ON THE LATERAL MASS-IMPACT APPLIED TO A
LONG UNIFORM BAR WITH TWO FLEXUAL
FREEDOMS—BENDING AND SHEARING

Isamu IMACHI
Department of Applied Mechanics

(Received April 30th,-1950)

Contents

1. Introduction

2. Equations of motion and their general solutions for the lateral vibra-
tions of bars

3. The velocity of propagation of the lateral waves in a bar

4. The wave spectrum produced by a mass-impact applied laterally on
an infinitely long bar

5. Approximate integration of the solutions by Sezawa-Kanai’s method

6. The bending strain, the shearing strain and the contact pressure at
the impact point

7. Conclusion

8. Experimental investigations

Appendix I. On the conventional equation of bBending for bars and

plates

1. Introduction

The problems of the longitudinal impacts of bars or of the struck strings can be
solved easily by the well-known processes. But, on the contrary, the problems of
lateral impacts of bars are not so simple.

In spite of many investigations reported up to this day, most of their results do
not seem to be successful in the meaning of practical use. Fourier ¥, St-Venant ?,
Sezawa ®, Shibuya*, etc. tried to solve this problem upon the base of the ordinary
bending theory of thin beams. Some of them assumed the initial disturbances and
some assumed the force variations applied to the bar, but, evidently, such assump-
tions are not suitable for the cases of impacts. A more preferable treatment for this
problem is to assume the system as a freely vibrating mass-loaded bar. The ordinary
theory of bending, however, gives no reasonable results especially for the contact
pressures, the induced stresses and their propagations, even when this last treatment
is applied.

Timoshenko ¥, and his successors; Mason®, Lennerz ™, Lees?®, etc. introduced an
idea of the local deformation based on the Hertz’s theory of contact?, and succeeded
in to get the impact pressure and the duration of contact, but this way of treatment
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is also not applicable to the investigation of the transmission of shock waves.

Another interesting work has been reported by Miyagi 0 but it seems to be far
from the rigorous treatment of the dynamical elasticity.

The reason why the classical treatment of the lateral impact problems is not satis-
factory is mainly caused by the fact that the ordinary beam theory is established upon
only one flexual freedom neglecting all the higher strain components, and this shear
rigid assumption induces some solid characteristics against the local shearing force ;
the expressions in series for stresses or strains do not converge to finite values.
Obviously more rigorous equations of motion must be adopted. The pure mathe-
matical treatment of the three dimensional elasticity —or even of the two dimen-
sional one — is, however, so complicated for the practical use that it seems to be
quite unapplicable for the cases of bars with arbitrary sectional forms. Thus, the
author tried to apply a conventional equation for the lateral deflection of bars intro-
ducing the second freedom, which, theoretically, means the next higher order of com-
ponent strains and, from another point of view, is considered to be the effective
shearing deformation. Application of this idea to our-problems leads us to very satis-
factory solutions. The bar thus discussed means, however, somewhat a schematical
construction and there might obviously remain some questions in pure physical
meanings, but the defects in such meanings, if any, should be only of the order of
€rrors.

From the view point of engineering, the most probable cases of shocks are of the
momentum types, that is, the impacts of masses with some initial velocities. After
the mass detaches from the surface, the motion will be in the state of quite free vib-
rations (non-stational ofcourse) of a uniform bar, while, until this moment, the mass
is in contact with the face of the bar, and the problem is of a transcendental vib-
ration of a mass-loaded bar. In this case, the sectional form of the bar is assumed
to be unchanged throughout the duration of motion even at the struck point, and so
the motion of the mass is considered to be coincident with that of the bar at this
point. '

2. The equations of motion and their general solutions
for lateral vibrations of bars

Let

x = longitudinal coordinate, % =x/k,
» = lateral displacement,
t = time, ¥ =1tb/k,
B = effective angular rotation of a section,
T = effective shearing angle,

9B /2x = bending strain,
p = density of the bar,
A = sectional area,

K

Il

radius of gyration of the section,
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E = Young’s modulus,
G = modulus of rigidity,

G.A = effective shearing rigidity of the bar;
u=E/Ge,
b= ~E/p = longitudinal sound velocity,
S = shearing force,

1l

M = bending moment.
Then the fundamental equations of motion in general are expressed as

A 9—1 =95 _ (external resisting lateral force),
ot ox
28 B SRR 1)
0AK? e =S — Frlie (external resisting moment).

On the other hand, the shearing force S and the bending ﬁoment M are expressed
by

S = G.AT + (internal resisting forcé),

58 } ........ (2)
M= — EAx® 2 T (internal resisting moment), :
if we use the effective shearing strain I” defined as in Appendix 1.
If there are no resistances at all, the equation of motion is reduced to
o _ . 02 L X ..
S (14 p) t°8x" + b axg + Rl SE = 0. ‘ 3)
When I° is neglected or u is assumed to be zero, Eq. (3) is reduced to
o _ . 2 2 00 A
SR~ P B Sh =0 ‘ @

Further, if the term of rotatory inertia is also neglected, the ordinary equation of
bending vibration

09 42OV g L
oz T O g = 0.7 ()
is obtained.
On the contrary, when z and E are assumed to be infinitely large, the equation
for a pure shear bar

at- 2 4 b a’y =0, bs=~Gjp 000 e (6)

can be obtained.

In our problem, in which the components of higher frequencies are important, care-
ful consideration is needed in neglecting any physical terms. Eq. (3) would be the
minimum necessary construction. In this case, however, the effects of the external

* This form of equation has already been given by S. Timoshenko.!!
#%, *+% Shown in Rayleigh’s “ Theory of Sound,” Vol. 1 for example.
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and internal resistances might also be important. It is ofcourse not easy to obtain
simple and correct expressions for these resistances. The external resistance is con-
sisted mainly of air resistance, in which the essential viscous resistance, the elastic
damping resistance owing to the discipation of energy as sounds, virtual mass resis-
tance, eddy loss resistance, etc. are contained. These might show all different types
of characteristics. But, for convenience’s sake, let us confine ourselves only to the
case of resistance proportional to the velocity, with the same coefficient 3 for both
linear and rotational motions. Thus we put

external resistance
mass

= 27 x (displacement velocity).

The physical constitution of the internal viscosity is not so clear to-day. But ac-
cording to the experimental results reported up to this day ', the damping is more
likely to the type of constant logarithmic decrement than the type induced from the
viscosity proportional to the strain velocity, though it is not asserted if this result
can be extended or not to the case of shock including the elements of vibration of
very high frequencies, in the form of a resultant of them moreover. The latter type
of viscosity has been treated by Sezawa and many other authorities. Endd'® has
succeeded in to formalize the former type of viscosity, though there remains some
physical question in his logic. In this paper, both cases shall be discussed for the
sake of comparison.

Introducing the internal viscosity proporﬁonal to the strain velocity together with
the external viscosity mentioned above, the fundamental equations of motion are re-
duced to

(at_+277.at){y—r(1+.u)ay+'~" 5;‘}= - b (1"'29' at)gg’

(%“Lz’”éat‘)y‘ i (1"'2“' at)g;"

where the coefficient of viscosity & is defined as

--(3a)

viscous stress

éTaStTmt = 2$ X (stram Veloclty),

using the same value of £ for both normal and shearing strains for the sake of con-
venience.

After the idea proposed by T. Endd, the force and the moment in a section in-
cluding the resistance due to the solid viscosity of the type of constant logarithmic
decrement may be assumed to be

S=GA{~1T = (28)2+2 i&}? s
i)

M= — EA&{~T = (28 + 2:‘5}(%35 ~ ox

adopting the complex expressions for y and T in periodic motions. With these ex-
pressions, the fundamental equations corresponding to (3a) become to



Lateral Mass-Impact Applied to a Long Ul\;]iform Bar 5

(% +215) - ra+ w2+ e 2Y - o= e+ 20023, 1
(3b)
o J

(g 2ng)s=G{vi=eer+ i),

in which the coefficient of viscosity £ is a dimensionless constant related to the stati-
cal hysteresis of the material used.

The general solutions of Egs. (3)~ (6) in series form
y = Zeii(ux’ipt') — 2 u,,(x)e*"ﬁ“’
can always easily be obtained, where u,(x) is to be one of the normal functions
satisfying the boundary conditions and p, is related with it by a proper relation.

In the following, auxiliary parameters » and ¢ are used for convenience only.
Eq. (5):

P=v, a&=»=0, a=x+y, af=:xy,  cereeens (7)
uy(%) = Ach vy’ + Bch~Vpa' + Ccos Vou' + Dsin Vo, - (8)
Yy = u,(x){Pcos vt + Qsin vt} .
Eq. (4):
pP=v=1/shfchf,
a! — vt — 2t =0, a; = x1/sh@, @ = +1/chf, ... 9
_ x xf x’ .ox
uy (%) —Acha{F+Bshm +Ccosm+ Ds1nm~, -0 (10)
t . t
3o = () {Peos iy + @sin g )
Eq. (3):

P=v, a—=@A+pra*+ (wr—-=Dpr=0.  oou... (11)
If we choose the value x =3, (This corresponds to the case of rectangular cross
sections and Poisson’s ratio ¢ = 0.25), putting » = 1/sh @,

@ = ~2+cho/shl, a:=~2-chg/shl, af=~/chf=3/shf, (1)

ch Q’glx’

B sh (Zg,x
COS @ x' +

(%) = A sin a.x

4
y+ Ccosayy’ + Dsinagx’,  .o...nn. (12)

/
9 = () (Pcos = +@sin %}

Eq. (3a):
e 1 1= 2dmm/bp
ey R
P=8xq=0v{i(X+Y) £ ~1 = X+, & (13)

X = (b/esh0)s, Y= (xsho/b)y,
(11), (11), and (12),

v =wm(x)e™*{Pcosqt’ + Qsingt’y ... (14)
Eq. (3b):
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. 1 =P 1 — 29 /bp
Tsh’l " C M1 - (28)T+ 2

p=ixq=v{iY £ VT (28" +2i - V?},
= £ £ A=
c—.Tﬂ‘l'Sha/'\/l—-&—Y“’

.1 TR 7Y 1
Q;W'\/l—g'—y",

11, (11), (12) and (14).

In this last case, &% is always negligibly small as compared with unity, and also Y*
for high frequencies. Thus we can further put

= (g/b)y + &/sh0, q=1/shé=y».

The comparative differences between equations (32) and (3b), when the external
resistance is neglected, are summarised as follows.

' Damping factor Frequency factor
Eq. (3a) exp{— (b/x)&v®}t" w1 = (bfc)% Y
Eq. (3b) exp{—(b/x)ev}t vt
Eq. (6): :
With notations X =x/K, 1" = tbs/k ,

q:?:y,

3y = (Ccos px’ + Dsinpx’) (Pcos vt” + Qsinvi”) .

3. The velocity of propagation of the lateral waves in a bar

It has already been proved that a motion
v+e
y= S »dv,
v=¢&

in which y, = P, sin ay ' sing,#, is a wave motion with a group velocity g+
= + (dq/da),b, while the velocity of the wave component y, is b,/+0 = (qv/ay)+b.

As « and ¢ are now not in linear relation, the wave is of a dispersive type and
changes its form from time to time, and it is propagated as an energy mass of a
wave group.

Now, as the fundamental equation (3) (or including (3a) and (3b)) has two sorts
of solutions in respect of the relation between a and g, it is easily seen that there
are two group velocities for a same wave length or for a same wave frequency. The
coefficients #" and b, of the both types thus calculated are obtained as follows.

For the first group, '

1 ~1 =X
b = e ’ o
'=Vsxene F T xcns
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2ch 0~/ T chg (1 —2X¥)

b, — 2Ch0~TT RO _ )
& (ch?f +4chf +1)~V1 - Xy

T chff +4chd +1°

&1

and for the sound group,

1 ~1 = X¢*
A O bo’=~_——e,
b= m=a RV, sy
B 2¢ch0~2 = ché ‘ 2ch0~2"cho(l - 22X
g2 = or 20

chf0 —4chi+1 =(ch2¢9—4ch0+1)«/1—X92’

the left side relations of these being for Eqs. (3) and (3b) and the right ‘side rela-

tions for Eq. (3a).

convenience. by, and b do not exist for the range chf > 2.

The effects of the external viscosity are now all omitted for

Table 1 shows the comparison of these velocity coefficients with those obtained

Table 1. Comparison of «, 8, b, when ¢ =5 =0
Equation (5) ; (4) | (3 ; (6)
Assumption g’g :OOO ’ { Gy = oo I o= E/Ge =3 tE = O
Aux, Variable | » | »= 1/shfché v =1/shé ; v
q v v i v v
o5 ~v 1/shg ~2+ch@/sho v F
23 — —_ ~2 —ch@/shé —
s ~ 1/che ~/ch6 —2/shé —
by Ve 1/che 1/~/Z T cho 1//a*
by — — 1/~/2 =ché —
by, 2~/ v (ch®0 + sh?0)/ch®0 | 2ch6~2+ chg/(ch?f + 4chd +1) | 1//p*
by, — — 2chf~2 —ch6/(ch?8 —~4cho+1) | —
atr=co | o 1.00 1/+/3 = 0577 ' 0.577
by Vo { o I
at p=20 ~p=0 ~re0 ~p =0 0.577
at v = 1.00
by —_ — ~ —
at ver o (1/ve, = ~/3)
by at v = o0 co 1.00 1/~/3 = 0.577 0.577
i 4 V )
by; max 1 1.086 (1/» = 0.865) | 0.616 (1/v = 1.955) i
{ {
bgyatp=0 | 2/0=0 | 245 =0 24/v =0 0.577
by, at v = o 1.00
_ —_ i —
bgs at ver 0 (1/ver = ~/3)

Note: In the column (6), the velocity ratios ¥, b, against & = Jm cannot be shown,

but for the sake of comparison with other cases, u* =3 and b= ~uFGeJp are

used.
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from Egs. (5) and (4). These coincide with each other for waves of lower frequen-
cies in all cases. But for the higher frequencies, Eq. (5) gives too much unreason-
able results, and Eq. (4) shows the existence of group velocities greater than the
longitudinal sound velocity. On the other hand, with Eq. (3), the highest velocity
of transmission is only about 62 % to it for the first type of waves, and just the same
value with it for the second type of waves, respectively.

The results due to Eq. (6) is also added for comparison, in which the velocity 0'-b
and bg-b both coincide with the pure shear velocity bs = ~Ge/o -

In Table 2, the effects of the internal viscosity proportional to the strain velocity
are shown. In this case the motion becomes non-periodic and the velocity of propa-
gation disappears for the range sh § < ~2&b/k. The maximum value of the velocity
and the frequency corresponding to this maximum velocity becomes the smaller,
the larger the value of ¢ increases.

Table 2. The effect of internal viscosity proportional to strain velocity on by

£b/x 0 1 [ 2 j 5 1 20
sho at g =0 — | 1414 | 2828 | 707 | 2828
by max 0616 | 0535 | 047 | 035 | 0.205
sho at byymas 1955 | 465 | 7.9 | 16 60

The conclusive results on the velocity of propagation for the bar with two flexual
freedoms, shearing and bending, are as follows: —

(i) Waves with long wave lengths or with low frequencies have the same charac-
teristics as those obtained from the ordinary theory of bending.

(ii) Two types of wave groups with different velocities exist for higher frequen-
cies. The first type is none other than the pure shear wave at the limit of ¢ = oo.
The maximum velocity of this type is about 62 % to the longitudinal sound velocity,
somewhat greater than the pure shear wave velocity, when # is assumed to be 3.
The wave group corresponding to this is repressented by ¢ = 1/1.955* This type of
wave corresponds to the Rayleigh’s wave in the seismology.

(iii) When there is the internal viscosity proportional to the strain velocity, this
maximum velocity decreases in its value.

(iv) The viscosity in theé type of constant logarithmic decrement gives almost no
effects on the velocity of propagation,

The variation of the values of a;, s, ay, bg,, bg, and dbg,/da; against shf is shown
in Table 3 and Fig. 1.

* On this phenomena, see the discussion in Article 7.
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Table 3. sh@, chf, ai, as, a', by, by, dby, [ dx

shé 1 ch@ ! ag i a | o’ ! by, [ byy | dbys/dxy !
0 1.000 | ~/3/0 1/0 . 0.577 1.000| ©
0.1 1.005 | 17.334 9.975 . 0.578 100 | 0
0.2 1.020 | 8.689 4.550 . 0.579 0.99 | —0.0004
0.5 1118 | 3.532 1.878 . 0.587 0.94 | —0.0045
1.0 1.414 | 1.848 0.765 . 0.605 0.81 | —0.0166
15 1.803 | 1.300 0.296 . 0.612 054 | —0.0184
1.732 2.000 | 1.154 0 0 0.616 0
2.0 2236 | 1.029 . 0.242 0.616 . 0.005 ho = 1.955
5.0 5099 | 0533 . 0.352 0.572 . 0.266 sht=L
10.0 10.05 0.347 . 0.284 0.491 . 0.682 by, = 0.616
20 20.025 | 0.235 . 0.212 0.390 . 1.14 dby,/dz; = 0
50 50.01 0.144 . 0.1385 0.267 . 1.58 @by, it
100 100.005 | 0.101 . 0.0990 0.194 . 1.76 771 310935
200 200 0.071 . 00704 | 0.139 . 1.88 :
500 500 0.0448 . 0.0447 | 0.089 . 1.96
1000 1000 0.0317 . 0.03159 | 0.063 . 1.98
2000 2000 0.0224 . 0.02235 | 0.0446 . 1.99
5000 5000 0.01417 | . 0.01415 | 0.0283 . 2.00
104 10¢ 0.0100 . 0.0100 0.0200 . 2.00
10° 10 0.00316 | . 0.0316 | 0.0063 . 2.00
o sh@ 1/~/she | . 1/~/sh@ | 2/~/sho | . 2.00
o A d
5 \ \ \ 72_
\ |
! T T win p——
\ \ ~ A ’;""//”;
\ . I \ //" //
\ \‘e\(, 10" x | .\‘ : / / //
\ T ot @)
. . ,X:\é' ff&’ /{5) ’
5 A\ \ - RNy 1.0
\ ) AR /l ’ f")”:- -%/ ,// ]
EZIGN N /\ [ < el .441_’_5/\\\ ;
7 7 ty. " N I S~
N T A = TR
N <A / /(.h/, [ P it —
%f L ™ ll 1= 1i/ Il 29y I B R
o L 2 i L i " o
] ! |
L |
o-1 1 10 <k 100

Fig. 1. a, ag, a2, byy, bgy, dby/dx; and dby,[/dx, against sh@. The broken
lines are the curves for the cases with internal viscosity proportional to the strain
velocity, The figures in brackets show the values of bi/x.

4. The wave spectrum produced by a mass-impact applied laterally
to an infinitely long bar

Take the origin of the coordinates at the midpoint of a bar with the length 27, and
let a rigid particle with a mass M and with a velocity V st;ike laterally at this point.
As already mentioned in Art. 1, during the mass is in contact with the face of bar,
the whole system is considered as a freely vibrating uniform bar loaded with a mass
at its center. By the law of Rayleigh for the linear vibrating system ', this motion
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may be considered as a summation of many component vibrations expressed with
proper normal coordinates.

According to the description shown in Art. 2, the general solution ‘is given as
follows,

¥ =S\ Pu(x)e % sin (qt' — ¢)

u(x) = 2, (x) + w(x) ,

u,(x) = Ccos ay%’ + Dsinayx’,

us(x) = Achay's’ + Bsh a'x’ [chd > 2],
= A cos a:x’ + B sin a.x [cho < 2].

If we choose n = 3, as a typical case of interest, the relations between p, a;, a.
and @/ are expressed by (117) with the aid of an auxiliary variable 8. When / is
finite, the ratio of the constant A, B, C and D and the value of # can be determined
from the conditions of the two points x =0 and x = /. When / becomes infinitely
large, the conditions at x = / vanish, and two of these constants can no more be de-
termined. But, as far as the above type of solution is adopted, the normality of the
function #(x) must be kept always.

The conditions at x = 0 are two; one of them
is that the difference of the shearing forées at
the both left- and right-hand adjacent sections is
equal to the inertia force of the mass M, and the
other is that the inclination of the sectional ele- I3 f

ment at this point is always zero, or in other
words the inclination of the neutral layer equals Fig. 2
the shearing deformation there.

Thus,

M agégo) = 2G.AT (0) + (resisting force) and (% )x=0 —T(0) =0. (16)

With the notations 7, 75, and 7. for the component shear angles corresponding to
w, u; and us, the following general relations are reduced from the fundamental equa-
tions (1). )

The component shear angle:

e duwy  p du
= dx T afshf0 dx?
e dwo o n  dk
T2 = o7%shid dx %F afshi0 dx °
The component bending rotation :
du o 1 dw
dv "7 af(chf+1) dx°’
_duz 1 due -1 dug

dr " T*T aff(ch0 —1) dx ¥ af(chf—1) dv *

The conditions (16) are thus reduced to
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1 D

KA+O +(57 —;;)B+ D oo,
(i - })____B N D ~o J [cho=2] --vvnvnn an
a'g,, a:/chf —1 Q‘](Cho-i-l) v

where & = M/2 pAr denotes the relative mass magnitude.
The normality of #(x) can be realized by the condition that there is no escape of
energy at the ends x = + /; that is,

yOSW =0 and  {(ay/ex)i — T(D}MQ) =0,

and all the ordinary end conditions satisfy these conditions. The condition of nor-
mality between u,; and u, for our problem

kit (0)2¢,(0) + S:[um(x)u"(x) -+ r”(é%'—’_gx—) — Tm (x))(aL%';ﬂ - "f,,(x))]g';E

=0, m=nl (18)
can be obtained from the fundamental equation (3) and above conditions. When m
= 2, the left-hand side of (18) does not vanish.
Let us now consider only the simply supported end conditions. because of the fact

that any combination should give the same results as the length tends to infinity.
Thus,

u(l) =0, (0*u/ox%); = 0.
After some calculations, we get

A= —th(a/l')sB= -8B, [ché > 2] ‘l

= —tan al/+ B, [che<2] V..o (19)
C = —tan a,l’-D.
From (17) and (19)
ch>2:
y _ @/(chf —1) 2chd o
I tanel = cho + 1) T kaaeho ¥ U (20)
_af(ch6 -1 __.. 1 . .
lu_ ml—)e R Eo—-—sml,sma;(x’—-l’), """" (21)
chd <2:
as(chd — 1) — . 2chd /
tanal + R F 1) Bl = e 1y (20)
_ agx(chf —1) sinas(x' - 1) + sine, (' =0) ... @)

~ a;(chd +1) cosal cos a;l’

For a finite value of /, a series of #’s can be determined from (20) or (20’) and the
functions #(x) are decided. When / tends to infinity, however, § and « may have
continuous values. Nevertheless, for the range such as ch @ >> 2, there shall be needed
a promise da; = (x/l)m from Eq. (20) and the value tan («,r) is determined. It is
not so easy to determine the values of tan a;7 or tan a.Z from (20’). But consider-
ing the fact that the value of as:(chf — 1)/a;(ch # 4+ 1) is always very small for the
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range such as ch < 2, and also with some statistical consideration, we can omit the
second term in (20'), thus
tan a;/ = 2ch /ka;(chd + 1),

and again day = (e/D)m .
There exists, obviously another set of roots of (20') which are mainly related to
the value of tan a.Z, or a.l' = (n+ i)z, but we can exclude all such solutions be-

cause of the fact that they are not important in magnitudes.
When the normal functions #(x) are determined, the amplitude P of each compo-

nent vibration can be determined by Rayleigh’s method."
The initial conditions for our case are expressed as follows:

At t=0; y=0, pB=0wox—-T=0, 0oRMGE=0,
(@y/ot)ern =0,  (B9/3t)z=0=V.
Now the component amplitude P for each § is calculated by the formula

x kVu(0)

P= """ ¢=0,
b g > Y 7 (22)
o ¥ a o - vy : d
1= k@) + [ [tu) + {242 -7} ]5
The denominator 7, when [ tends to infinity, is reduced to
. - . . 1
cho>2: I=5{l+ ceeny i iyleosart
. 1 1 3 1
cho<z:  I=4[{1+ @i (Chi T 1)2}cos'2 al

2 —_— 2
+1+ag(ch0 1) 1 "

a®(chf + 1) Jcos*asV
Ll 1 R
=g {14 @ (ch 0 F 1)=}'
The second term of the latter equation has been omitted as its value is always less

than one twelveth of the first term. Substituting ¢, #(0) and 7 in expression (22),

we get

p= 4wV —shfchfai(chf + 1)* 1__ (23)
B {1+ af(chd + DIFOH V=Xt
F(0,B) = ai(cho + 12 + {2520 4 (& (R0 = MY @4)

where the factor ~/1T — Xx¢ is necessary only for the case with the solid viscosity pro-
portional to the strain velocity.

The term exp(— a<'z’) in z(x) shown by (21) is important only near the origin
and can be neglected for the investigation of the propagating waves; the term
sin az(x' — ) in (21’) is also negligibly small as cited above. Using the operation
S:(l/m)d«x, instead of ), the complete solution, except for the neighbourhood of

the struck point, is reduced to the expressions as follows.
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Displacement :
eV : ’ ~qp_singt’ o 3
Y1 = b j‘o{ Q(ﬁ)}sm(a’;x (p,)e ’\/1 = ,.,da';, (23)

Effective shearing strain:

= . singt’
N R e B e L

Bending strain:

Oy _ ol _ 4V(* a(h) . e _sing¥ .
o T Bx = mbr), chf + 158 (¥ — g eI day. - (21)
In these expressions, the function @(#) and the phase angle o, are defined as follows.

0(6) = sh 0 ch a2 (ch b + 1)2 _ shfché(chd + 2)(chd + 1)
{1+ a®(ch 6 + 1)*}{F(0:%)}? ~ (ch®@ + 4chd + 1){F(6, k)}‘lﬂ’}
(28)

tang, = {200 (3‘2'("“ -1 }/a,(cha F1).

In the case with solid viscosity proportional to the strain velocity, ¢ and ~/I1 — X¢
may become imaginary when sh f becomes very small. In such case the following
transformations are needed. '

When X =2b/kshl =1;

singt’/~T = Xt = t/shf, e =gt/
When X >1;

sing’/~/1 = X®? =shqt'/~vX* =1 where ¢ = ~X? =1 /sh#.
When shf# -0 or X>1;

e~ sinqt’/~T — X2 —> 252_0 e— b

For small a;, ie. for large 6, @(#) tends to (k/2)sh@ or to /2« and tan ©; to
2/ask. TFor large a;, i.e. for small §, @(f) tends to 6?/2+/3 or to ~/3/2a,®, and @

to 1/ 44 ]k
The velocity at £ = 0, corresponding to ahove solutions, is expressed as

oy v —chf-af(chf + 1)°
(5 ),,n f {TF a(ch 6 + DF F(0, k) “®)das,
(ay(O)) _ ch?fa,*(ch 0 + 1)* d
fuo <1+a,2(cha+1) YF(6, E) Y%

of which, the approximate coincidence with the initial condition is proved when we
compare them with the results derived from the ordinary theory of bending, Eq. 5;

(Q) _ 4V * = BPa{e® +sinax’ — (1+2/kcr)cosax'}d =0,
ot t=0 T oz 0 2 (kea" + 2 ka -+ 2)

2y(0) 4V d(ke) | -
(% )= j (Fay + 2ka ¥2 = v ltan (1+ka)| =
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5. The approximate integration of the solution by Sezawa-Kanai's method

Though the integration of the expression (25), (26) or (27) is never an easy work
in general,‘ an interesting method applicable to this problem is reported by Sezawa
and Kanai ™ referring to their problem on the tidal wave transmission in a deep sea.

The shock wave is consisted of infinitely large numbers of components with whole
range of wave length. - But at the point 2" and at the time #, only the component
with the group velocity x'/# = b, becomes conspicuous selectively. Thus, from this

view point, it is required to trace accurately only the motions in the neighbourhood
of this wave.

Now our solution is expressed in the type of
Z= [:P sin(a¥’ — ¢)e~% sin g¥'da
= é rPe'S'"{cos(ax’ — qt’ — @) + cos(ax’ + qt’ — ¢)}da. -recce (29)
0

Let P, ¢ and o, the functions of « as they are, be assumed to vary their values very
slowly compared with the cosine factors. When we apply the Taylor’s expansion to
ax’ — q’, taking the origin of « at the point where ¥’/ = by = dqlde , we get

_ ° dzb _ 3
ax’ - qt = (ax’ — qt'y — (¢ 90e) XV (¢ o) e - @)

The motion with the argument ax’ + g# can be omitted as it has no effect for the
range x' > 0. Putting

12 [2
0‘(“-%){2 ttii%|}o or da-d/{—— —d[f—: e

and neglecting the third and higher terms, we obtain from Eq. (29)

Po e cos (ax’ — qt’' — ¢)o .
Z = 2 ( o[ {t"db l}"" S_GOCOSada
2 {d«z |
sin (@x’ — qt’ — ¢ (® . .
# | db, { 7 S_aosmada],
2 l dot |

so far as dbg/da does not vanish. The notation [0] for these expressions shows the
values at the point where the relation quoted above is kept between x’ and #, and
the top sign of ¥ means to be applied when dbg/da > 0, and the bottom sign when
dbg/da < 0. The lower limit of integration can be expanded up to — oo without se-

ious errors except when a, - 0, while it must be zero when a, = 0. Further, intro-
ducing the mathematical relations

= o (—
j cos a*do = g sin ¢*do = \/ I,
- - 2

the final result can be reduced to

Z= \/:’;Pu (e“*"'/‘/t'i%é)ocos {(ar —at =y T} - 3D
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When dby/da = 0, the motion represents the wave of the first arrival. In this case
the third term of Eq. (30) must not be omitted, and if we put

o= wmao (52},

and with the relations

(" cos s = %-r (1) cos 7 =156, (  sinods =0,

the solution can be reduced to

Z5 0773 P, ( eif'/\/” 2% )D

It must be remarked that, on application of this method, x', # and « are no more
independent variables but are related with each other, and also that, when a becomes
very small, the variation of P or ¢ might be comparable with that of the cosine term,

cos (ax’ — qt’ — @)y +ceeeenn (32)

so the approximate solutions shown above might contain considerable errors. In the
latter case, however, our solution must coincide with that reduced from the funda-
mental equation (5), and correct calculations can be performed with the aid of the
Fresnel’s integral table. Further, the above solution must not be applied to the point
% = 0, because the terms of a. or a¢ can not be neglected there.

The wave motion shown by Eq. (31) is damped out in inverse ratio to the square
root of x” or #, even when there is no internal viscosity. On the contrary, the top
wave shown by Eq. (32) is damped out in inverse ratio to the cubical root of them.
It seems somewhat unreasonable. The physical meaning of Eq. (32) might only show
the qualitative fact that the amplitude there is finite any way.

When we put

_4Vvye e@®
Po= S (1), (33)

in the above expressions, the solution of bending strains for our problem of lateral
impact shown by Eq. (27), Art. 4, will be transformed into a form of practical use.
Fig. 3 shows the time variations of the bending strain calculated by this method, with
the magnitude of & = 20 for example, for the two ideal cases of internal frictions,
one with the viscosity proportional to the strain velocity 02/x = 2, and the other with
that of constant logarithmic decrement type 274 = 0.0031. These two values were
selected so as to give the same order of damping in case of the frequencies of ordi-
nary vibration tests.

The motion at any position in the bar varies its frequency gradually and is damped
out aperiodically as # becomes large. The total number of cycles of it becomes
smaller as x” approaches the origin. For the case with internal viscosity of constant
Togarithmic decrement type, the wave of the first arrival has the velocity &+bgmax and
still a large arnplitude,'but for the case of another type of viscosity, the notable top
vibration arrives much later owing to the high damping effects for higher frequen-
cies. The difference between them for larger # can not be recognized.
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The expressions for a, q, ¢, bg,, are already given; the valges of dbg,/dac; and of
d%bg,/day® at the point where db,,/da = 0, are expressed as follows

dbgy _ 2sh?f(ch®*f —3chb — 4)

“day T T (ch*0+ 4chd +1)°
(d"'ng) . —12 voircmgshie [ T (34)
daﬂ 0 (Ch20+4ch0+1)4 .

The numerical values of these are shown in Table 3. The numerical values of F(f, k).
?(6)/(ch @ + 1) and ¢(0) are shown in Table 4.

»

010 E (A)
oS i ____ - { x'=500]
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o) i i | . . ‘ \ 1 ! ' \ '

(x'=1000]

O A AN AN AN
°-“E’mﬁl IVAYAVAVARVAEIIR Y

(B8)
0.05- [x'=500] I

| 1 | | ! ‘ i ' { \
0.05 o (x'=1000]/‘_1
0 PP AN ANV N /\/
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t=]0000 t'= 20000

Fig. 3. The transmission of the bending strain e/(4 V/(zbx));
(A) with internal friction 2z¢ = 0.0031 of constant logarithmic decriment,
(B) with internal viscosity b:/k = 2 proportional to the strain velocity.

6. The bending strain, shearing strain and the contact
pressure at the impact point

The method of integration developed in Art. 5 can not be applied at the origin as
the motion there is no more a propagating wave, and it is meaningless to consider
the conspicuous wave only. Moreover, the components of the second group can not
be neglected.

—_ @ — d?u d): . - ’
U T ge ™ T g T dn’ at ¥ = 0 derived from Egs. (21) and (21") are

_ 1 2ché
w0) =~ GhoFD & °
70) = SR d acho + 1)’ (Z),~T@=0, L ..o (35)
Fu) (4o pen0 gL oked o
(dx‘-’ 0 dx/)y Fay(chf+1):Lk — astanadl
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(@) The bending strain

As proved numerically by another example, say, by a shock problem when an in-
itial velocity disturbance is given instead of a mass impact, the effect of the second
wave group related to a. is negligibly small for the bending strain 2°/ox® — oI /ot,
so we can omit the term a®tan a./ in the last expression of (35). On the contrary,

the aperiodic group related to a.’ is considerably important. Thus, using the ex-
pression (33), we get

e(0) = (bending strain at ¥ = 0) = ﬂbr‘g 7'(0) sin qt’ da,

o 2ch0 (1 | ad\ ...

10 =00 o ori(5+ 5 )VEGE - e (36)
F(0,k) = ait(ch g + 12 {250 4 /(RO =1,

in which only the case when £ = 0 is considered for simplicity.
Now put

I S _ ch*+4cho+1 . s
q_Sh[} Bs d‘a Cho’\/Shﬁ(Cha‘*‘Z) 69 B_B‘\/ty

then (36) is further transformed to

e(©) = i (1@ sin (80ap = L0\ Jon (- ) sin s,
c (37)
2(8) =2chd «/Shﬁ—a/chﬁ_-i-_é(%‘ + ‘{f /F(O,k). }

When £ is finite, ¥(3/~/#) tends to k/2 at the limit of # - o, and (37) is then
nothing but a Fresnel’s integral ;

4V k T
e(0)t>e = b V7 4 ~/7 s eeeedee (38)

damping out proportionally to 1/~/#. It also coincides with e(x) at the limit of
i’ > oo obtained in the previous article.
At the limit of # - 0, '

Ouso= St (@8, s 39)

the integral part in which converges. Thus, the bending strain at the beginning of~
the impact grows with the time. )

In general, the integration (37) is mainly affected only by the larger value of 0,
and the elements in the range of chf# < 2 have almost no role in it.

The case when k2 = « is identical with the case when a bar moving with uniform
velocity collides with a fixed rigid point at x = 0. In this case, except for very
large value of p’, we can put Y(#) = 1/8 with no distinct error. Therefore, after
the lapse of some short duration,

e@)pre = 2V (7 S‘gﬁ dp =

abr Jy

Y.
br

or the strain converges to a finite value without any damping. The calculation of
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(37) in general can be performed more easily if we pay attention to the difference
of it from (40).

The results of these calculations are shown in Tables 5 and 7 and Fig. 4. The
.maximum bending stress is proportional to V/bk, and the effect of % upon it is not
so remarkable; but the effect of £ on the rate of damping is very evident, showing
the larger damping for the smaller value of k.

As the bending strain at any finite value of Table 5. The bending strain at « =0

x is always smaller than that at x =0, we
. . . e(0)/(4 V/(=bx))
see that the maximum bending stress is al- v i
ways produced at the point of impact as far k=10 I k=2012=50]%=o
: 01!0 0 0 0
as the bar is very long. 4 0.565 !
16 | 0.58 0.61 | 0.64 0.67
) 100 | 0.24 0.416 | 0.62
(b) The shearing strain and the contact 1000 0.148
10000 0.063 | 0.785
pressure ] |

With the second expression of (35), the shearing stram at ¥ =0 is expressed as
follows,

47

7 (0) = “5 ), ZF’(B) sin gt'da, ,

2cho 1 }
sh* @ vF(a k)"

The value 7°(0) for a very small # is mainly composed of the elements with very
large a,, and as

........

P8 = o)

1 «a
) Il
V' (0)esw > 2—‘\/§ “_2——1/]2‘""

is reduced to

Vapm a sina —= L d —V e
c+1)E V3= T

the shearing strain at the limit # - 0,

f(O)t'»o = br V3 U/k)(t'lys)

.o (42)

or quite the same solution as by the pure shear beam (Eq. (6)).
out as an exponential function of time.
The integration of (41) can be performed by a transformation of variables;

o (&) e,

The strain damps

T = Y v 7 @) sin (#°)ag =

2ch0(ch0+1)«/2+ch0

7B = shi~sh 0F (0, %)

The results of these calculations are shown
in Tables 6 and 7 and in Fig. 5. The maxi-

Table 6. The shearing strain
T(0)/(V/b) at x=0

mum strain occurs at the very moment of

[k=10‘y'k=zo'k=50a'k=oo
impact. The value of 2 does not affect this -

. #= 0 100 | 1.00 | 100 | 1.00
value, but the rate of damping incleases y— g4 g 065 | 075 | 083 | 084
when %k becomes smaller. =16 | 0108 | 022 028 031 B

The contact pressure between the bar and
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the mass, expressed by M(2%/0t%) 0, is just twice the shearing force G.AT(0) if 2
is assumed to be zero. When the viscosity exists, it can be calculated by

.

M(%)  =26a{TO+ 2ear(°) ,

if it is of the type proportiona!l to the strain velocity. For the viscosity of the other
type, the effect should be smaller than this, though there remains some physical
question in the fundamental relations.

As the contact pressure by a lateral mass-impact for an infinitely long bar is aperi-
odic one, the coilision occurs only one time with no rebound, and the duration of
contact can not be clearly shown. This is a notable difference from the phenomena
caused by a bar of finite length.

0'8 = 00
olo -  h=
Vinbx 50
0.6 -
[ \\ 22 |
\ \_\\
04 <& —
\\
02
¢ 0 20 40 40 20 100 120 140, 160
Fig. 4. Bending strain at x =0 (¢=0)
_ e
[l p
2RI
SR
. AN
2 > I’\ E
0
0 4 8 72 16 20 7'
Tig. 5. Shearing strain at x=0 (¢ =0)
Table 7. A, x(8') and ¥(8")
xX(B) w(p
shé B : r |
k=10Ek=20‘k=50; k=0 E=10k ; k=50 |k =oco
R———— v-- - !
0 w |0 0 0 0 )
0.1 | 3.162 0.0001 | O 0 0 0.182 0 182 0.182 0. 182
0.2 | 2.235 0.0005 | 0.0003 | 0.0001 0 0.260 0.260 0.260 0.260
05 | 1.414 0.0049 | 0.0025 | 0.0010 0 0.420 0.421 0.421 0.421
1.0 | 1.000 0.0262 | 0.0131 | 0.0052 0 0.628 0.630 0.630 0.630
2 0.707 0.382 0.335 0.303 0.282 0.902 0.925 { 0.934 0.940
5 0.:447 1.649 1.698 1.701 1.690 0.888 1.028 | 1.112 1.169
10 0,516 2.360 2.663 2.833 2.92 0.683 0.886 1.037 1.145
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20 0.223 | 2.943 | 361 4.08 4.37 0.495 | 0724 | 0922 | 1.083
50 0.1414 | 3.64 5.01 6.19 7.10 0.303 | 0538 | 0.790 | 1.034
100 0.1000 | 4.00 6.01 8.09 9.90 0205 | 0.411 0.694 | 1.018
200 0.0707 | 4.36 7.05 10.50 14.04 0.129 | 0296 | 0.586 | 1.009
500 0.0447 | 4.66 825 |14.09 22.3 0.065 | 0.175 | 0.436 | 1.002
1000 .0.0316 | 4.80 8.90 (16.87 31.6 0.036 | 0109 | 0.327 | 1.000
2000 0.0223 | 4.89 9.33  |19.26 44.7 0.020 | 0.065 | 0.228 | 1.000
5000 0.0141 | 4.93 9.68 |21.89 70.7 0.009 | 0.030 | 0.127 | 1.000
104 0.0071 | 4.97 9.84 123.10 100 0.004 | 0016 | 0.077 | 1.000
100 0.00316, 4.98 9.97 |24.66 316 0.0005 | 0.0016 | 0.0106 | 1.000
~/'sho
. . 5. —
oo 1/shg | 5.00 10.00 | 25.00 ~J3HD + )2 50/sh 6 |200/sh 61250/sh0] 1.000

7. Conclusions

Our theory of Jateral impact developed above is based on the assumption that there
are only two flexual freedoms neglecting the local deformation at the contact surface
and also neglecting the higher order of strain components. As shown by the ex-
ample 3 in Appendix I, our assumption is equivalent to the neglection of the com-
ponents of the order of (beam depth/wave length)* and the higher. Therefore it
might contain some errors. Our results that the maximum velocity of propagation
of the waves of the first group occurs at sh ¢ = 1/1.955 and that the critical value
of the velocity at the limit of sh# = 0 is somewhat smaller than it, would be perhaps
one of such errors. The result (6b), Appendix I, suggests us that, for the limiting
wave of shf = 0 (wave length = 0), it should be more preferable to use G instead of
Ge, or bgb = ~GJp = 0.6320 instead of ~G,Jp = 0.577b. Thus the top wave coin-
cides with the critical wave.

Granted that such defects cited above were unavoidable, we have surely succeeded
in solving the problem which can never be solved by the ordinary theory of bending.
It seems unreasonable to discuss on the comparison with the investigation by Timo-
shenko reduced by introduction of Hertz’s thoery, but if it is introduced to our theory,
our solutions shall be more perfect.

Summaries :

(a) At the beginning of the impact, of course at the neighbourhood of the impact
point, the motion starts with a character quite the same as by a pure shear beam.

(b) The disturbance propagates in both directions, but as the waves are of dis-
persive types, they propagate in a form of conspicuous wave groups with proper
group velocities.

(c) The motion and strains at the impact point are aperiodic, while those at points
apart from this point are periodic, beginning with the frequency of the top wave and
damping out aperiodically. The total number of cycles grows larger as the distance
from the impact point increases.

(d) The effects of the internal viscosity are not so clear, but, in any way, the mo-
tion of high frequency is damped out quickly, and only the waves of lower frequent
cies are transmitted causing the apparent top group velocity very much slower than
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the pure shear velocity.

This research on an infinitely long bar would be extended to the case of a finite
length. But if we limit the question on the strength against shock waves produced
by impacts, no considerations on the length will be needed because of the damping
character, except when the impact be given near the terminals, in which case the
' reflected waves should be superposed. Experimental researches on bars with finite
length show that the rebound occurs very soon, and that, in same cases, the colli-
sions take place two or more times.

8. Experimental investigations

The apparatus and the way of Auther’s experiments on the lateral impact for a
long. bar is illustrated schematically in Fig. 6, the detailed description of which shall
be omitted for briefness.

Two samples of the experimental records obtained from the test (a) of Fig. 6,
where the bar was supported near its one end and the impact was given at this end,
are shown in Fig. 7 and 8. In Fig.7, the displacement y magnified with mechanical
and optical levers (at ¥ = 6m), and in Fig. 8, the surface strain extracted by a ro-
chelle salt pick-up and electric amplifier (at ¥ = 17 m) are shown. We see from these
that, when we record the displacement y, the motion of high frequency does not come
in evidence because of their small amplitudes, and the top velocity of propagation
looks apparently very small compared with the theoretical value. On the contrary,
the recording of strains shows very satisfactory results regarding to this point.

Figs. 9 to 13 show the strain oscillograms obtained from experiments (b), Fig. 6,
also with rochelle salt pick-ups. The bar was suspended quite freely, and the impact
was given at the middle point of it. ,

Generally speaking, good agreement with our theoretical conclusion is recognized,
except that there are needed some discussions upon the features of the top wave.
The top velocity of propagation recognized on the graphs seems to be about one fifth
to b = ~/E/p, and the form of the graph shows better agreement with (B), Fig. 3
with the internal viscosity proportional to strain velocities, than with (A), Fig. 3 with
that of the constant logarithmic decrement type. Author’s opinion on this point is
that, owing to the unsufficient sensibility of our measuring apparatus — finite length
of the pick-up used (about 10 mm or twice the rod diameter) and the decomposing
ability of the oscillograph vibrators (natural frequency about 6000 cycles per second *),
— the portion of higher frequencies might have died out. In fact, when another set
of vibrators with lower natural frequencies (about 1000 cycles per second *) was used,
much smoother figures as shown in Fig. 14 were obtained.

* These values were estimated from the maker’s catalogues.
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Fig. 6. Schematic illustration of the experiment
Ry : Rochelle salt strain pick-ups.
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Appendix I. On the conventional equation of bending for bars and plates

It is very troublesome to obtain the exact solutions for the problems regarding to
the deflection of bars, and rather impossible for bars with arbitrary cross sections.
But there are some occasions where it is desirable to get more correct solutions
than those obtained from the ordinary theory of bending. And this is the reason why
the conventional equation of bending should be proposed. The expression

. %=_%+6§Z%§_’ or %—‘%:—Eﬁl ........ (1)
is not only very practical form from engineer’s point of view, but also gheoretically
reasonable when the effective shear rigidity G.A is estimated reasonably. This fact
shall be described below.

The equation of this form has already been used by S. Timoshenko ¥, etc. His
estimation on G, however, seems too large, 'say (2/3)G for rectangular cross sections,
and he himself recognizes an error of 20% in the 4th example below.

To determine G, it should be reasonable to consider the matter according to the
energy theory, assuming the stress distribution to remain the same as by the ordi-
nary beam theorem. As the bending moment M and the shearing force S are two
sectional forces independent with each other, M must not do any work by the dis-
placement due to S. Thus,

Imes (axial displacement — By) X gyebdy =0,  ceeoeeen (2)

Ymin

where y denotes the perpendicular coordinate, ¢ the thickness, and B = dv/ax — I”
the effective rotational angle or the bending deformation of the section.
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After the operation (2), we obtain
G: = (5/6)G for a rectangular bar or a plate,
G, = (11/13)G for a circular bar,
and so on, and such operation can be applied to any
sectional form.

For plates, the conventional equation of bending
similar to (1) is obtained as -

o'w ol ow orl, M,
e — oVt s — F2)=—"F,etc, --(3)
(ax ox ) (ay oy ) _ D Fig. 15
or, expressed with the equivalent lateral load g. and the shearing deflection ws,
(T2 = ows/ox, ' = dws/dy) ,

Piw — ws) =qe/D;  pPws= —qe/Ge2h. creeeeee (3a)

Example 1:— A bar with constant shearing force.
A cantilever with an end load, or any beam with concentrated loads and reactions,

is included in this category. In practice, the condition of constant shearing force does
not hold at the loaded points or at the supported points, but if the small disturbance
near these sections are neglected, the theoretical solution considered as a two-dimen-
sional problem is expressed by
- 6 S v G

V=7 — S—GA(l_TF)(I—x) ........ (4)
for a cantilever (loaded point x = 0, fixed end x = [), while the solution due to the
equation (1) gives

- 6 S
v-”—TCH(l—x)'~ -------- (4a)

In these, v denotes the deflection according to the ordinary beam theory. The differ-
ence between these solutions is only 3% to the correcting term itself.

Example 2:— Both ends supported beam with uniformly distributed load ¢ = kA,
k being a constant body force.

The theoretical solution, also neglecting the small ends disturbances, is (length 27,
origin at the center)

v=-—E?A(—6‘+“;5f”)(‘l;;"xQ)’ ........ (5)
while the solution due to (1) is
v=5_@%(ygﬂ+%u)(_lzi_x2)’ ........ (5a)

in which the error is only 1.5%. The coefficient related to » in expression (5) is
slightly changed if the load ¢ is caused by surface pressurcs.

Example 3:— Bars with a lateral load ¢ = — kcos (n/20)x.



Lateral Mass-Impact Applied to a Long Uniform Bar 27

A common equation holds for an infinitely long bar, a bar both ends supported with
a length 27 and a bar both ends fixed with a length 47 Put « = /21, &' = NI e

and 2/ = depth of the bar. The vertical displacements obtained from the theory of
elasticity are as follows.

(i) If the load is consisted of the surface pressures evenly distributed on both top
.and bottom surfaces;

" 2Ea shal

y = — kcosax {;‘Z_Chrql_z:ql}gyj-_»(l + ) (ah-shah-chay — ch ahsay-sh ay)
- chaheshah — ah }

........ (6)

(if) If the load is consisted of a body force uniformly distributed in y-direction :

kcos ax {(1 + v)(ah-chah+«chay — shalicay.shay) + (1 — »)sh aki-ch ay
" 2Ea ah(chalisshal — ah)

-2(1+ v)/dh}. ....... (€)

v = —

(iii) If the load is consisted of a body force distributed proportionally to or/ox
there;

__ kcosax (24 v)cha’h + v(ch a’h — ch a’y) e
2FEa N2+ sha'l — a’h+ch a’h (6)

Vv =

When al: is small, all these equations-can uniformly be reduced to the approximate
form

k 4 2 e
v=-2% co;‘ax{l + _S_(Qh)_ + ey(ak)~}, ........ (6a)

in which the coefficient ¢ changes its value according to the vertical distribution of
the lead and to the ordinate y. If we put ¢ = 4/5 in (6a), it coincides with the so-
lution obtained from (1). The difference 4/5 — ¢ are always very small. The ap-
proximation (6a) fails when «l becomes large, but, even in such cases, (6') and (6”)
tend to the expression

0y = Doire —> — g SoXE (6b)

and this coincides with the result obtained from (1), if we substitute G instead of
Ge.

(iv). Example 4:— Circular disk supported simply at its circumference with uni-
form surface pressure.

The mathematical solution due to H. Love " is

4 5 [ 1 (54w 1 8+v+v°,.1 ...,
w= =G ®-m{G(T R -7)+ 512 ) @)
while the solution due to our conventional equation (3a) is
Qe oS 15+, i1+v 3
w= = f ®=m{gr (T3 R~ #) + 5] (7a)

The error is also very small and negligible if we, after Timoshenko, add the nega-
tive correction — »%*/6(1 — »?) in the brackets owing to the surface loading.
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