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Preliminaries

The theory of equations of motion of an elastic solid body with initial stress was
considered by some authors, for example, M. A. Biot.»® We attemped to attack
the same problem and obtained the results, which are, in particular, different in
the expressions of boundary conditions from those hitherto obtained. In the 1st
part of this paper the theory was developed by Sakadi and in the 2nd part the
calculation in some important cases was carried out by the 2 authors.

PART I

I. Notations

We now assume that the initial stress of finite magnitude is distributed in the
solid and that the strain from this initial state is small of the 1st order and con-
sider only the quantities of the Ist order magnitude. Let X;,%: and x; be the rec-
tangular coordinate system, and further put:

»j ¢ coordinates of a material point P in unstrained state,

xj ¢ coordinates of the same particle in strained state at time t, the position
being P/,

xj—yj=§;(t,x)=%;(t,y) : displacement components, small quantities of the
Ist order,

p"(¥) : density in unstrained state,

Al;(y) : components of initial stress at P, being considered as finite quantities,

X%(y) : body force per unit mass at P,

A;j(t,x) : components of stress at P’ for the same material portion, the differ-
ences Aij(t, x) —A}; () being of the Ist order,

X;(t,x) : body force per unit mass at P’,
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1I. Expressions for Stress Tenscr in Strained State
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We consider an arbitrary material point Q(y-+dy)

near P in unstrained state and in the strained
state this point will be removed into @'(x+dx)

with

dri=dyi+ 2L dy; = 0+ Au)d,v,-,]
AL

...... (11, 1)

2= ] ,
7T oy

(II,1) represent a linear transformation of ‘Vek-
torkérper’ PQ(dy) into ‘Vektorkérper’ P'@Q'(dx)
where @ and @' take arbitrary points near I and
P’ regpecti{rely. As well known,” there exist 3
mutually perpendicular axes through P, composed

'of material points (z;, 22, 25 coordinate system),

which, after deformation into strained state, remain
also orthogonal to each other with origin P’(2], 2!,
2} coordinate system). and (IL. 1) can be decompos-
ed into rotation and ‘pure deformation’:

1) z;: z-coordinates of material point @(v+dy),

X Xo Xy

zi=aijdyj,

. . . 3 ayy a2 a3

2) zj: z'-coordinates of the same material point
Za a2y Asza (25
after parallel displacement and rotation from z- 2 an  am  aw

. . ,

coordm,ate ,system. into z’-system, ' 2 a, a, d,
3) z}: z'-coordinates of the same point after 2 d, a, d,
the pure deformation along the 3 axes (2], 2}, %), 2! a, a, a,

occupying the final position €/,
zi=(14V)z;, (here by the term
respect to j),
4)  dxi=a%;z}, al;=aij+daij.

s Vz; we do not of course mean summation with

Combining 1)-4) and, comparing with (II, 1) we obtain:

dyi=a; 2 =a(1+V)z;

Jig

=aaje(L+V)dys= B+ Vajiajp+ajedaji) dyy

={(0ij+2ij)dy;i,

Fapiari+ arydari=2ij.

akj(lak;=*;—(lij—/1

Now we can express the compo

j'i)=wji- ........ (II’ 2)

nents of stress at P’ in the following way:

Using the transformation formulae for tensor components we have:
Aij(t, x3%) =aj;a); Au(t, ;2')

where in Ai;(f, ¥;x) and Au(t,

x;2), (f, x) means the point P’ in x coordinate
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system. and (;x) and (;z’) mean that we are taking the coordinate systems (x5)
and (z}) respectively and similarly for A° :
Ak,(,v,Z)=ak;a1,-Af.j(y;x).
The connexion between A (#, x;2"y and A° %(»3;2) is given by:
Ap(t, x;2) =AY w32+ AL (L x520),
here the terms AJ;(4, x;z) are due from the pure deformation along z’-coordinate
axes. Further we have:

b e . ,. UAt (’V, V)
A‘;j(,\,x)—A;‘.}.(x, x)— éx, .

Combination of these 4 relations gives:
At x)=A:i(1, x;%) =aya); Au(t, %;2')
=y a); (AL, (y;2)+ AL (2, x527))
=a,;ia;jak,-a/9A“s(y'x)+A’..(t x3x)
=AY (v;%)+arsdar; AL (y; %) +ans day AL (v x) + A} (¢, %; %)
=AL(Y) +os; AL (y)+wszAgj(y)+A:.j(t, X)), e (1L, 3)

aAu(V)

—A" (x)— + w57 AY (’c)—l—wo,A“ (x)+A’ (t, %),

here A (s x):A:.j(t,x;x) depend only on ou(#, ¥) and when the solid is isotropic
we have:
A;}.:A:.j(t, %) = dop0ij+2 p oij.

IiI. Equations of Motion and Boundary Conditions

Let

o(t, x)=0"(y) (1—om)=p"(x) — @—9‘—) = 0%(%)ap

be the density in P’ and put
Xi(t, x) = X“(_}')+X’(t %) =X2(x) - & @_gf__(x) +XU(¢ %),

then the equations of equilibrium in unstrained state and those of motion are:

OA,](:C)

(%) X0 () + 4 =0, ... (I, 1)

aA,,(t X)) _ FEi(t %)

o(t, X)Xt x)+ =p0(x)~ oF

From these 2 systems of equations and ( II, 4) we obtain:

‘aA1j -— aA?] = a_éle ?4;-7. —_ %ﬁ IA awsj aAzs Owgi
ox;  ox; | oxj ox ekar mq+ A:s+ 0sj 5 + % ! Ajs
043, | 9Al;
tosg + 2
i Aj
=0 i (6@ X () + 207 AL 4. 90 S Ay~ o X} + 50,
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pXi— oXO__—-(EL:—"—*-aLkp )Xn+p(—gk%§"+v)

"Ia sl_p (X ""(]]LX +(D;J;& ) asn aA;]_l_aCDJIAo +aU'”A aA;]

Oxp | DXk oxr F T oxj
........ (111, 2)
(111, 2) correspond to-the equations (4,7) in Biot" or (20) in Biot,? the additional
terms
025 8X°

ox;
in them seem to be due from the different definition of X’.
For the boundary conditions we proceed as in?¥ and®:
y;=f;(2, v): boundary surface of unstrained state,
xj=yi+0i(t, ) =i+t =% u v): boundary surface of strained state,
g = of: of: _o(fe, f3) ,
Qu ov oNu, v)

ofs o
t ou ov

0 0
qas 35

0
n}= (/I{;o direction cosines of the outward normal to the boundary of unstrained
~ 02
k

state, (the parameters # and v are to be taken suitably so that jl represent the

outward normal)
l?j(t9 i, 'l)) = 6.}(1‘: f)s
where we put fi(z, v) instead of xp in £;(Z, %),

_ a{; 0x:| _9(f2s. f3) a_@,__f 5) 00/, Ba)
a:{t, 1, v)= S S0 o(u, v) T3 4, V) + olu, v)
aX'g ax!%
u v
=g3+4,, qn=q2+q§, ¢:=a5+as,
= ey e (@5 e = )

------- (111, 3) : outward
normal to the boundary of strained state.
The boundary conditions for initial state are:

'n‘}. A?j(y) =F¥u,v) e (111, 4)

with external surface traction FU. This surface traction must of course be in
equilibrium with body force p°X} in the whole. The conditions for strained state

are:
n]Az](t, x) =Fi(t: o, U),

and from these 2 systems of relations we get, using (1L, 3) and (IIL 3):
Fi(t, 1, 0) = F2 (2t v) = (0 + 0 0in) AL+ njowi Aj; + 15 Alj.

The 1st terms of these formulae can be rewritten as follows:
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OB 289k _ . _  \Ofk
ou ~ oxpow (5t ‘”f’*)au ’

4, = (02t — o) (?[fs?zf; T %%) + (oat — o31) (afk of: _ofuofs )

ouov  ovon won" uow

= —Ghiqp + 0k 00 + wpaq),

!
7(7% == arjn), + oprns+ w0y,
qy
N+ RN = — apNg + oy 0 njn.

Hence the boundary conditions take the form:

Fi—Fi= —oiyn} A}; + cun) n! ny AL+ wrin} Ay + n' A’
= =g ny Al + ouning F) + o Fp+nj AL, oo (1L, 5)
The equations (4, 8) in Biot? are of the form:
Fi—F] = - TrjnLAY; + o ny Al 4 wri 7§ Ap; + n} Al

and the 2nd terms are different from those of (III, 5).

When in unstrained state neither body force nor surface traction act on the solid,
(III, 1) and (IIL, 4) become:
24ij -,
oxj . S (I11, 6)
n;Al; =0,

and when in strained state also no external force acts, we have from ( II1, 2) and
(ITL, 5):
% o‘Aiq,_'

0nOsi_ 04
O = Tkt

00k
oxn
0= —arjny Al; +njAl;,
and in the static problem under surface traction we have:

9w 0 ji

3 04l
oxk

Al + Y7 W (I, 7)

Al +

54 241, B0 4y Bwsi 4, | DAL
0= ~ajp X + oxy Aij+ X Ap+ ox; V... (111, 8)
Fi=—anjAl; + njAl,

with
Alj=lowbij + 2 p 0ij
in (IIL, 7) and (III, 8) for isotropic body.

From now we treat the terms with A}'j or Xg- in (II1, 2), (IIL,5), (IIL, 7) and (III, 8)
as correction terms. It seems that this simplification does not change the character
of the solution. Let &, be solutions of (1L, 2) with (III, 5) in the case with

A =0, Xi=0, Fi=0
so that, putting

o= L (i, Din
Giio =g ( ox; ax,-)’
o= L (080 _ 2,
@ij0 =g (ax,-' ax,-)’

Al; o= A0k, 00ij+ 2 Tij oy
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the equations hold:

ox;

pna""'\fi;o aA,Z °+p°X'
- L 7 R B (I11, 9)

F;=n}A]

ij,0°
Further put:
gi= it iy 0ij = dijotTij, Alj=Aljet Bij,
then we obtain from (III, 2) and (IIL, 5) the equations and conditions:

o %f‘-—wK, (, x)+avB" (111, 10)

nBij = Si(t, u, v)

with

A} | Wik Wji,0
P Ki = 0"(—on0 X7 Loxn 0Aij , @ 0 07i,0 A0
K; = 0°(—ork,0 X; + wij,0 X ) = djk.0 Xk + = D% A ;= axe 2k (1, 11)

Si = — Fl4oij,0np Aj; — ok, oy NS F} — wpi, o Fl

and from (IIL, 7):

G 8Bu

oS =0 K+ nGBij=S; e (111, 12)
with
L= =it °%/i;] * ag];’; “Aij 021' A b (111, 13)
St = arj,oniAj;,
and finally from (IIL, 8):
="K+ 7(;2 i w}Biy=S, (111, 14)

with the same expressions of K} and S; as in (111, 13).

IV. Rotating Bedy

When the elastic body rotates about #s-axis with constant angular velocity o, we
assume that %, %, and x5 are of the rotating system. Then the equations for the
equilibrium state take the form:

pﬂ(m)m+p(x)¥°(r)+9@“’ 0, (i=12)
........ (IV, 1)
# X+ P <o,
which correspend to (I, 1), while those of motion are:
wo(t, x)xi + o(t. x) Xa(d, r)+‘)A"(t %) =p"(x )(ﬁ“ 2) 2 90 %})
(i=1,2)

3A§J(f x) r,(' )a C‘I(t x)

o(t, X)Xt %)+ L

From these eqnations and (II, 4) we have:
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e
ﬂ"( S5 {202 5 ) = é"(X§ = ok X} + 0i; X}) =g, k—a‘fl .
9wzt g0 4. Oii g + A”+w "{&i — g x iw 15
oxn ki ~d~'" Pss R’k X — P ki Xk 1
(i=1,2) y---(IV,2)
":: » > 0 aA,n‘
0" 55 = 0" X = 0w XD + 03 X3) — o 35,:_1
0w Swj 73 A,\

= A o = 0" wp . -
oxy "1‘ oxk i‘ ox;

The boundary conditions are the same as in the case III

PART 1II
1) Hydresiatic Pressure

Al=Ad;;, A constant
In this case we have from (IIL, 1) and (II1, 4):

Xi=0, F!=n]A,
aA?;_ o0k

ik 40 _ Q0it 99ji an.
oxe 7 oxp TUT o Y T b=
and (III, 2) become:

_ Owpi
oxp A,

and the influence of initial stress disappears, while from (111, 5)
1Al =Fi=n{A+oun) A— ounninlA— opnl A
Z) Uniform Compression

The equations (III, 8) have, under the assumption that 2 and gz are constant, the
solution for the uniform compression:

&= ax;, « . constant,
J I

. — ". . -
gi; =& 0ij, wij=0,

04l _ _ oAl A
TG, T T Gy, =0, Al;=B2+2x) ad;j,
—oniny A= —anAl; =0,

Fi=njAl;=31+2)an!.
In this case the influence of initial stress vanishes also on the boundary conditions

3) Plane Waves in an Infinite Solid with Constant AlS
We can take the system %, ., %; such that A};=0, (i /) and take another
coordinate system y;, 4., v;. In this system let y; be displacment components and

77j=f1\t-' ?)

be the plane wave progressing in the y;-positive direction
Then (ITI, 7) take the form:
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i/ 3 i m ?L
P =t 255 2 iy
Oy _ O _ ?2_. L g @ L
Rl 5By - BN S8 = 5B 50 3,1)
@_g."i?— e _ 1 @ _ 1 po _pgoy@ne
Oor ~tge 2 Beg T2 5 (Bh-BOGE
where Bj; are the stress components in the y-coordinate system and p is used for
o' for simplicity. When we put
B}, =
by taking the axes y; and y. suitably, (3, 1) become:
8 75 o° 77% 0 O°%4
atn_(/t+2 ) EB Ayn,
O_ﬂ’ a n’ --------
0 =3 t' = ay§ ] (3> 2)
9, O
4 atg = M2 ayg ’
with
py == (B —~ BY),
ﬂ2=/1"7(33="3:?s . deveeses (3,3)
Hence (3, 2) can be satisfied by the 3 waves:
' (48 . - Bn
7]l—fl(t c’): 7?‘."—0, 773—A+2#_/l]77'
, 0
n=0, n=filt-%), n=_ D

n=7=0, 773=f3(t""%1) 5
0

with velocities ¢, = J %, e =41i“)2 and ¢, =\/ ’1—+p—2“ respectively. Here the planes of

oscillation of the 1st and 2nd waves are perpendicular to each other
The conditon

B ?2 =0
can be satisfied by taking ¢ according to the equation:
{(AY, — AY) pq + (A — AL) P '} cOS 2¢

= 1 {(A%, — AL (@* — P*) + (A — As) (¢ —1") }sin2¢.

Xy Xe ,’ X3
) pcos¢g —gsing 1)’cos¢)—-q’sin¢i —sind cos ¢
Ya — psing —qcos¢ |—p'sin¢g — g’ cos¢ sin 0 sin ¢
s —q’sin @ gsin 0 cos ¢

p=cospcosl, P =singcosf, g=sing, q’ = —cos .
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4) Reflection of Plane Waves by a Free Plane Surface
We take the axis x,

to be the outward normal to the plane surface of the elastic
medium and the axes X1. X

on the surface such that the normal of the incident
wave lies in the x,x;-plane, then from the surface condxtlons we have:

AlL=0, (:=1,2,3).
Putting

pi= E]}Eje""““-”"‘/“'” =N Ej.ei»(t—(xpin 0+23¢05 0)jec)
into (3,1), we have

(11 = pc®) Ey — $BL,E. =0
- éB?QEl + (pte — pc®) B = 0,
=BLE —~ By E:+ QA+ 2p—pc?)Es =
with (3, 3). |

From these equations we obtain 3 waves

Ex0, E= ‘%%{ - _:I_, % "‘_‘ o —
. 2F, {Bn _p’” » | cosﬁ! 0 !—sina
T2 2~ (it ) - M Sy g P |10
with velocity s ‘ Smo_’_,__o_ Nf_?os_a_
‘/,uz + ,u» + M’
Ul
b= ﬁ E%0, B= 2u+2m—2a+un) (Bt f'/"f:M}
with velocity
\/m .
20 ’
and

Ey=E,=0, Ex0 with velocity ¢, = \/iiz/f
where

M=~ (= 1)+ B,
Let the incident wave be

E;=8;E  with velocity ¢,

progressing in the direction denoted by 0, and let the reflected waves be
E;rz) = ﬁ.(j_m) Jom

with velocities ¢ progressing in the directions gum

respectively. (m =0, 1, 2)
At the free surface x; =0 the boundary conditions (IIL, 7) become:

n—{ﬁ, Cos28+ fB3sin20})+ T E—(B"’“cos 2

DI §(n) + B;ﬁll sin 20(1}1)} = O,
M) gm0
,3 E E

~cos 0 + Zﬁ

cos " =0,
m=0 Cm
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l‘?-‘*cEJr 2#,1173?.{_){_ Bisin f + 55 cos 0}

. E “B(:m Em zﬂwgﬂ (—B™ sin fom 4 B cos )} =0,
-m

n=
sinf _ §Ln_0(ji) (m=0,1,2)

with
c Cm

In general these equations determine E™ and 0" as functions of E and 0.

5) Reflection and Refraction of Plane Waves by a Discontinuous Plane
Take the x a.-plane as the plane of discontinuous initial stress and let the
constant initial stress be
A}; in the region: x; <0, —oo <X, XL+ 0,
B}; in the region: x>0, —o0 <Ky, XLt
then the conditions
Al = Bj (i=1,23 e 5,1)
must be satisfied.
We can take the axes xi and Xz, SO that the condition
' Al =0
is satisfied.
Taking the incident wave progressing in the xs-positive direction in the region
x5 <02
&= €N ch".“lt_ tasfed)]

we obtain 3 waves:

Dy%0, D=0, Dy= _Aw__p, with o= \/ )
A4 20— 1y P
_ ) Al R T
Dl O’ D_ #0, ]')3 }:9_/‘ _77’ Do with Co —';\/ ";" » t L (5’ 2)
and
Dy=D;=0, Dy%0 thhc—\/x'{'z"‘

Exchanging the axes x; and ¥:. we see that the lst and 2nd waves of (5,2) in-
terchnge to each other. Accordingly we treat the lst wave as the incident one.
To this 1st wave the 2 waves are reflected at the plane surface x5 =0 and progress
in xsnegative direction:

F{, FP =0, Fi with ¢;
Fo=F"=0, F% with ¢.

Further the 3 refracted waves progressing in the xypositive direction shall be

denoted by: :

N .7 2.0

1 a 5 2 ;

E», Ep, EP with V.= /_Ji_jj__#n —IV
2 5

E0=Ep=0, EY with Vo= /z+2,"
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where
ni=pu—3 (B~ BY),

7= p—§(Bj—BY),
N'—'V(.u — 1)+ B+
The boundary conditions at x;=0 are

D+ i," Ffj."”: S‘n_, E'j."“, (7=1.2,3) ... (5,3)
m=9 m=a0
and
D Fi E
2p— AN (=L 9, — .
(22 ")( 4 mzn"o Cm ) @ B”)lgo Vm :
D, 4 1) D/ S (5, 4)
20— AL, Sy 2t ) e S >
(2a ")( ¢ = Cm ) (2p— B")HIE" Von
l’)3 F(ﬂ” 2 Elﬂl)
OB B

from (IIL, 5) and (5. 1).

(5,3) and (5.4) determine E;."” and F;."” completely.
The longitudinal wave with velocity ¢, undergoes no reflection by the surface
=0 and passes through without any change into the region %> 0.

6) Surface Wave
Let the elastic body oi:cupy the region: x; <0, —co < xy, ¥ <+o0. As in the case
4) we obtain A}, =0 in the whole region x; <0. Considering the surface wave
7j = N Ejesriva-tn - fa >0,
we obtain by (IIL, 7), A}; being constant,

{(be Au)a._af +l“}EJ+ f'-—-»——)A LBt ifa(at =0 + A") E.=0

n
-f‘l_aE,+{(b~——--)a—;,f (A3, - AL) - bf-*l}L«—‘-ffoz—'an«O

; r - '.!_All . — A“:-.-. a2 L 2 2 -All 2 =
ifa(a b ~ 40, zfcrzp.E_-i-{aoc f(b+‘25)+l}E3

where a= JE%Z‘ and b= J:ﬂ_ .
0 0
From these equations we obtain 3 waves
ESJ:”” = B;’"‘E""’, with definite a. (m=1,2,3)
Accordingly the surface wave takes the form:

yj= N '2 ﬁmn Fom erz("‘l x5 +ilfr- Ih

=1

Boundary conditions (III, 7) at %, =0 become
é (Z:fﬁ.“’”-—i— atim [9‘””)E‘"” =0
Mm=1

&“ a(v:z)3\7):l Fonm — 0

m= l

(327,9’””—}- ('{ +2ﬂ)arm) Il nVY Fon) = (),
2=1 ! ?
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The elitnination of E" from these equations completely determines the velocity

c= ]l, of the surface wave.

7) Compression of a Spherical Shell

We assume that the distribution of initial stress is of spherical symmetry and
further consider the radial displacement.
Let

x;=17,
Al =f0ij+8%i%j,
§i=n%xi
where f, g and 7 are functions of #, the region of the shell extending in &' £7=a.
From the equations (IIl, 6) of unstrained state, we obtain the relation:
ftrtg +4rg=0.
From (III, 7) we obtain
7+ (5 =@ )7 =0,

where Q(r)='%%§ , with Q(a)=Q(a’)=0, which represent the boundary condi-
tions (IIL, 6).
This equation can be solved by

TR
7= csa—j;d?*-i- ey,
the 2 constants ¢ and ¢, being determined by the boundary conditions (IIL 8).

8) Compression of a Cylindrical Body with Arbitrary Cross Section -
Let the cylinder occupy the region —I< x;<- [ and assume:
& =0x, L=bx., E=cx5, DXxc,
then we calculate:
200+ )b+ ¢, i=j=1or 2
Al=0@A+2pm)c+220, i=j=3

04ij .
ox;

2AY; 9A;
i Gy = O Vo, -

n
Hence from (III, 8) we have: %2’ =0.
AT

Considering the conditions (IIL 6) i.e.
AlL=0 at xs==1,
we have
AlL=0, (1=1,2,3)
in the whole internal region of the cylinder.
Hence (III, 6) become
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2 540,

and

o

SAyny=0,  (=12)

on the lateral surface. Hence A!,, Al,, Al can be any functions of #j, ., #; with
these 2 systems of equations and conditions.
The values of b and ¢ can be determined from the pressures on the lateral and

basic surfaces.

9) Compression of a Circular Tube

Let
. 7 =K+
and the tube occupy the region:
—l<ys < +1, a <r<a.

Further we assume that the distribution of initial siress is given by:

Alj=poij+qxix;,  (i,j=1,2) !

........ 9,1
A, =0, (i=1,23) J R
with p and g functions of 7 only.
(1, 6) take the form: )
_p+7q F 7 - 7y =
Q= A2 Q= A+2p° Q(a)=Q(a") =0.
Putting
Ei=nxi=5(r)x;, i=1,2 !
Si =% =5(7)% ( ) | ST 9, 2)
§3=C(x;, = const. i

into (III, 8), we obtain
.0//_'_ (%_ Q/)ﬁlzo.
From this equation 7 is found to be
7 o0
77=c,+cfa%d¢.
The boundary conditions (IIl, 8) take the form:
2QA+wn+QA+20)r7+28=~-P, (r=a)
” " R - P, (r=a’)
A2y +ry)+ (A4 2u)¢ =F(r). (x==%1)
with lateral pressures P and 7’ and tension F(7). The circumstances that F{7)
must be taken suitably come from the simple assumption of £, & and &, as the
functions of x;.

10) Torsion of a Circular Cylinder or Tube

Take
&= —Txemy,
Er= 4 TH x5,
6'3 = Os
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where ¢ is constant, then (IIL, 8) are satisfied when A}; fulfill the conditions:

A?B = 0’ (i = 1, 2’ 3)
~ a0
24 =o. G,j=12)
X3
Then (IIL, 6) require:
3\ 9A1 _ -
%‘}ax,- =0, .(1—1’2)

and A
STALnG =0, (i=1,2)
=1

on the lateral surfaces.
The boundary conditions (III, 8) for lateral surfaces are satisfied by F;j=0 and

those for x; = %[ become

=< (%’A?x - ﬂ) Xs — %A‘}gx,,

F 3= 0.
11) Radial Vibration of a Sphere
Let x? =%, and the sphere occupy the region: r<a:

Taking
Al =1 (r) i+ g(r) xi%j,

2 = Nyp(r)-xie™,
the equations of motion (III, 7) become
oy [4 } py OO0
7 +{r Q 77+;_+2ﬂv7—0

with the same @ as in 7).
The boundary conditions (IIL, 7), ie.
@i+ 27 +@Q+2p)r7 =0, at r=a,
determines the frequencies » of the radial vibration of the sphere.

12) Torsional Vibration of a Circular Cylinder
Let the cylinder occupy the region: 0< <, 7’=\/§ﬁ__x§<' a, and assume for

A}; the expressions:

A= p(r)dij + q(n)%i%;, (4, 7=1,2)
Al =0. (1=1,2,3)
(IIL, 6) are satisfied by
0=L151  @=-yihy Q=0
Putting
& = —y(7)+x.c08 1 xsc08 v i,
& = | 5(#)-x,c08 7 X508 v 1,
£ =0.
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into (III, 7), we obtain
S 2p iy (15 2/1)
7+ (345 )7 +

with S(r)=2p+7q.
The boundary conditions (IIl, 7) at # =« become
7=0
and those at x; =0 and / are seen to become
sinyl=0;

nmw

= l -y

T
with #: positive integers.
13) Rotation of a Circular Cylinder about its Axis

Let the infinite cylinder of radius @ rotate about its axis with angular velocity
and we assume the same expressions (9,1) and (9, 2) for A]; and &;. Then from

(IV. 1) we obtain:
P+7q ;o 1
| QN =519, Q=15 @ertra
with the boundary condition Q(a)=
and from (IV, 2):

vy [3 "1
7+ {5 @ A+2ur)}’7 x+2rzc 0.
The integral of this equation which is finite at 7 =0 is:

r—c+ wp Cj {S e Rdr\dr

with

- @ .
RN =Q+ 55977
As the boundary condition for the deformed state we put the constant pressure P
on the jateral surface. Then the constant ¢ is to be determined by

—P=Q+2)r7+2Q+ )9+ i at r=a.
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