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I. Preliminaries

In the ultrasonic fields of comparatively low frequency, it is considered that
the thermal process may occur under the adiabatic condition. While, at the re-
gion of extremely high frequency, it has been considered that liquids behave like
an elastic body, and the thermal process may become nearly adiabatic. Thermal
transfer, however, is rather complicated and can be hardly said so determinately.
Accordingly, many authors have had their discussions about the thermal process
really occuring in liquids under the supersonic and the hypersonic regions of me-
chanical oscillation. From the initial stage of the ultrasonic investigation, where
the sound becomes inaudible and is faded away from human hearing sensation,
its threshold being nearly at 2x10* Hz., the ambiguity of the thermal process in
fluids has been alive intensely in several researchers’ mind.

In their early paper, Herzfeld and Rice! considered that the adiabatic state
is best guaranteed for low frequencies, while for higher frequencies the influence
of heat conduction becomes larger, thus resulting in the decrease of velocity with
increasing frequency. According to Rocard’s investigation,? the absorption due to
the thermal conduction is consisted of two terms, the first proportional to the
square of frequency and the second proportional to the fourth power of frequency.
The former gives the ordinary absorption originated from the heat conduction,
and the latter can be neglected at low frequencies. While at higher frequencies,
this term becomes larger and larger untill comparable with the first one at about
5x10% Hz. At the higher frequencies over 5x10° Hz., the sound amplitude ab-
sorption due to the thermal conduction reaches a limitting value independent of
frequency, e.g. being 6x10* c.g.s. for air. This corresponds to such a damping
that the amplitude decreases to the half of its initial value after the wave propa-
gated 1,800 A in the distance. The sound velocity also has a limiting value equal
to the one in the isothermal state. At extremely high frequencies, it is considered
by several authors®® that the sound velocity again becomes to a value corre-
sponding to the isothermal state. Thus they might consider that the nearly adia-
batic process is maintained at a certain intermediate region of frequency lying
between these two limitting isothermal regions. .

Kneser’s kinetic theory* of ultrasonics, almost neglecting the thermal conduc-
tion, leads to the operator corresponding to a dymnamic specific heat. And one
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can hardly say anything if the thermal state really occuring in liquids is adiabatic
or isothermal. Hiedemann® considered that in some liquids the isothermal process
may be guaranteed for the region of hypersonic frequencies such as over 10" Hz.
Frenkel,” QOshida,” and the present author® took the ratio of thermal conduction
(devided by heat capacity) multipled by frequency to the square of the sound
velocity in the adiabatic condition, and compared the ratio with unity, and then
they considered that for most kinds of liquid the adiabatic process is still realiza-
ble even in the hypersonic region under 10** Hz.

Their criterion as well as that of Herzfeld-Rice is equivalent to merely talke
into consideration the comparison of thermal conduction with mechanical work
done by the fluid in the infinitely extended medium. Moreover, they have treated
only one wave corresponding to the density change. In reality, however, there
exist two waves, one due to the density change and the other due to the tempera-
ture fluctuation.® Thus, these treatments cited above, may be said unsound, if
their theory of sound should be re-examined in the bounded space as Sakadi”
considered. Because of the existence of one more extra wave due to the thermal
conduction and fluctuation, and of the nonexistence of the infinitely extended liquids,
we should take two waves into account and consider the effect of the boundary
of the medium. The boundary conditions bound the independent choice of two
independent variables, which may be chosen freely in the infinitely extended
medium. Thus we can descriminate strictly whether the process occuring in the
medium is isothermal or adiabatic.

In this paper the thermal process occuring in liguids under the supersonic and
the hypersonic regions of frequency shall be discussed in detail. The result ob-
tained shows that the adiabatic condition maintains fairly well for most kinds of
liquid at low frequencies. And in liquids far from the boundary, the process
takes place in the course of almost adiabatic state for the high frequency regions
under 102 Hz. It is to be emphasized that most liquids undergo adiabatic change
even for such extremely high frequencies. In the vicinity of the boundary, how-
ever, it is shown that the thermal conduction can not be neglected for such a re-
gion of high frequency. Accordingly the thermal conduction is of some importance
inside the so-called boundary layer, and this means that the process cccuring in
this layer is more shifted towards the isothermal state rather than the adiabatic,
being compared with the space region inside the medium.

II. Notations and Fundamental Equations

Notations
x; © rectangular coordinates, (i=1, 2, 3)
&; : components of displacement,
¢ : temperature deviation from initial temperature,
o :  initial static pressure,
0o : density in static state,
ko : satatic bulk modulus,
. Ar, ur: partial compressional and shearing rigidities,
M-=2r7tr: partial volume viscosities,
b= 7y 1 partial shearing viscosities,
arfky: partial cubic thermal expansion,
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x# : thermal conductivity for external degree of freedom,
C,: static specific heat at constant volume,
&, Cr, and ¢,i;: material constants,

o), o, o, and o7 : relaxation times,
D= H%— = %: partial differential operator with respect to time ¢Z,
gij = %(ai’ +da;’) components of strain tensor, (7, j=1, 2, 3)
1

P MWD __ 23 D —23 4D
Aij = po* b (k°+r211+~rD ST ”’D)‘”’” % 2r211+ =D

n (2)
artyr D . .
4+ D)= 960 components of strass tensor,

aij

dU = (CD+S‘ Cr‘t'r[g)D) dd+ (-o i + Zi—f’_*’_’f(—f,)p—) doij: increment of internal

energy per unit mass.

Fundamental Equations

The fundamental equations for liquids at the rheological point of view, were
obtained by the present author® in a generalized form, taking into account the
thermal expansion and thermal conduction as well as the mechanical work done
by the fluids.”” The medium, through which the ultrasonics propagate, shall
be either liquids or gases as well as solids, mutatis mutandis. To the present
case of the supersonic and the hypersonic waves, these equations are conveniently
applied.

The linear equations of motion and of conservation of energy are respectively
as follows:

% _ _ 0Ai
o = T Tox; 1)
Po%: — Ajj ad” + wdd. (2)
In one-dimensional case: x=ux, §=§;, Sa=5= 22 =0,
X2 &3
(1) and (2) are written in the forms:
.-z +bax~ + e 28, (3)
*
(14c¢ ) ~(g+r* )8t8x (4)
with
3 __k b L oa \
b= Do ’ poco ’ g poCo Co’
x«_ 1 art? D «_ 1< 4D
“= va-Eﬂl-{-T;-a)D’, - P0 r=1 1+7.D’
4 5
wio LA WD 1D ©
o 37ral+ D’ Coa1+9p’
*_i & Sr,uf‘r“D
4 CD;E=11+r“’D )
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The quantities with an asterisk * appeared in (5) show that they are integro-differ-
ential operators having hereditary characteristics of Maxwellian relaxational pro-
cess.

III. Plane Sound Wave

As a representative case, we shall consider a plane sound wave in the space
. 2] 2
M = s 7 — — —_— = =
region: 0=x< + o, where & =§3;=0, and o = o 0.

For the sake of simplicity, we shall take in (5),
l=n=s=q=1, and m=2.

The choice of m =2 means that we take ordinary shearing viscosity x! and one
more extra shearing viscosity s, subjected to the relaxational process.

Let
E___ms.eiwt‘f'ﬂx’
fwl+px . } (6)
J=RNJ e, Sm(B) <0, N(R) <0.
Inserting (6) into (3) and (4), we obtain:
—{*+ B+ 1*+m*)F} e+ a" B =0, } (7
—iwB(g+ )+ { —io(l+c*) + hf}I =0,

where D included in the operators marked with ¥, is replaced by iw.
Eliminating £ and # from (7), we have a quadratic equation to determine .
This equation can be written in the non-dimensional form:

I+ +4{0—i(1+c")(1+e) —dotyr—id(1+¢%) =0, (8)
with o
(0] —
B“ - W'JT, (9)
and . .
_ ho P m® _a*(g+f")
0=~ e=—"p g=—"p

From (8), v is obtained as follows:

7‘:2(1—{*-6"){—6+z’(1+c*)(1+s)+i5"='=\/’—’}’ (10}

with
W)= —-il+c*)(1+2) =i +4i0(1+c*)(1+2). (11

The numerical values in c.g.s. unit for some kinds of liquid at 20°C and 1 atm.
pressure, are given in Table 1, with the data for air under the same condition.
The order of magnitude of e, /¥, and relaxation times ty’ is merely estimated
in Table 2.

The two roots of (10) shall be denoted as 71 and 7. Then we have two waves,

one due to the density change and the other due to the thermal conduction.
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TABLE 1. Numerical Values (20°C, 1 atm, press.)

(c.g.s. unit)
Ordinary ther- _bo_ ‘
po | mal expansion_ b 1 —4—u’ h poCo : i A
— =4 po 34 1 i Lb

oo | (20=0) |
W;‘;f(; 1 1.00 ] 107 % 6.31 | 101 0.237 | 10"3x1 35 10-%x1. 40| 10-1x024* 105 0.31
acerleacd! 105 105%012 | 10Ux0118 | 1072156 [1o-sxos1l 1o-lx047l 1074 0.48
Bensene L 0879 10°x0.18 \101'x0143 10‘°><0.982’10 3x1.11/10~ lxoesl 10-1x 083
Mg;"r" |13 54 l 107x034 | 10%x0.85 | 10-?x 153 11071 0.45 1071 x 054 105 0.98

air B2 10031 | 10°x08%9 | 0200 | 0270 10°x012 | 0.3
Accordingly, putting again
5 - m(Al . er‘mt.‘{!lx_i. Az . ei«o!+{52x)’
9 fewk+3, X {4+ o x (12)
J=NR(B;i+e +Bse ),
. [o . . N .

with f; = _V—h'\/?é as in (9) and referring to equation (7), we obtain
_ B 2 i+ (1+en o
e P T (1)

2 5+

_ B 2 0+ (1+e) (14)

=X pae

Let the medium occcupy the region: 0=x< 4 <, and the boundary conditions
at x =0, shall be taken as follows:

(&)y=0=C *cos wi,
87.9 _ } (15)
(35)...=0
with C real positive.
These relations result in:
Bodo
A —_
2 0o — a
‘3 ﬁ Bl 1 . (16)
— 3161
42 = cﬁzdz— 51 78
Let
2
xg—;z =Q - cos(wt+ 2(x))
= Re(Floy A+ &0 4 lay Ay v &™), (17)
and
— 28 =@+ cos (vt + ()
‘otox ~ : _
= m( - 1.@?0)(61 A1 M emeslz + B;z Az M emt*.-(!zx)’ (18)
with

Q and Q' >0.
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We finally obtain

Q _s.c. | V72 e — 71 e™]

Q' IN72 (84 (14 e)r)e™ = V11 (6 + (L+e)r)e™ ]

The explicit expression for ¢ is given in the following two paragraphs for the
supersonic and the hypersonic regions of frequency, respectively. The ratio (19)
can be a measure of the thermal state occuring in the medium. From the definitions
(17) and (18), if the value (19) is far smaller than unity, the process is adiabatic,
while, if not, the thermal change may be called isothermal rather than adiabatic.
The numerical value of (19) shall be discussed in the following.

(19)

IV. Supersonic Waves

In the supersonic region: 10'<w < 10° Hz., the quantities 4, e, ¢, and c¢* are
all far smaller than unity. Accordingly, by expanding (11) in the powers of 0, ¢, ¢
and c*, and neglecting the higher order terms of these small quantities, we have
from (11),

\/7=i(1+c*)(l+e)+6+i<,9—-(1—152;§%_€—)+0(63). (20)

From (10) and (20), we obtain:

. # i
n=il+e) g+, 1
(21)
=_—0, S S ]
(LR P {1 A+ d+e T }
Thus we have two waves of density change and of temperature origin:
= l-_._ ¥ I
V7= NE) VItc*. {1+2(1+c*”1+e)+...}, o)

‘vlT° —1\/1+€ .{1—2(1—+C—§)—m+ . .}.

Taking a linear combination of these two waves as in (12), and imposing the
boundary conditions (15) at x =0, we see, after some calculations, that (19) is
given by:

e
0 |1+f—
"Q’*; 0. - '!1'*‘(/)—1.(/)’]X
11— 2 Co
V72 e"™ =i e (23)
N G+ A4e)m) @™ — V1 0+ (Ut ear)e™]’
with
[
¢=TFe)(dte)”
and

)

b O
¢ (l+e*)(l+e)”
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For the ordinary shearing viscosity, x{ is of the order 107 c.g.s. (poises), and
©i” is 107" sec. Taking the ordinary thermal expansion coefficient, the formula
(23) leads to the one obtained by Sakadi,” considering that 1¥ &, ¢*, and f* are
all reduced to zero.

In the region: x>0, (23) takes the values as shown in Table 2 for the fre-
quencies w<10° Hz. By using these figures,

TABLE 2. Rheological Consﬁtants (20°C, 1 atm. press.)

(cgs. unit)
1 P57 X108 c* Fi1(23) | (24
Water 05810712 o | 1072 ‘ 03x107 | 10 | 107 | & | 3
Acetic acid | 069x107% o | 1072 | 05x10-2 | 01| 100 | s | V7
Penzene 088x107% 6 | 10-2 08x10 | 1071 | 107 | & | VT
Mercury 0.24x10"1 o | 107 | 10x100 | — { — 6| w7
Air 032x107%0 | 107 | ag/b=043 | — { — e | w3
we see that (23) is almost equal to
—8,-'=.6(1+<,ﬁ)/(1+¢+e+c*)'=.~a, (23")
considering that
(V72" — V7 ™| 1

WG+ At ome™ =V 6+ 1+ o+ 1+ ernl’
for this region of frequency and for the space region: x>0.

In the vicinity of the boundary x =0, where
x«\/ %, (inside the so-called boundary layer)
{23) leads to
L 5 24)
o] V. (

From Table 2, we can definitely conclude that the ratio @/ is far smaller
than unity for most kinds of liquid in this region of frequency under 105 Hz. In
another word, the process occuring in liquids is almost adiabatic at the supersonic
region of frequency.

V. Hypersonic Waves

For sufficiently high frequencies such as 10°< w <102 Hz., we can still treat
the liquids as continua in a fairly good approximation.”® From Table 2, we can
see that in most liquids the condition 8.<1 is best guaranteed for the frequency
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region o <10 Hz. Thus, the conclusion presented in the preceding paragraph is
still well available for most kinds of liguid even in such a region of extremely
high frequency, often called hypersonic region.

It happens sometimes, that in some fluids such as gases the value ¢ in Table 2
is formally larger than unity for w>10" Hz. In reality, however, when the fre-
quency of mechanical oscillation reaches greater than 5 x 10° Hz., the wave-length
of air at 20°C, 1 atm. pressure, for example, becomes smaller than 7 X 10° A.
While, the mean free path of air at the same condition is known to be 6 X 10* A.
Accordingly, it is obvious that the existence of such a wave with extremely
short wave-length is quite impossible for air. In this case of high frequency wave,
the treatment of gases as continua, becomes utterly inadequate.

On the contrary, in most liquids, there exist the hypersonic waves, whose fre-
quency lies in the region smaller than 5 x 10®® Hz. In crystals the most upper limit
of the frequency of wave which can exist, reaches 10* Hz. Thus the mathematical
treatment as in (23) can be still valid for liquids and solids even in such high
frequencies as 102 Hz. The values of ¢ in Table 2, still remain to be smaller
than unity for most liquids.

Mercury is not the case. The most upper limit of the frequency of wave being
able to exist in mercury, is approximately 5 x 10** Hz. In mercury, for 0 <10" Hz.,
6 becomes also smaller than unity.

Accordingly, we shall treat the hypersonics in most liquids, whose frequency
lies in the region: 10°<w <102 Hz. In this case, ¢, ¢, /¥, and ¢* are all far smaller
than unity.

Considering that

" =10 sec.,

£ 21077~ 107% sec.,

1 =107 sec.,

@ @ and < =107°~107" sec.,

1
2

for most kinds of liquid, we calculate (11), by expanding in the powers of d, ¢, ¢
and ¢* Neglecting the higher order terms of these small quantities, for Jr owe
obtain the same expression as (20). This results in the same expressions as (21),
(22), (23), and (23').

Accordingly, the discussion presented in the preceding paragraph for w<10°
Hz., can be also valid even in the region of extremely high frequency 109< 0 <10
Hz., with slight modification of numerical values of 0. In other words, for the
hypersonic region, we have several thousandfold or hundred thourandfold nu-
merical values of 8 at the supersonic frequency. It is to be emphasized, however,
that values of ¢ at this hypersonic region are still smaller than unity. Table 2
can be also useful in this case. And the conclusion drawn in paragraph IV is also
hold in the hypersonics:

g—,‘=.5(1+<,0)/(1+90+e+c*).
Thus, we conclude that for most liguids the adiabatic process is still main-
tained fairly well even in the hypersonic region, whose frequency lies under 10%

Hz.
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