress A%(#), being a function of time £, is not directly proportional to
the shearing strain o:;(#) itself as in the theory of elesticity, but is proportional to
some average value® of deformation in the past, accordingly we can write, instead
of (2),

AP = 2/1,'a.,(t)—2,u,s B (#!) 0 aii(t — t")dt!, (i=7) (3)

where (') is a weight function, often called the “ fonctzon heredztazre” or hystereszs
Sunction, with the condition:

So B (#)at =1

The expression (3) includes the phenomena of the stress decaying with time, owing
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to the plasticity of the material under consideration. Although the process of
relaxation is incomprehensible in detail in the present state, it is natural to take
different hysteresis function for different mechanism.* Accordingly we shall denote
the hysteresis function of the 7-th component of the shearing stress as /1,(#). Thus
the collective shearing stress is expressed, from (1), (2), and (3), by

m

A= =220 {a,-,-(z) - th,-(t’) ot =tai'y.  (ix]) (4)

As for the normal stress A}, we can also consider I components, ie.

1
Al = 2A&f , (7 fixed) (5)
7=
and
1
A= AL+ A+ AL = Z}Afr? . (6)

Debye in his early paper® suggested that the volume dilatation has a finite
relaxation time, and Frenke!-Obratzov,'"’ Oshida,’® Kneser,® and others?" * have also
considered this phenomenon. Taking into account the finite number of relaxation
times, as Oshida interpreted, for the volume dilatation, the relation between the
pressure deviation p and the dilatation orr=o0n+on+0y, takes the form similar to
the relation (4). In this case, however, the situation is somewhat different from
the one as expressed in the case of the shearing stress. If the volume dilatation
is produced suddenly and kept constant (i.e. kept in a state of iso-strain), the
pressure decays after sufficiently long time, and does not vanish but really approaches
to a constant value, still remaining finite (cf. Fig. 1). This constant thermostatical
value, being related to the equation of state of the substance considered, is pro-
portional to the volume dilatation. Taking this equal to —Z-ors, where %, is static
volume modulus, accordingly we obtain for the residual pressure p— (—%kgar), and
not for the pressure itself,

1
— D —ketore = %2_11155.3 ) (7)
and
%Aﬁ = Jreapr — lrso G (¥) e opr(t =) ar, (8)

where 4,’s express, so to speak, the partial moduli of compression (partial bulk
moduli), and g-(#’) are hysteresis functions. From equations (4)~ (8), and con-
sidering that the pressure is defined by the following expression:

1
5=ﬁo+p=LA?.-k=;bo— (ka'okk+-~1—2A;e73>, (9)
3 3=
with the initial pressure p,. we shall completely set up the stress-strain relations

for the isotropic medium, in the symmetric tensorial form so that the relation (9)
should hold. Hence, the resultant stress-strain relations are obtained as follows:
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.1 =
Afj = po*bij — ko*ohr*dij — [Ellr-{akk(t) - So o () eapr(t — t')dt'}
- %,.Eﬂ”".{dkk(t) - So hr(t!) core(t —t') adt! }]6,','

-2§;#,-{ai,-(t) | meeny gz —ary, (10)
r=1 0
with
SO gr(t,)dt’ =
and
S B (t)dt! =1

For the continuous distributions of re]axatlon times, we may replace the summa-
tions over 7 by the integrations.
As a special case, putting the hysteresis functions in the form:
1 2 .
Gt)) = e, (cr>0)
' (11)

*

R
(i) = _}X_J-Q <D , (L2 >0)
Tr

and taking the oscillatory motion, we obtain the extension of the Maxwell’s rela-
tion for the plasto-elastic body, i.e.

1 mn " /
0 D 2 D oD
Aij = pPo*0ij — (k0+ -L]:_E'TI'D‘ —“3“2: _J_r(nD )O'L/» 0ij — “ZLT‘L’(I)D_UU’ (12)
F
iy ,
' ‘ Timal change corresponding
+
e e % to FIG. la.
/4;!‘ fe#j)
i
|
Y L i
'D c.
[ % Aij=—21+u7”)D Gijs (i7)
it _d _»
F < b= ==
F': Force,
¢ @ Strain,
%k and 2: Spring, Ajj= —(ko+ _¥D 544
2': Dashpot. 1 ( 14D ) v
+ ar2D
1T+
FI1G. 1a. Mechanical t (j fixed)

model of Maxwellian relax-
ational process.
(after Frenkel)

FIG. 14. Timal change
(absolute value) of stress-
strain-temperature.

FIG. 1. Stress-strain-temperature relation.
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where
d 2

D= =35

and 2} = A7 and g = w7y are, so to speak, the compressional and the shearing
viscosilies, respectively. s have a dimension of time, and are the measures of
the relaxational process. They are often called relaxation times.

If we take the functional forms for the hysteresis functions as:

2 2 -t
o) = l—t;ﬁ')—% re  Tecoswpt,  (zr>0)
r
14+ M T ) .
hl‘(t’) = ;(lr’m" ¢ 7 ecos wé',-‘t’, (T}-') > 0)
r

and further take the oscillatory motion of the material points, we can also obtain

a generalization of the equation of state given by Richardson,” % who considered

the mechanism of the absorption and dispersion of sound wave as originated from

the existence of resonators in molecules, which may be considered as rotators or

oscillators with eigen-frequencies wyr and wiy. Sometimes at certain region of
o

time, ¢ ™ *coswif become negative, while, in the course of time, at some other
region they take positive values.

Because of taking both positive and negative values, these hysteresis func-
tions have no longer the meaning of weight functions in the strict sense. Their
physical importance above cited, however, sometimes impelle us to use these types
of function. In this case if ws =0, or if the frequency of the wave with which the
wave propagates through the liquids, is very large compared with the eigen-frequencies
w of the resonators, the results obtained reduce to the above mentioned case of no
resonators, leading to the types of the Maxellian relaxational process (11). Andrade®*”
supposed that there might be such a resonance absorption in some cases. But, con-
sidering that the molecular eigen-frequencies appear only in higher frequency
regions such as over 10" Hz. (for example in the inversion-spectrum of NH;) Here
in the present paper, for the sake of simplicity and in the rheological fashion 2 la
mode, we shall take the hysteresis function of the Maxwellian type (11). Then,
the most general stress-strain relations for the plasto-elastic bodies subjected to
the Maxwellian relaxational process, are expressed as (12).

B. Thermal Stress

Now we shall consider the thermal expansion in liquids under high frequency
oscillations. In such a non-equilibrium state as the supersonic and the hypersonic
waves create, the temperature deviation is caused in liquids. The energy correspond-
ing to the momenta of constituent molecules in an equilibrium state, can be obtained
by averaging the translational, rotational, and vibrational momenta over the available
configurations of the molecule. In a non-equilibrium state, however, the fluctu-
ation of these momenta may be greater and sometimes we should treat even the
tensor of temperature, corresponding to the momenta of the molecules. Accordingly
it may sometimes be rather important to take into account the quantity correspond-
ing to the temperature tensor.® But here we shall consider merely a scalar
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quantity of temperature deviation as an independent variable of state. In this case,
the thermal stress is not directly proportional to the temperature deviation, itself,
but it may be supposed that the stress is also proportional to some average value of
temperature in the past, as in the case of the strain already disscussed. In this
point the behaviour of the thermal stress as a function of temperature greatly
differs from the ordinary thermal expansion as treated in the theory of thermo-
statics. Accordingly, as in the case (8), considering # components for the thermal
expansion, normal the stress is expressed by

Ai(t) = Al = Sar{T() —Sofr(t')'T(t—t')df' o Gfixed)  (10)
r=1L
with the condition for the weight functions f,(¢'):
§ rrnar=1. G fixed)

As for the forms of the weight function, we may take, for example, either a
resonator type (13) or a Maxwellian type for the oscillatory motion of the medium.
Considering the Maxwellian type as in (11), we can see that the following relations
hold for the normal stress and temperature :

Ai(t) — A% (1) = 'Elw—a—;' T, (i fixed) (15)

D
r=1 1+ T;?)D

with relaxation times ¥ and pariial cubic thermal exbansions &7 = T
0 0Tr
The first term in the right-hand side of (14) is the one analogous to the usual
thermal expansion, while the second term represents the rate of dissipation of the
stress by plastic flow. In another word, the equation (14) or (15) means that
temperature does not cause the normal stress instantaneously but there exists finite
time interval to create the pressure after a sudden uprise of temperature. It
may also roughly correspond to the expression that after the local temperature
has risen, the temperature takes contribution to pressure with a small but finite
delay of time.
Combining (12) and (15), we finally obtain the dynamical equation of state for
the plasto-elastic bodies subjected to the Maxwellian relaxational process:

n I-D
A= A%+ S %71y
1 ] '%: 1+ T;:‘)D s

A LMD 2% mD .
AU _1)0 0ij = (ko-*-yng'*:TrD - _3~r=1_1—_+ T;'“D )O'kk o5 (16)
m ID
2T p

with

The expression (16), including both strain and temperature terms explicitly, can
be usefully applicable to describe the rheological behaviours of plsto-elastic bodies,
i.e. internal viscosity effects,”=22) structural changes’ and monomerpolymer
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formation®’ ® in the phase under consideration. (cf. Fig. 2.)

The stress-strain relations (12) are the same as derived by Oshida® and include
the results obtained by Frenkel-Obratzov,”* and by Oshida himself? in 1941, as
special cases. The relation (16) is an extension of (12), and also includes the
equations of state of liquids obtained by Tisza,” Hall*® and others®)~%) as special
cases.

H—C{ 9o m
NO. .. H—0

FIG. 2. Associative Liquids.

Hydroxyl {OH) and amino (NHz) units in molecules make sometimes association,®” forming
multi-molecular grounps, ie. polymers, because of their hydregen bonds (O ... H). The actual
binding may take the ring- or chain-forms. Formic acid in liquid state shows a vibrational band
at 3080 cm~L In gaseous phase, its characteristic vibration appears at 3570 cm~™?, due to the
O~H vibration. Hydrogen tond makes also the kridges®) as follows: O—H .. N, O—H...S,
and N—H .. .N etc.

IV. Conservation of Energy

Kneser™ ™ and others"? considered that the dispersion and absorption of
supersonic wave originated from the delay of energy exchange between the exited
and the normal states of molecules. Accordingly the medium, through which the
wave propagates, is considered as a mixture of two kinds of molecule, between which
the reaction analogous to the chemical one can take place. This idea succeeded
in the interpretation of the dispersion and absorption of the wave in gases of poly-
atomic molecules. Later, this treatment was extended to the consideration of the
supersonic phenomena in non-associated liquids.” Kneser tock the assumptions
that 1) one of excited states is taken into consideration, and the number rate of
molecules per unit time in the excited state is a function of volume, temperature,
and the number itself ; 2) pressure is also a function of these three variables; and
3) the change caused by the disturbance of the elastic wave is adiabatic.

In an early paper, Herzfeld and Rice,” and others®' tock into account many
sorts of temperature, which correspond to the energies of the vibrational and the
translational, as well as the rotational motions of the molecules. They set up the
two kinds of equations of conservation of energy: ie. First, for the degree of
freedom of translation, expressing the fact that this energy can be changed by the
external work (work done by the stress)., thermal conduction (a molecule’s transla-
tional motion changes into another’s translational one), and the exchange with the
internal (in the microscopic sense) degrees of freedom with a finite delay of time
of energy transfer (relaxation time); and secondly, for the equation of conserva-
tion of energy for the internal (vibrational) degrees of freedom, stating that there
exists the inflow from the external degrees of freedom and the exchange of energy
between the internal degrees of freedom themselves. The latter equation includes
a rather uncertain idea of the flow of vibrational heat to the vibrational one.
Accordingly there might exist three sorts of temperature at any point of coodinate
space, having the following relation with initial temperature 1%:

CI(TI _ TU) + CII(TII — TO) = CIII(TIII - TO), (17)

where 7/, T, and T'” are the translational, internal (vibrational), and thermostatical
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temperatures respectively, and C’, C”, and C'” are the correspending specific heats.
For sufficiently slow motion, the following relations hold:

l=T!W="T",

and
C+Cr=CM. (18)

In such a line of consideration, the macroscopic pressure p may be defined as
the one which is proportional to the total energy subtracted by the internal vibra-
tional energies, and accordingly » is proportional to the translational energy alone.

These methods of dividing the system considered into the subsystems,* in
which the thermostatical equilibrium is maintained, is of frequent use and may
offer to some approach to the thermodynamics not in equilibrium. These methods
perphaps correspond to the treatment of the small deviation from the thermosta-
tical equilibrium. The assumption of the heat current vector, which we owe to
Stokes and Kirchhoff, stating that the heat stream vector is proportional to the
negative gradient of temperature, is sometimes uncertain within such subsystems as
disturbed by the mechanical oscillations of extremely high frequency. Accordingly,
the expression of the conservation of the internal energy (in the macroscopic
sense) is rather ambiguous. And in the present paper, we shall express the equa-
tion of conservation of energy at the macroscopic point of view (i.e. based on
the phenomenological model) for the dynamical state including the relaxational
process.

The equation of conservation of energy® of the system considered states that
the increment of the macroscopic internal energy (included both translational and
vibrational energies) is caused by the work done due to the stress and the thermal
conduction between the molecules in the same sort of energy type. This is written
as:

_oU _ _( ,..00ii , o4
P'at" = (Au 'a—t-!' é—;’-). (19)

where U is the internal energy per unit mass (in the macrocopic sense). And, &
being the thermal conductivity, the heat current vector g; may be put according
to Stokes-Kirchhoff as follows:

gi= — xg’z_ ) (20)
This means that the heat transfer takes place by the collision between the same
sort of energy type, i.e. the translational to the translational, and the rotational to
the rotational energy.

While, as for the expression of the macroscopic internal energy, we may con-
sider as follows. Taking two kinds of independent variable as temperature and
strain, the energy increment 60U, in the iso-strained state, is proportional to the
temperature increase 67, and the proportionality constant is the specific heat at
constant volume, as usual in the thermostatics. The sudden energy increase,
however, is assumed also to proportional to the average value of temperature incre-
ment in the past as well as to the temperature uprise itself. Accordingly, considering
finite number of mechanisms contributing to the internal energy, we can also state
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8UL(t) = CydT(t) +ZICr‘{6T(t) - Sofr(t'%aT(t-—vt’)dt’}, (21)
with
§ Frnar =1,
for the hysteresis functions 7»(#').

On the other hand, the energy increment 6Ur, subjected to the iso-thermal process,
shall be also expressed as:

a ® .
SU(1) = gp*dap(t) + 215" i {50ij(t) - jﬂfl‘(t’)‘ﬁd,‘j(t - t’)df’}, (22)
with the condition for the hysteresis functions:
S Fr(#at =
0

The first term of the right-hand side of (22) is of great importance as to the
explanation of thermal stress in a suddenly changing process.”’ The second terms
are the ones analogous to the rheological relaxational process.

Combining the two expressions (21) and (22), we shall finally complete the
expression of the internal energy ¢ in the macroscopic sense:

0U=0Us+0Ur. (23)

Let us take the Maxwellian relaxational process and presume the oscillatory
motion of the liquids, as we have already assumed for the stress-strain relations,
{21) and (22) reduce to

C-r'f'(s) o
6Uo= {CO +§W}‘OT’ (24)
€ (T} D -
oUr = {So’ou -+ Z lr-I-Jr“’D } *00ij, (25)

with relaxation times rf’ and 7. C, is the so-called static specific heat at con-
stant volume, and C, the so called pariial specific heats at constant volume.

It is of great interest to mention that the expression (24) of the operator
corresponds to the specific heat for the oscillatory motion and is formally equivalent
to the expression of the specific heat obtained by Kneser.’* If we designate by
Ca= the specific heat for the translation of the molecules, accordingly if C» is the

limitting value of ’%(1]10‘ with infinite frequency, we obtain from (24),

C.=Co+ §Cr. (26)

By using (26), we can write the specific heat operator as:

s, Crr’D s, C
Co+ 21 1 _:_rz_;:s)‘ﬁ‘ =Cu— E-I:;EE— (27)

r=1 r=1
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As a special case, if we take further s=1, and put C,=C. - Ci, where Clis
static specific heat, (27) reduces to the expression of the specific heat obtained by
Kneser. Thus the equation (24) is a generalization of the expression of the specific
heat term of Kneser’s theory.

The expression (25) is of some interest in the theory of thermal stress when
the disturbance caused by the thermal expansion propagates with finite velocity.
The second term of (25) expresses that the internal energy is also subjected to
the relaxational process due to the normal and shearing strains. In general, it
happens that the values of e, ;; are very small compared with ¢,. As the frequency
of the shearing and normal waves in liquids increases greater and greater, and
finally becomes i %1 (at the hypersonic region), then the second terms may be
comparatively effective. On the other hand, when ot;” <1, we may neglect these
terms comparing with the one involving .

Writing the differential form of the internal energy (23), we finaily obtain:

Cr riiTr D
v=(Co+ 3 HT’(»,;D) aT+ (et + 37 L,D) daij. (28)

V. Application to the Supersonic Wave

The fundamental equations for the supersonic waves which state the conserva-
tion of momentum and of energy, are expressed respectively, in linear forms,

oui __ __ OAij 9()

Y oxj ’ (29)
_alr Oadi P
p'% flu' "'5; + KAQ (.).0)

with u; = %t

The density change, if needed, is related to the strain through the equation of
continuity :

dp
di

Putting the resultant expression (12) for the stress and the internal energy
(28) into (29) and (30), we obtain, neglecting the small quantities of higher order :

_ Ou;

+"ax,~ =0. (31)

Lo D 2D D0 pk me ulD Baij
{k"+2‘1+er 3 21 1+T“’D}_5? 2D oxs
(YrD aT (32)

= 11+r‘2’D oxi

r{ ,21 1C_;_Tr(3)D }31‘ {uo 8ij + E ir-:thjg } ag;; ]

Sopk
=Dy +rdT. (33)

If we take the wave of volume dilatation (longitudinal wave), we obtain from
(32) for the equations of motion,
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Owing to the scalar property of temperature term, which appears merely in the
diagonal parts of the stress tensor, the explicit temperature term plays rather an
important role in the equation of motion of the longitudinal wave.

As a special case of (34), we shall take the plane sound wave, progressing into
the -+ x;-direction with circular frequency w:

9 .9 _
= %‘axaﬂo,
£y=8,=0,

—_ o plwi—px ‘ |
& =N¢ e" " | w
T =RT" %, G (3) >0,

Okl = 011 = = Bg.eiwt~5x’

oij=0.  (except i=j=1) /

The equations of motion (32) or (34), and of conservation of energy (30), are:

2 ! m n
R (S S V5 2 [ VAR SRV (36)
s aT g 87‘,11'!';4)1) 80‘11
p«{(Co%‘EII )—t+ (€D+E 1+ T;})D) ot ]
_ 4 Oou
Do + £dT. . » (37)

Putting (35) into (36) and (37), and neglecting the second and higher order
small quantities, we obtain:

twi} oy zua,
oo + (ot SDp2lt g 235 dout g 31 SO g7 0, (3B)

“iwﬁ(%%‘eo*{*z%%‘%' {ZCU(CD+Z ;a_f/;:‘:(s) > —7%52}11:& (39)

Considering that the simultaneous equations (38) and (39) have the non-trivial
solution, we can see that § is to satisfy the following equation:

1 m n
000" + (ko-i-z” +i2 " >82, > 1_:_62(12 @ B 0
f ——in(j) +€o+z%) zw(c<,+2s %)—%Bz ’
i.e. o S : ‘
?—‘fo—AB4+[{iwCoféf+c—z“r(37}A—xa’2— > Tf—i.j}i_;g'{%{so-}‘
+221a):zn‘(r4) }]3 + po(Co-}—Zf—w_l_cgngT) 0, (40)
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7 m
with A=h+37 + 5200,

In this equation, if we take k-0, which may approximately hold for nonmetalic
liquids, then we obtain:

0 e L ol ke 2y iou ko
S
™ iwaleof (kyCh) p iwer, 17y /s
+2_‘—1+Ol f22)0 '(1 : +2_11 Y o)x
Y Ia)C-—Tr )/Co
X(1+zxm‘(‘3‘{‘> J- (41)

The sound velocity » and the amplitude absorption ¢ per unit length are
obtained as follows:

w

— 2
v Sm(B)’ (42)
a=N(B). (43)

For the limitting case I=m=n=1, the curves of »/v, versus w and of 2a/Jm(B)
versus w, are shown in Fig. 3, where vy=v%k/po.

In general, it may be often considered that the partial elastic moduli, expressing
the rheological behaviours of liquids, are small, compared with the stafic elastic
modulus. We shall treat this case. Then, putting

Ar Hr

oy
K, E—', and — 1,

ko
and taking

Cr &r, if
s Ll
C. 1, P <1,

and expanding the guantities in the power series of %— etc., and retaining the terms
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up to the order ’}c_’ etc., we obtain:
0

L) 1 <Niwir/ky 2 N dop/ ke
{1 2 B L+i07, 37 1+io

_ Lshiware/ (RCo) 1 o $hiwey/(keCo)

2 1+ iwt}? 2 poso 1+ iwr®
- PRI (S -
-DECEE ), w
with -
o= \/ % (45)

which corresponds to the sound velocity at low frequency.
From (42) and (43), we obtain:

I Cl)znr R ,(lr (D"(”
v=ov0 1+ Eko—l—l-w zkol—+_2T”
D al ® J’ 1 ate ® T(,')
+ E ko(aol-} 't 2 TCs 1+ 0'c?
2 .i &7, 11 wt;“
ko 1+a) (2)2 CO 1+w2 ()2
1 2 “r- w 2 Cr a)T;z) 1
* EWHT G T w 1o
{ Ik L0 2."’ T
ko 1+w'2 ko 1<l-w2 b2
+ PO Q'T 1‘
2 po kCo 1+ o't
+iiae 1

(4)2

1K ar 1 ey 0Ty
+?2 ko 7 (22 '2 éo 2 (4)2

14+ o'ty 1+ oty
13 ale 1 L5Cr o'
2 2 kCo 1+ o'cf” > Co 1+ o’} } (47)

About the dependence of the absorption on frequency, from (47) we can see
that the first and second terms take the somewhat different features to the fifth
and sixth terms. The formers are the ones obtained by Frenkel and Oshida, and
are corresponding to the compressional and shearing viscosities; while the sixth
corresponds to the term obtained by Kneser. Thus, taking adaptable values for
either the formers or the latter, we can see that the frequency dependence of the
absorption takes the same feature each other. Thus one of their theories, treating
the mechanical behaviour of liquids, can interprete the relaxation phenomena.
Owing to the nature of the specific heat terms and viscosity terms (both com-
pressional and shearing ones included), the temperature dependence of these two
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terms is quite different. And one of these theories can not explain the mutually
different temperature dependences of the normal liquids and the associated liquids.
In the present theory, however, we can successfully take into consideration these
complicated temperature dependence of the absorption, because of the inclusion of
both the specific heat terms and the viscosity terms. It may be considered that
the srecific heat terms can predominate in the normal liquids, and on the other
hand the viscosity terms play rather an important réle in the associated liquids.
Naturally the liquids such as acetates, and acids, especially formic acids, in which
the chemical reaction of forming monomers and dimers takes place, are accom-
panied with the relaxation of establishing the equilibrium between these two
phases. (cf. Fig. 2.)

The third term in (47) is also of the same character as the first ones above
discussed, and is originated from the relaxation phenomena of thermal expansion.
The dependence of the term on frequency is similar to the viscosity terms.

As for the thermal conductivity, however, the thermal conduction in mercury
plays very important rdle, whose effect, combined with the classical viscosity effect,
is considered to occupy about 80% of the absorption®’ of the wave. (No relaxation
phenomena are considered in mercury). On the contrary, in the usual liquids of
polyatomic molecule, the relaxation phenomena predominate, and the effect of
thermal conduction is rather small.® ¥ Thus the assumption made here that the
thermal conduction can be neglected, is not so unrigorous. If we wish to take
into account the effect of thermal conductivity &, as Herzfeld and Rice® and
others,® the exact solution of (40) is to be used, or the conductivity term can be
treated as a perturbation, then the meaning of the static bulk modulus suffers
modification and is different from the one ko for £-0.

For sufficiently low frequencies, the equation (47) reduces to

_20" [ 8, 3 poat 8 e o, 3
a—svgpa{m+—zh+ L G + 1 G + 2+ 4lz+...}. (48)

If we identify x with the ordinary coefficient of viscosity, the first term

2 a)zu{ (
= 49)
“ 3 Zlgpa)

gives the classical dissipation, arising from the ordinary viscosity, which was
derived by Stokes. Then i{ is what was called by Kirchhoff the second coefficient
of viscosity.” and is considered to vanish for gases.

The last term in (47) due to the relaxation of specific heat, is the combination
of, what is called by Kneser, the translational and vibrational heat terms depend-
ing upon the frequency.

The third term is due to the relaxation of thermal expansion, and is considered
to express, in some sense, the chemical change of monomer-polymer formation,*’
combining with the viscosity relaxations of the first and second terms.

In general, the values of all relaxation times are different each other, owing
to the different mechanisms of the relaxation. But sometimes it may be suggested
that the relaxation of a component of the normal traction and that of a component
of the tangential traction are to be attributed to a similar causes. In this case,
it is natural that we may take almost equal time constants, e.g.
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Then the dynamical equation of state (16), can be a little simplified :

Aij=po*0ij — (ko + E}J{T(Z/- 3)pr
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For the continuous distribution of the relaxation times, if necessary, we may
replace the summations over 7 with the integrations. In most liquids of polyatomic
molecule of simpler constitution, the distribution of relaxation times is discrete,
and it is natural and sufficient to consider only the finite number of relaxation times.

The relaxation time of ordinary viscosity is considered to be very short, being
the order 10-" sec. for ordinary liquids. Accordingly we have wr;<1 for the super-
sonic waves, whose frequencies lie between 10°~10° Hz. Then, considering only one
more extra relaxation, we see that (47) becomes to

2 !
_ N Az (4/3)/,b y2 ix__ﬁl_ _
@= 20300{A1+3u1+1+w275+1+ (1'°+ o0 Co 14 0¥ } (50)

According to (50), a/»* decreases with increasing frequency from

“(n+ 4 S Mo gt f; ‘gn} to 22 {314 4 ).

7)o

2 T
1)00

The fact that most liquids show no distinguishable change of @/»® with frequency
v, can be interpreted that the second relaxation times are so small that the products
wts, o1, and woti’, are also fairly smaller than unity.

A few liquids, including acetic acid, methyl acetate, and ethyl acetate, however,
show the apparent decrement of the absorption coefficient with increasing frequency.

As an example, for acetic acid at about 20°C, putting

=0’ =1 =r=286x10"" sec.,
21:‘2 AT - ~15 2 -1
oo (11 —+ 3—#1) =1515x107" sec”. cm ™.,
and
2 4 p a’ - 2 -
S (el gy P @) 2 sec’, 1
oo (1_+ 3t 2 Co ) 1.600 <107 sec”. cm™ .,

(50) gives good agreement with the experimental data® as is shown in Fig. 4.
Considering that

0,=1.049 g. cm~2.,
and 29=1.141x10°cm. sec™’. at 0.5 MHz.,

we have from above figures,
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A g’—/.d = 0.120 poises,
PITI 1’0 %1 _ 442%10° dyne. cm™
2 3 C€_ .

If we identify p! with ordinary coefficient of viscosity, which is 0.0146 poises
for acetic acid at 20°C, the second coefficient of viscosity A/ should be equal to
0.100 poises. In this case, the postulation, that

A1 by

SR = po a'y 41 2
oy <1, and Z.+ S/to+ n Co < ky,

is sufficiently satisfied, considering that the static bulk modulus %, = pw; has the
figure approximately equal to 1.366 10" dyne. cm™%

From the expressions obtained above, the dispersion is always accompanied
with the absorption.

L(d 4 b ai) o7 :
{1+ (k ? ko + 0o koCo) 1+w2-[2 }. (51)

If the frequency » becomes so large that wt. is much larger than unity, but still
remains wri<1, the velocity comes to

Az+(4/3)ﬂz+ Doacy } (5

V= ’Uo'{l-i— e ToneCa 1’ 52)

and the relative dispersion for the acetic acid becomes approximately 1.62% using
the figures cited above.

Spakovskij's experiment™ gives 0.9% relative dispersion for the frequency range
0.24~2.7 MHz., and from Claeys-Errea-Sack,*’ and Bar,” Oshida gave a value about
0.3% for this frequency range. While, by using the data given by Lamb-Pinkerton,*’
(561) gives the relative dispersion to be about 1.62% for the range: 0.5 to 67.5
MHz.; and about 1.60% for the frequency: 0.5 to 5.0 MHz. While, their experi-
ment® gives the relative dispersion about 1.2% for this frequency range.

Thus, the possibly impure sample used by Spakovskij and others*’ and the
ambiguity of the figures above on which our present calculation based, make the
results rather complicated. And at present situation, though no precise decision can

L x 1017 se¢® emt
v cm FIG. 4. Absorption versus frequency

of acetic acid at 20°C.

ACETIC ACID »: frequency,

a: absorption per unit length.
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not be drawn, we can say, in any case, that the theoretical and the experimental
results are in agreement in the order of magnitude.

As for the anomalous absorption® of methyl acetate and ethyl acetate, no
satisfactory interpretation is given at present, and it is not so easy to understand
the inclination® ? of the curves of their absorption versus frequency. According
to Byer and Smith,5® the absorption coefficient a for ethyl acetate is directly pro-
portional to frequency at the frequency region 3~40 MHz., i.e. ¢/ is approximately
constant, being (10~15) x10-? c.g.s. unit. Such a fact can not be explained by (50).
A combination of three and more relaxations may reproduce approximately the
experimental result of the apparent linearity relation between absorption coefficient
and frequency. In this case, the relaxations, which appear both from the thermal
expansion and the specific heat terms, may have a great possibility of contributing
to the absorption. At present, we can hardly say anything about the precise and
firm reality of these individual relaxations. Accordingly, the comprehension of
these experimental facts still remains unsolved, and in future this real feature of
relaxations must be explored at the point of view of molecular kinetic theory. In
this case. the method of consideration as is carried out by de Groot® and by
Oomori,’® *® may offer some information about the order and the relation of relaxa-
tion times, in the macroscopic and microscopic points of view, respectively.

For sufficiently high frequencies, the expressions (46) and (47) become to

) 13, 2 b 3 o
0*00'{1’1'—270217"}‘ 3 7 Zﬂr’f‘ﬂmozﬁr'i'm&dr—k .. }9 (53)
a=0. (54)

Thus we obtained the velocity and absorption for extremely high frequencies, which
we call the hypersonic frequencies. The interpretation of the high velocity of
this kind of wave is obviously accomplished, owing to the large values of the
apparent bulk and shear moduli, which appeared in (53). On the other hand, the
absorption hardly suffers from damping. This owes mainly to the properties of
liquids, whose behaviours at the hypersonic regions of oscillation are very similar
to those of solid bodies. On the hypersonic waves, we shall discuss in detail in
Chapter VI.

VI. Hypersonic and Transverse Waves

Elastic waves, so called supersonics, ranging in the region of frequency 105~
105 Hz., can be generated by the ordinary radio methods, whichever they may be
the longitudinal or the transverse. The elastic vibrations of the extremely high
frequency, lying in the region 10°~10% Hz., sometimes called the hypersonic
waves*» are known to exist under the natural condition in solids, constituting the
main part of the thermal agitation in such bodies. In liquids it is also believed at
present that the elastic waves of the high frequency of the order 10" Hz. or above,
do exist owing to the thermal motion of the constituent molecules. If we take
into account the quasicrystalline structure of liquids, i.e. a domain, in which the
motion of the molecules interacts over wide range with one another in their
neighbourhood, then we can see that the thermal waves analogous as in solids
exist, and that Debye’s theory is also considered to hold approximately. The region
of the frequency covers so widely as the wave-length is longer than the mean free
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path of the constituent molecules, i.e. the Schwingungsdauer is greater than the
mean collision time. Thus, in liquids, this ranges lower than 5x10® Hz. (in
crystals 10* Hz.). Accordingly the theory developed here, which treats the liquids
as continua, is supposed tc be a good approximation for describing the mechanical
properties of liquids even under such hypersonic regions of frequency. Debye’s
theory thus can be also applied to the liquid state as well as the monoatomic
solids, in which the thermal motion may be described as a superposition of longi-
tudinal and transverse waves.

The existence of the hypersonic waves in liquids is shown directly by the
scattering of monochromatic light quite analogous to the Debye-Scherrer method
applied to the crystal lattice. In liquids the appearance of hyperfine structures in
scattered monochromatic light, was observed by Gross®® in 1930, as a result of
the reflection (Rayleigh scattering) of the light by the regular spacing of the denser
part (thermal fluctuation of density) caused by the longitudinal elastic waves in
liquids. In this case, the reflected planes, which obey Bragg’s condition, moves
with the sound velocity v. Thus Doppler’s effect is introduced, resulting the ap-
pearance of the symmetric satellite lines on the both sides of the principal line.
The difference in frequency 4v is given by Brillouin' as

Ay 2 . D
— = £+ 2— sin -

v c 2 (55)

where ¢ is the light velocity, and ¢ the glancing angle. This formula (55) is verified
by the observation of the hyperfine structure by Gross*” and others®™ with the
accuracy of about =10%. Thus from the wave-length of light Aiigns used, the ex-
istence®’ of the elastic waves in liquids with the frequency 5x10° Hz. (A~2x 1075
cm~3% Arignt) is obviously shown, where 1 is the wave-length of hypersonics.

With increasing viscosity, the effect becomes clearer, and we can observe!® 4
this phenomenon in phenol at 25°C and in glycerine, which are rather highly viscous
liquids.

According to Hiedemann,’® it is mentioned that for sufficiently large frequencies,
when the wave-lengths become shorter, the transfer of heat from the compressed
(heated) places to the extended (cooled) places occurs more violently, and finally the
process reaches isothermal rather than adiabatic.®® Whether the process occuring
in liquids is adiabatic or isothermal, is determined by the order of magnitude of

the di sionl uantit v
& aimensioniess antl . .
4 v ﬂocovc?i

If this ratio is smaller than unity, the rdle of heat conduction must be relatively
small, i.e. the process is almost adiabatic. In the opposite case, however, the vibra-
tions must take place with the isothermal character.

Considering the values:

£/ 0oCoth = 0.63 % 107% sec. for water,

o =0.62x107" sec. for acetic acid,
" =0.83%x107" sec. for benzene,
" =026x10"" sec. for glycerine,

we can see that kp/pCo; is far smaller than unity even for »=10°~10" Hz. which
corresponds to the hypersonic frequencies. Thus the process occuring in liquids
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under the hypersonic regions of frequency is considered to remain still adiabatic.
Certainly. for higher frequencies, this is not the case, but such waves have so
small wave-lengths, comparable with the molecular spacing in liquids, that they
can hardly exist when the discrete molecular structure is taken into consideratior.
Thus the neglect of & in (40) is quite adequate, for the liquids cited above and
perphaps other similar organic compounds.
For the waves of sufficiently high frequency ot > 1, we obtain from (41),

§ = {1+E L (1+~l§9 )n%f-c—"e—kj (56)

%
or from (53),

y = w — e 4,*1,1 . ._Z_Mm‘ . _L) 3 . > 5
v = S‘m(@) =1 {1 T 2k0221+ 3}30}4#;_}- Qkopoc()}_za'y + 2kc>_g&’7+ }.(07)

Owing to the almost purely imaginary value of 3, the waves of such high frequency
suffer no remarkable absorption and thus we have:

a=0, (58)

Oshida'® mentioned that we neglecting the two thermal conductivities within
the two subsystem themselves of the translational and the vibrational motions of
molecules, the velocity vy of hypersonic wave is given by:

for wtV>1;
iz
‘UII—\/@'\TC ‘l/?\)-{-gféﬁ
_\/UL+ Yol (% — V%) + é zzl (59)

where vy is the isothermal velocity, and v, the adiabatic velocity ; and C’, C” and C"”
correspond to the translational (rotational included), the vibrational, and the thermo-
statical specific heats respectively, as is mentioned in (18) of Chapter IV. Accord-
ingly the internal specific heat C” also contributes to the velocity of the hyperscnic
wave. His theory as well as the author’s present theory fails to explain the marked
decrease of the propagation velocity in acetone found by Rao*® ) near the region
of »=10% Hz.

The relaxation time " corresponding to the ordinary viscosity, is not known ex-
actly, but considered pherphaps to lie near 1074 sec. for ordinary liquids. Hence it

follows that to take wt{" <1 is more preferable instead of wr{">1. In this case,

) ] . . 5 .
the term ipL - 1(17 is considered utterly smaller than ¢} or v% since
0 PoT1

#i~107" poises, po~1 gr.cm™, v,~10° cm. sec™™.

And then we obtain:

1
vu=los+ G (- ot - (60

For benzene,® ™ takin
g
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C" =138 cal.mol™%, C'=81 cal.mol™., and —”_l = 0.70,

v

Oshida gives the ratio

Vu

o 1.23.
This value fairly agrees with the data based on the observation of Gross*” and
Mitra.” Thus he supposed that the excess of 5% ~30% of vy over vy is realized
in most liquids.

Water is not interpreted by this mechanism. Some liquids, including water,
however, have different origins of the absorption and the dispersion of sound wave.
The structural change between two states of molecular lattice,’ the monomer-
polymer formation®’ as in some organic acids,*® the hydroxyl or amino units con-
tained in constituent molecules, the acoustical scattering by molecules,® ) the
cavity formation, the non-linear absorption, etc.,”” may also be other causes of the
absorption and the dispersion in liquids.

In the region of the hypersonic frequency, the transverse elastic waves have
also a great possibility of existence. Owing to the shearing rigidities of fugitive
nature, from (32) we obtain:

o ~ B ety D
0087(”[!' 12_-1_‘ 1/_:_ r(l)D Awij: (61)
with
vi= (o~ o) (i=123)

Taking the progressive wave into the +x-direction:

@ij = Raiee™ ™, Im(8) >0, (62)

we obtain the equation concering f3:

— 000’ = % ;ﬁ’:wf{l, (63)
ie.
Bz — - Poa?2 .
S (64)
1l 4dwcy”

Accordingly we can compute the velocity »’ and the absorption e’ per unit
length for shear wave:

S 5
T JmBy _ (€s)
=R(B). (66)
For sufficiently large w, we put wri’'$1, and obtain,
— (02
s (67)

E#r

r=1
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The almost purely imaginary value of f, leads to the very slight absorption:

a =0, (68)
&
o = %1_#1 (69)
0o

In this case, the temperature deviation caused in liquids is considered to be
connected with the strain by the relation (33), which plays also an important role
for such high frequency transverse waves.

In crystals, it appears three Doppler-doublets,” corresponding to the three
velocities of the component waves, one longitudinal and two transverse. Thus,
according to Debye’s theory the thermal energy in solids is distributed among these
three waves. In liquids® ™ if there were no transverse waves, their specific heats
should be diminished greately compared with those of their solid phases. In reality,
however, the difference of the specific heats between these two phases, is rather
small, and this would support the existence of the transverse waves with sufficiently
high frequencies even in liquids, if Debye’s theory approximately holds for liquids.

VII. Discussions and Summary

In dynamics of liquids of polyatomic molecule, the thermal stress of fugitive
nature is emphasized to play an important réle. The general stress-strain-tem-
perature relations (16) for plasto-elastic bodies having finite number of relaxation
times and rheological constants, were obtained especially under the consideration
of thermal stress. The materials being subjected to the Maxwellian relaxational
process, these relations are generalization of the results obtained by Frenkel-Obratzov
and Oshida, applicable to the phenomena in liquids for the supersonic and the hyper-
sonic waves. Moreover, the expression obtained includes the ever presented theories
both of the compressional and the shearing viscosities, of the structural change, and
of collisions, caused in liquids under such high frequency mechanical oscillations.

An attempt was made to formulate the expression of the internal energy (in
the macroscopic sense) of liquids not in a thermal equilibrium. The expression
of the internal energy used here, is assumed to be subjected to the Maxwellian
relaxational process both for the temperature and for the strain. This is also found
to include, as a special case, the expression obtained by Kneser for the non-as-
sociated liquids.

The combination of these expressions of state and of internal energy, using the
equations of motion and of conservation of energy, results in the formulae for the
dispersion and the absorption of waves of high frequency mechanical oscillation,
giving the preferable characters of both Frenkel-Obratzov’s and Kneser’s theories.
Thus, for example, the temperature dependence of the absorption and of the velocity
of the wave, has the better aspects of these two theories. Accordingly the present
theory is conveniently applied, regardiess of sorts of liquid, to the ultrasonic
phenomena.

Moreover, as the description of the present theory is mainly focused to the
phenomena in liquids, this is also applicable, mutatis mutandis, to the dynamical
behaviour of amorphous bodies: solids, liquids, and gases of polyatomic molecules
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under the high frequency of mechanical oscillations.

The rheological phenomena in high polymers can be aiso explained by the
present theory with slight modification of rheological constants.

Owing to the presence of the compressional and the shearing rigidities of
fugitive nature under the high frequency of mechanical osciilation, the birefringence
does appear even in liquids. The order of frequency of their appearance may be
10° Hz. for the shearing rigidities; and above 10" Iiz. for the compressional moduli.
As the relaxation time for some high polymer solutions is of the order 107° sec.,
the birefringence may appear at about the frequency of order 10° Hz. As for the
compressional moduli, the order of 10® Idz. is the one which corresponds to the
hypersonic waves existing in liquids and solid crystals found in nature as Debye men-
tioned. The hypersonic waves existing in nature are thus of great interest from
the point of view of optical observations.

The high frequency elastic waves in the elasto-plastic body were discussed in
Capters V and VL. The results obtained were compared with experimental data.
The relation of the present theory to the molecular kinetic theories are not yet
discussed here. This shall be treated later elsewhere according to the line of
consideration developed by Kneser. If we consider some model of the constituent
molecules, and treat the matter on the bases of molecular kinetic theory, we may
have some relations between the above mentioned r;'”s. And the temperature
relaxation and the internal energy have some more rigorous foundation. On the
macroscopic model, however, we can hardly say anything about the relations,
which might hold between the thermodynamical dependent variables.

The behaviour of most liquids for supersonic frequency regions, is compre-
hensible at least qualitatively by the present theory. The temperature dependence
of non-associated liquids and the so-called anomalous liquids, the latter being
distinguishable for their having hydrogen bonds, can be also interpreted.

The existence and the high velocity of the hypersonic waves, i.e. the elastic
waves of extremely high frequency caused by thermal agitation in liquids, were
also considered.

The inflected form? 15 of the curves of the absorption versus frequency,
which appears in the cases of acetic acid, methyl acetate, and ethyl acetate, may
be at least qualitatively comprehensible by the present theory, with the ordinary
viscosity, and two kinds of extra relaxational viscosity. A precise interpretation,
however, can not be sufficiently made by this theory. The thermal expansion terms
may contribute to the absorption in this case. So it may be possible to interprete
these curves, if we take more relaxation times or the thermal expansion terms.

Richardson® and Lucas®™ have considered that the loss of the ultrasonics is
also due to the scattering of the wave by density fluctuation. This is another sort
of the apparent absorption of quite different nature, and such a possibility may
make the phenomena extremely complicated. Some liquids, including water, can
be considered to show the structural absorption, some the monomer-polymer reac-
tion, and some non-associated the collision of Kneser’s type. All these can be
implicitly included in the present theory, but the absorption due to the scattering
loss did not said above. Accordingly such a case may sometimes be effective, and
the loss can be estimated and interpreted by that mechanism, as well as the non-
linear absorptions and the formation of cavities in the acoustical field of liquids.

Even in liquids, the transverse waves have also the possibility of existence, as
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Oshida and Frenkel emphasised. The thermal stress does not influence directly on
this type of the wave. In this case, however, it may be supposed that the more
the fluctuation does appear, the greater the effects of temperature deviation may
become. The tensor, corresponding to the momenta of the constituent molecules,
may sometimes be of use, but here we merely considered the scalar temperature,
relaxating to the internal energy according to the energy expression (28). Thus
the strain-temperature relation is considered to be supported by the equation of
conservation of energy (30).

The thermal stress terms appear in the logitudinal waves directly, and the
structural mechanism, ie. perhaps owing to the rearrangement of molecules, ef-
fectively appears in the dilatational waves, with combination of strain terms, as is
shown in (46) and (47).
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