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1. Introduction

It is well known that the ordinary theory of elastisity is available only for
uniform and continuous bodies. But these conditions will not be satisfied in actual
materials from microscopic view, because steel, for example, is composed of a num-
ber of cristals, and cast iron has many cavities or pores. Hence the usual theory
will be applicable for some limitted problems.

In this paper, the author introduced an idea of mean stress, i.e., average stress
value within a sphere of radius p, around the point considerd. Then we have the
stress distribution that depends on not only the shape of the body but the ratio
of p to its dimension. If we take the magnitude of p as a material specific con-
stant, the degree of stress concentration will depend on its properties. It can be
expected that the value of p of cast iron will be larger than that of steel, in order

to explain various experimental data.
In the second section, we describe the basic relations of stresses, and offer

new Hooke’s law with regard to mean stresses. Especially two dimensional theory
is treated in the third section, and its application to simple problems of stress con-
centration is given in the fourth section.

2. Fundamental Equations

Now we define the mean stess IV as an average value of usual stress ¢ within
a sphere of radius p, around the point considerd (x, y, 2).
Then we can express the following formula,

N = S‘SSRde‘dy‘dz‘/%”pa

where R is the region of integration, the sphere above mentioned.
If ¢ can be developed in Taylor series at the point,

o= (a2t 5(2—‘;)&“ +n(%‘{)x’m + 4(%)1’3& ...

where
E=x1—x, =523, {=21—2,

we arrive to
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As the equilibrium equation of local stress are well known in the next form,

a()'x aTz aTy _ R
ox + 5y + 55 =0, etc.

integrating these above the sphere, we can obtain the following expressions.
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where Ny, N,, N, are normal mean stresses, and S, S,, S, are tangential mean
stresses.

Hereupon we assume the following form of Hooke’s law

ou 1 . ov  ow _ 1
*ax“ = "E‘-'(Nx el DNy DNz), etc, 5z -+ ay = GSx, etc.
where u, v, w, are components of displacement.

Then the problem is reduced to find the solution of these equations which
should satisfy the given boundary conditions. For instance, normal and tangen-
tial local stresses will be given at the boundary.

When plane stress problem is considerd, it is suitable that mean stresses
within a circle instead of the sphere are used. Then we can write
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3. Two dimensional problems

For plane stress problems, using the Airy’s stress function F

_oF _oF _ _°oF
Ne= oy’ Ny= 5z Sz = oxoy”’

and elliminating #, » from the equations, we obtain the fundamental equatin of F,
44F =0.
Since stress function for local stress can be aiso defined by the following re-
lation,
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f will be related to F by the equation,

2 2
F:f+—§—4f, or f=F~— gAF.

4. Examples

a) The effect of a circular hole on stress distribution in an infinite plate

An infinite plate is submitted to an uniform tension of magnitude T in the x
direction. If a circular hole is made in the plate, the stress distribution in the
neighborhood of the hole will be changed, and its stress concentration is quite
important in practice.
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After the ordinary theory, we obtain
F= Ao?’a -+ BQIOgT -+ (AMVZ -+ Bx?’d -+ Cl/?'g -+ Dx)COS2 g

where 7, § are components of polar coordinate, and its origin is taken at the centre
of the hole. Then we have stress components

Ny =2A0+ By/7* ~ (2A,+6C1/7 +4D1/7)cos 2 0
Ne = 2A[)—Bo/?’2 -+ (2A1+ 12817’2+ 6C1/7‘4)COS 20
S=(24:+6B7" —6Ci/# —2D:/#)sin?2 0'

As boundary conditions at 7— o are

N,=Tcos¥, S=-Tsinfcosb,
we obtain Av=T/4, A;=T/4, B, =0.

And considering the conditions at the edge of the hole (r=a) we can deter-
mine other constants, i.e.,

. T 2 _ T 2 _ T( 02> 4
Bo—-—-2—a, Dl—-~2——a, C]———"z‘ 1+21? a.

Since mean stresses are significant in this case only at #>a+p, we must dis-
cuss the magnitude of stress concentration at 7=a-+p. Then it can be seen that
Ny becomes the greatest when 0=r/2 or 3x/2.

At these points

= 2 3, a4
(No)(a=2/x :T3+32+8’z +4+ 1

r=a+p (1+X)4 kT

where A=p/a.
When 1-0, the results coincide with the ordinary theory, and decrease as 2
increases. This aspect can be seen easily in the table below.
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b) Rotating disks
The strength of rotating circular disks is of great practical inportance. If
the thickness of the disk is small in comparison with its radius, the problem can
be solved by two dimensional analysis.
In this case eqguations of equilibrium are
aO'x a‘{'z
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where r=specific gravity, w=angular velocity.
The local stress function are defined by
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then mean stresses become
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And we take the mean stress function as

_ o'F _ 7o’ 2 oo’ _oF _ 1’7’ _ e’ _ o°F
Ne=ga = 37 i =g 2 1 2= T Gy
now F=f+i’§ A+ oon

Finally we obtain the equation of F,

A4F =2(1 = )1’

This can be easily solved in this case,

2
F=Alogr+ Biflog v+ CrZ—I—D—!-»(l 37—)22150~r4.
Considering the boundary conditions ¢,=0 at r=a, r=5b, where ¢ and b are
inner and outer radius respectively, we can determine integration constants.
The tangential stress at r=a-+p becomes,

S4+v a0 s 14+p .. 143 2 o’
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(No)ap = g ¢ Pllta =35, A 3+ (A+a) (X+a)2]

where
a=alb A=o0/b
Apparently (Ny)esp is a function of a, 1, some numerical results are shown in

the figure below, on which the ordinate w/wo is critical angular velocity ratio when
the maximum mean stress approaches that of the disk a=0. Experimental data
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by Prof. Udoguchi (1) are also plotted.
It will be noted that the theoretical curves for 1=0.05, 0.1 give good agreement
with the experiment.

5. Conclusion

Being introduced the concept of mean stress., degree of stress concentration
becomes to depend on material constant p, and in this paper two simple examples
are treated. Hence we can solve various problems in the almost same way as the
ordinary theory. And the author believes that many interesting phenomena are
able to be explained by the mean stress theory; for instance, rupture of brittle
materials, yielding of mild steel, fatigue limit of a grooved test piece and so on.

The author wishes to express his sincere thanks to Prof. Imachi for his kind encourage-
ment.
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