RESEARCH REPORTS

A MATHEMATICAL TREATMENT ON THE INFLUENCE
OF THE MOVING MEDIA ON A VIBRATING SYSTEM

Icrizo NINOMIYA
Department of Applied Physics

(Received October 30)

Introduction

When an elastic system vibrates in a medium, the vibration decays because of
the emission of the sound wave into the medium as well as the dissipation of
energy due to the friction in the system.

This damping effect of the medium was treated mathematically by Sakadi in
a previous paper?. This paper deals with the influence of the moving medium
on a vibrating system. The elucidation of this problem is very interesting from
theoretical as well as practical point of view. However the mathematical treat-
ment for it is very difficult at least in the most cases of practical importance. Ac-
cordingly we will confine ourselves to the following ideal cases,

1. Semi-infinite elastic body

2. Infinitely stretched membrane

3. Spherical elastic body.

Except in the last case, the media will be assumed to flow with a uniform velocity
in the static state. Principal notations used are as follows:

for media
p ¢ Pressure
p : Density

r : Ratio of specific heats

v : Coefficient of dynamical viscosity

Duxs Drvs Pyy €tC.: Stress components

U: Uniform velocity

u, v, w: Small velocity components
for elastic body

o : Density (voluminal or aerial)

A, #: Lamé’s constants

Oy, Ovy €tC:  Stress components

T: Tension of membrane

&, %, ¢: Small displacement components.

1. Semi-infinite Elastic Body

Assume that a semi-infinite elastic body and a gaseous medium occupy the
regions y<0 and y>0 respectively, and the gas flows in the direction of x-axis
with a uniform velocity U in the static state. The vibration is assumed to be two
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dimensional i.e., independent of z-coordinate.
The equations of the vibration of the elastic body are
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where % can be taken as positive without loss of generality. Inserting (5) and (6)
into (3) and (4) respectively,
we have 5 *

7 =1 Ba (7)
P @
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Out of two squre roots of (7) and (8), those which have positive real parts
must be chosen so as to make @ and 7 vanish at

y: - 00,

From (2), (5) and (6), displacement components are given by
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Stress components which are necessary for the subsequent analysis are
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where po is a uniform pressure in the static state.
On the other hand, the linearized equations for the gas are
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where, ¢ is the velocity of sound in the static state.
Now we assume that the velocity components # and v can be derived from a

scalar potential ¢ i.e
_ o7 oy OF
w= S U= gy (14)

In connection with this assumption, we assume that the gas does not adhere

to the surface of the elastic body but slides along it.
From (11), (12), (13) and (14), we obtain

and jL;E&— (§F+U58? i:;“’)*’ (15)
- o5 +U§x)(%‘)= - 4¢. (16)

Elimination of p from (15) and (16) leads to the following equation for ¢

1 /9 0 2 4y
(G v )G+ - a)e=. an
In accordance with (5) and (6), we take
0= Cei(‘”t_kx)_qu. (18)
Substituting (18) into (17), we get
1 _ 2
¢=1- —>- (19)
3(:’; (0 - kD)

where we must take Ji(g) >0 so as to make ¢ vanish at y=
The velocity components and the stress components are given by

U= — ikcet'(wt—kx)—k(,-y
{ o chef(:uf—kx)—qu (20)
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Boundary conditions on the surface of the elastic body y=0 are
o o
[ (s 05 )=v
22
| Oxy = Dxy (22)
§ dyy = Pyy.

Tnserting (9), (10), (20) and (21) into (22), and eliminating A, B and C, we obtain
the equation for

a)z 2 . pov wz
o (1 35) = 75}~ 22 alo~ 1) (1= 55— ) (28)
007’ w - _ _os 2\ _

In order to rewrite this in a convenient non-dimensional form, we introduce
‘the following notations.

P _ Akv . U _ b _ _0 1
W= G=e gp=h Em =moe= <y

then (23), (7), (8) and (19) are transformed into

(157 =)~ B st (1= 5) -}

€ L2 3 . . (23')
+~4—cr<c—m>{<c-m> — b =0
7’=1-—el’ (7
=1~ (8"
and
oy mE—m) (9)
7= 1+in%(C—m)
‘respectively.

Here we assume that ¢ and & are small numbers of the same order. Then
the roots of (23') are nearly equal to those of the equation

2

ro=(1-% )2—¢s=o (24)

or to those of the equation
q= O. (25)
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These equations correspond to the free vibrations of the elastic body (Rayleigh’s
wave)® and the gas respectively.

For the purpose of this paper we may omit the discussion of the latter roots.

As is easily seen, the equation (24) has always two real roots with the same
absolute value ¢; depending upon the parameter ¢ contained in 7 and, & decreases

continually from a certain value smaller than and very near to unity to «/m
as e increases from 0 to % We can see also that /7 (&) is always positive.
The velocity of propagation of Rayleigh wave is given by
vy = &y . (26)

Considering U i.e. m variable as for its sign as well as its magnitude, we may
-omit the discussion of the root of (23) which is nearly equal to —¢&, and put

=G+ (27)

where ¢’ is a small number of the order of e.
Neglecting small quantities of higher order, the first approximation for ¢’ is

eCro(Co— m)®
fo . Z2UPYRY TS
= - | (28)
where ro=V1—ell >0 (29)
and @ =1—n"(%—m) (30)

Here comes a ramification into existence, namely ¢,>>0, ;<0 and ¢:=0

1° @#>0, ie. w—c<U<w+ec.
In this case, qo is a real number. The postulation $(g) >0 can be secured by

taking Qo= 1= V1= Co—m)2>0. (31)

It can be observed from (28) that the frequency of the vibration decreases from
that of free vibration, and the stability of the vibration is almost neutral. Further
approximation to the second order reveals us that $(¢') ie. §(¢), being a small
quantity of the order of de, is positive or negative according as U<w, or U>uw,.
This means that the vibration is slightly damped or slightly excited according as
the uniform velicity U is smaller or greater than v,.

2 <0, ie. ULvy—¢ or U>wvy+e.
In this case ¢, is purely imaginary.

Precisely Qo= =igp= = iNn (Co—m)i—1. (32)

In contrast to the preceeding case, it is not evident a priori which of the two
alternatives ¢o= =ig, can satisfy R(g)>0.
From (32), (28), and (7), we have

;7 . 8(%7’0(60— m)g ‘
== (33)
o, W =m)’ 24 eCoro
and L R P L T e
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Hence it can be seen that, for U> v +¢, ie. &—m<0 — sign certainly satisfies:
N(g)>0, and under certain circumstances + sign does too, but, for U<vy—c¢ ie.
&o—m>0, -+ sign does only under certain circumstannces and — sign certainly
does not. Precise situation for the case of U<w,—c is this: Except in the case
where ¢ is sufficiently great, i.e., vo—c—U is sufficiently great, we can find no solu-
tion satifying %t(g)>0.

As this seems a serious breakdown of the theory, some appropriate interpre-
tation is needed. The following seems adaptable.

Suppose that we neglect the viscosity of the gas, then the breakdown is gener-
al for U<wy~c. Therefore the introduction of the viscosity for the prevention of
this breakdown is only partial in effect. Though, in fact, we treated the viscosity”
only approximately for the sake of convenience, it does not alter the essential
character of the present situation. Conceivably there will be no escape from this
situation within the scope of linear theory.

At any rate, + sign for U<vy—c and — sign U>wv,+c¢ will be reasonable from
the physical point of view. The former means the damping and the latter the:
instability of the vibration. Even the following interpretation is not inconceivable :
The theoretical breakdown (g) <0 is an exaggerated expression for the rapidity
of the accumulation of energy emitted from the elastic body into the medium

3° go=0, ie. U=wvy—c¢c or U=uv+c.
In this case (28) can not be used. Putting { =+ ¢, and m = CO:&—}{ in (9') and.

(23"), we obtain

¢ = £n(2¢ —4p) (35)
4 3 Lo
and , n{ = @) | r1(G)e = - i : (36)

Squaring (36), we obtain a cubic equation for ¢’
P(L) =247 -0t PF ke = (87)

where, for the sake of brevity, we put

‘e Corg
T 16 B2 (&))"

It will be observed that two out of the three roots of (37), have positive imagi-
nary parts, and that two of the three roots of (37) have positive or negative real
parts according as U=wv—c¢ or Up=ve+c¢. Rough configurations of the roots can be
inferred from those of the equation (37) with 6=0. Fig. 1 is a schematical dia-
gram of the configurations of roots. Corresponding configurations of ¢’s estimated
from (36) are shown in Fig. 2. These configurations are maintained in a narrow
neighbourhood (of the order of e) of U=wv,+c. Among these three roots, 1 is the
continuation of the root which we adopted as physically adequate and 2 is the
continuation of the root which we discarded as physically inadequate, while 3 is
the continuation of the root whose discussions we omitted as irrelevant for the
present purpose.



Research Reports 287

The orders of the magnitude of g
£”s and ¢’s are ¢ and ¢Y? respec-
tively. This extraordinary magni- » _
tude of ¢”s compared with those in _—®3 3e—_
-other cases means a sort of resonance
effect. Precisely, we have a sharp
peak of damping effect and exciting 1 Fig1 2
effect for U=vy—c¢ and U=uwy+c U= v+C U=Y%~-cC
respectively. 2 9 1

The theoretical unfavorableness
R(@)>0 for U=vy—c will be inter- 3 3

preted as before. e—__

1 2
Fig2

2. Infinitely Stretched Membrane

Let a membrane occupy the plane y=0, and two gaseous media in the both
sides of the membrane flow in the direction of x-axis with uniform velocities U
and U’ respectively in the static state. The vibration is again assumed to be two
dimentional. The analysis of the vibration of gas in the region »>0 is literally
the same as that of §1, so we will not repeat it. Similar analysis is available
among the corresponding notations with prime in the region y<{0. Precisely we
put

‘i" - C,e{(vot—!ex)+leqzy

corresponding to @ = Cgltwtkn=kay

This requires the condition R(¢") >0 for the real part of ¢
On the other hand the equation of the vibration of membrane is given by

2 «2‘:
o¢ (1)

T SE T T“%;;‘g* =Dyy — Py

at v=0, where & is small normal displacement. The boundary conditions at y=0
are the combination of (1) with the following:

9 ;i) &
( ot +U ox /°
Putting 5 — Aei(mt—lax) (3)

and using (20), (21) of §1 and the corresponding expressions for primed quantities,
we obtain ’

(2)

1l
Q\

Do=2b
{ (k2T~aw2)A=po{z(w—kU)+2pk2}c—ps{z'<w—kU')+2y'k2}cr
1 (o —kU)A = —kqC \ (4)
(e —RUNA = kg'C.
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Elimination of A, C, and C’ leads to the equation for .

kqq' (60” — B°T) + ¢'0i(0 — RU){ (w0 — kU) — 20k}
+ gol(w — BU"){(w — RU") = 24p'E*} = 0. (5)

Let us introduce the following notations,

T _ o _, o0 __ o _, U_ v _
“/a =b =% = = p=m o=,
4 ko 4 k' o D b _

3 =% 3y =% oEm og=n

then (5) can be rewritten as

0¢/ (@ =1 +eq € =m) (€= m) = 35} 1 g —m){c—m) = 3o} =0 (o)

s 7 (& —m)?
where g=1-— m

e g N —m)?
and = T Iy C—mly

As we have many parameters in (6), it will be very complicated to take care:
of all the possibilities exhaustively. Therefore we will make some simplifying-
assumptions, and treat several interesting cases only.

I po=o0, v=1, c=¢, U=U.

The equation to be solved is
a(&—1) +2:(¢ — m){(C— m) ~Fsh=0 (7)

where ¢ and ¢ are assumed to be small quantities of the same order.

The roots of (7) relevant for the present purpose are the one which are nearly
equal to the roots of ¢*—1=0, ie. &==1. We may put ¢=1+¢ for the same
reason as that in § 1. Then the first approximation for ¢ is given by

_e(1-m)? (8)
go
where @G =1—-n1-m

¢ =

From here on, all the discussion is qualitatively the same as that of § 1. The
following correspondences

C%m
41 (%)

So—1, -1, vy b

suffice to make the results of §1 available for the present. section.
II. Now we restore the equation (6), The ¢’s and &’s are assumed to be small
quantities of the same order. Putting ¢=1+¢’, the first approximation for ¢’ is
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o= —

e(1—m)? _
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J(1—m)?

(9)

T

2 qf

The situations where g; and g/’ are both positive, or one of them is positive
and the other is negative, are qualitatively similar to those of I where gs (of 1)
is positive or negative respectively. Accordingly we will confine ourselves to the

case where both ¢; and gv° are negative.
Let us put

Qo= £ifz= il —-m)i—1

and gh= ="igh= ='W 1—m')*~1
then ¢ is given by
’ .s(l“?n)z ,‘{_(1_'7??’)2
O=di—5 o =+ 4¢ od o (10)

The ¢’s can be easily obtained as:

2 2 2
L (L —m) | | apq o ves  e(l—m) g1 —m)
g= i+ g~ {.dz(l m)°8 - :F(i 4 >} 10
, 221 — ) | s > (1—m)?\ (1—m)’
and ¢ = :h:'zqé—}--—-«—z—&é———\i’n’ (1—m') 6’#’( + o >— 4 }

As is discussed in § 1, physically reasonable choices of signs are as follows:

+ for U<b-c¢ e 1-m>0
— for U>b—c¢ ie. 1-m<0
4! for U'<b—c ie 1-m'>0
—! for U'>b—c e 1—m/<0

The cases where 1—m and 1—m2 are both positive or negative are again qualita~
tively similar to those of I where 1-—m is positive or negative respectively.
Therefore we will take the case where one of them is positive and the other

is negative, e.g. 1—m<0 and 1-m">0
The equations (10) and (11) become

(1 —m)’

LS m)t

f e g "
c. T 2 q (10
. 7’12(1"‘77’1') 2 9 e(]_—m)z 5/(1_”2I)2
Q-——ZQ2+*——“2*ZI‘2-"“{—7¢(1-‘771)5—~, & + 4 }
)t o A=) { (1 — )% (1—m)?  d1—-m) (11)
q =192+ 24 n — 77 -+ @ — @

Assume that
aqz I

e1—m) _d(L=m)" g 5(0) <0, R(q)>0 and R(¢)>0ie., the

vibration is unstable. The absorption of the energy from the gas in the region
y>0 exceeds the emission of the energy into the gas in the region y<0. Assume,
e(1—m)? cga- )

q !

on the contrary, that , then $(¢’) >0, but whih respect to

o~

&
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R(g) and R(¢’) we face again the similar theoretical unfavorableness (g) <0
and R(q') <0 under certain circumstances.
The vibration is stable i.e., the emission of the energy into the gas in the
region y<0 exceeds the absorption of the energy from the gas in the region y<0.
- 2 / _ 1\2
e(1-m)* _ 01 ’m) then

Assume, at last, that
aq qz

3 =0 and R(g)>0 and R(g)>0

i.e. the vibration is almost neutral and almost the same as free vibration. The
emission and the absorption of energy compensate for each other perfectly.

. ¢c=c'=c ie. n=w'=0 and =12 =0

This case is only of theoretical interest. Owing to the above assumption ¢'s
reduce to 1. The general equation (6) can be simplfied as

C—14e(C—ml+e(C—m!)=0. (12)

‘This is a quadratic equation in ¢, and can be solved generally.
“The roots are

- dm! =D
= Trers (em+<cm! VD) (13)

‘where the discriminant D is
D=1+4ce+¢ — (e + ') — ee! (m— ! ). (14)

1) mxm! .
Taking % sufficiently small, D can be made negative. Hence, we see that the
vibration is unstable for sufficiently long wave length.

2) m=wm'
D=1+¢c+¢ —(c+¢)nd

If |m|=| ie. |U| b, then D is positive for every value of 2 Thus the vibra-
tion is always neutral. If, on the contrary, lm|>1 ie. |U|>b then D becomes
negative for sufficiently small values of . Thus the vibration is unstable for
sufficiently long wave length.

3. Spherical Elastic Body in a Medium

Let an elastic body occupy the region r<a and a gaseous medium which is at

Test, occupy the region 7>« in the static state, where 7 = V&*+32 ¥z, The equa-
tions of the vibration of the elastic body are

[ 2% . (02 /(028 oy ot -
055 —(X—ru)é:%’(w—-i—@—l— )«HML

ox 2z
o _ o (o8 oy | & :
{ o'atz——u-l-ﬂ)'@(ax-{-sy*%‘a‘z‘)-f-udn (1)
l 0% o8 ot

- 9 o7, 9%
| oF = (A+u) az<ax+ oy +az)+”‘4c‘
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When the vibration is radial, the displacement components &, 7, £ can be derived
from a scalar potential & ie.,

_ o0 _o0 . _ o0 )

é:‘“ax’ T=%y " ~T %z

and especially the radial displacement &, is given by

o
&= T (3)

The equation for @ can be obtained from (1), and (2) as
az
Ao 2s —G+204)0=0. ()
As a particular solution, we will take
A o
0 =A SID.T (5)’

7
where b= \/ )iif—/.

The radial displacement and the stress component are given by

£, =00 _ gt @ oog 07 1 gp 07

Er=—5-=4e <br cos— ~rsin— ) (6)
ISP AR %r

and Try = PO'T‘A< Y -+ oy -+ oz )‘]‘2!1 o7
- ot (1 00’ \qp 07 o
= —po+4uAe {(73 4M>sm 5~ —CoS— } 7y

where po is a uniform pressure in the static state.
On the other hand, the equation of the vibration for gas are

(,ow _ _0ob  pw O (on  Ov , ow
EE T T ex T3 8x(8x T T o2 >+"°”A“
v _ _9p  pw O (Ou , Ov  ow
MoE T Ty T3 ay(ax Ty T az>+p‘ﬂ'dv
5 op o (ou o . ow (8
w______ po?)wf_“;l/f_ oV, oW
ST T oz T3 az(ax Ty T ez )—}—poydw
1 o (p ), ou, o0 ow _
cﬁ‘é‘{(‘@?)“Lax +t5y Tz =0

As the vibration is radial, the velocity components #, v, w can be derived from a.
scalar potential ¢ i.e.

_ of _ oy _ o9 9
“=2x YT YT 5 ©

and especially the radial velocity u, is
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2y = g_"f:. (10)
From (7) anp (8), we get
1] 4
D=1 "00(—5?—'—-‘3” A)So (1)
1 o0 _ _
and on oF = deg.
Consequently the equation for ¢ is
1 2 (2 4v _
o (o —ad) o = 4. (12)

As a particular solution, we will take

tw(t-7/pC)

e
¢=B—_- | (13)
‘where F=1+ 4321(;;0 (14)
. w
and 3(-2-) <o,
‘Then the radial velocity and the stress component are given by
— gﬁ e e Lw(t-r/pc) _@ﬁ _l_
ur =5, = — Be (Bcr + rz) (15)
2 (0w 2w, 2w our
and Drr=—p 3 pov( ox + oy + oz >+ 2 oo a7
_ fw(t—7/gc) & 4 iy 4y
= — Py + peBe ( L e + 7 ) (16)
Boundary conditions at ¥=a are as follows:
obr = ur
o (17)
Orr = Prr.

Inserting (6), (7), (15) and (16) into (17), and eliminating A and B, we obtain
the following equation for .

(14222 ){(1- 2 Yan 90 w2}

+z;fo;o(g}z_tanL;){mzm(1+Zg)}=o. (18)

Introducing the notations

o _ A+2p 1 0 A+24)p0 b _ 4p
ig = fg %72 ig T dm T% o= 3

wa

=5
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{18) can be rewritten as:

- ne 2 _ _ _ _as s
(1+z—5—)(1—ec —¢eotd) = — (1 - ot )¢ 3"’(1+T G
where §* =1+ in"oc. (20)
Assume that ¢ and ¢ are small quantities of the same order, then we can put
C=4+d (21)

where & is a root of the equation
S(&)=1—-elf ~Zcotl=0 (22)

and ¢’ is a small quantity of the order of e.
The equation (22) has infinite positive roots ¢ (n=1, 2, ...), and it will

be observed that each of them lies in the interval (n —%—-)n<¢é”’<nn.

The first approximation for ¢’ can be given from (19), (21), (22) by

o= cels eeli(1xint,)

T T (@G +1-8e)1xint) | (Ki+1-8e)(1+#C) (28)

where 16 =@+ 1-3e= (et =1 +2¢(¢~5)>0

‘because of

3

&> 5 '>7.

The = signs in (23) correspond to
B= = (1 + ‘;— n25Co) (24)

which must be determined so as to secure 3( %) <0.
From (23) and (24), we have
2 1
§(5) = —a—{ =28+ wenty L

B 1_*,%4_5255 2 (e'G+1-3e)(1+ns)

(25)

Unfortunately the form of (25) prevents to secure 3(%) under all circumstances.
In spite of this theoretical breakdown, the physically reasonable choice must
be + sign. Then &(£)>0 in (23) shows the damping effect of the medium and

NR(B)>0 in (24) shows the emission of the energy into the medium.

Concluding this paper, I wish to express my profound gratitude to Prof. Z. Sakadi for his
-suggestions and encouragement.
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