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Introduction

In recent years, the many experimental evidences that liquids show for extremely
rapid deformation the more or less different characters from the one expressed by
the well-known Naville-Stokes’ equation, which holds good for common hydro-dy-
namical problems, have been accumulated. Of these discrepancies, the large absorp-
tion of supersonic waves, which is seen for most liquids and is incomprehensible from
the classical theory, is most remarkable and the quantitative explanation of this phe-
nomenon from the modern molecular-kinetic theory has not appeared hp to the pres-
ent.

On the other hand, the phenomenological derivation of the oscillatory characters
by modifiing the classical stress-strain relations so as to fit the rapid motion is to be
tried, and this is the main object with which we intend to deal in the following.

More than eighty years ago, famous James Clerk Maxwell had suggested in his
theory of viscosity that liquids have a rigidity dissipating rapidly with time.” Re-
cently this idea.that liquids have elasticity as well as plasticity even for shear have
taken as a starting point by Frenkel and Obratzov and by the present author to con-
struct the stress-strain relations of plasto-elastic bodies.

Frenkel and Obratzov » have extended Maxwell’s theory by introducing a reversible
relaxation deformation besides the purely viscous and the purely elastic components
for shear. Moreover, they have introduced the corresponding three components for
volume dilatation besides the static compressibility being of undecaying nature, so
that an isotropic body has seven rheological constants.

The present author ® developed independently a simpler theory to explain the high
velocity of hypersonic waves, or the waves of thermal motion, found by Raman and
Venkateswaran. The author’s theory, containing only three constants, i.e. the volume
modulus, the viscosity and the rigidity, is simpler, but was insufficient to discuss the
mechanical properties of liquids over wide variation of frequency.

In this paper, a generalization of the preceding work is brought forward by postu-
lating arbitrarily many times of relaxation for the stresses occuring liquids and a
general stress-strain relation for plasto-elastic bodies is obtained. It contains most
of hitherto presented theories, including that of the author and of Frenkel and Ob-
ratzov, as special cases. The mechanical behaviour of liquids for the supersonic and
hypersonic frequencies can be mostly explained according to this theory. The re-
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lation to the molecular-kinetic process is also discussed.

Derivation of the Stress-Strain Relations

Let us derive the general stress-strain relations in a plasto-elastic body by extend-
ing directly Maxwell’s original idea itself as far as we can. When a shear s is
suddenly produced at a point in the body, the shearing stress S being proportional
to the shear accompanies with it:

S=ups, e (1)
where p is the rigidity modulus. To treat the matter generally, it would be better -
to think the stress S consists of many components, S;,S., ... each of them being
proportional to the strain S with different coefficients s, 2, . . .. Namely, if we
take z# components,

S=S+S:+...4+Ss, 0 ceeeees (2)
Si = pis (i=1,2,...0n).  eeeeese (3)

Here u;’s are the constants which express, so to speak, the partial rigidities.
If the substance is purely elastic, (3) holds also in its differential form:

dS; ds . ‘
‘gfle_hﬁ (221’2’_"1\0. ........ (4)
Owing to the plasticity, however, the stresses decay with time. Although the pro-
cess of the relaxation is incomprehensible in detail in the present state, it is natural
to take different time of relaxation for different mechanism.” So we denote the time
of relaxation of the i-th component as t;, and put in place of (3)

Si = pisexp (— t/7i). GEERRERERE 3)
On differentiation, we have
d?st;': _%uisexp(_t/ri‘)=__?sf_, ........ (5)

which represents the rate of the dissipation of the stress by plastic flow. Combining
the elastic term (4) and the plastic one (5), we have Maxwell’s relation for plasto-

elastic substance, that is
dSi ) ds Si (6)

_ . esseeses

aF T Mdar T

Using the operational notation D for the differentiation with time d/dt, this is writ-
ten as

_.-mD
S'_l/r.-—i-Ds' (7

If we deal with steady flow, both the strain velocity ds/di and the stress S; should
be constant, and we have from (6)

Si = /.c,*rit%s.

Accordingly we see that uit; means a sort of coefficient of viscosity, which we de-
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note i ; i.e.

piti = ui, or =il i e &)
Then (7) becomes
= D )

and substituting (7) into (2), we have the resultant stress-strain relation
(& D ) ) ) o
s_(§M1+TiD s. (9)
We can set up a similar relation between the pressure P and the volume dila-
tation ¢, but there exists an important difference. Namely, if the shear produced is
kept constant, the shearing stress S gradually diminishes and approaches to zero with ‘
time, as shown in (8). However, it is not the case for volume dilatation. After
sufficiently long time, the pressure does not vanish, but approaches to a constant
value which is determined from the equation of state of the substance. Since this
thermodynamical value is proportional to the volume dilatation, we can write as

p D kOs >
where %, means the statical volume modulus. Accordingly we may apply the law of

dissipation being of the same type as (9) for the residual pressure p — (— kye), but
not for the pressure p itself. It is

~he=2 = (S p)
S or ) p=- (kn + ,-if}l flgﬁ)e. ........ (10)

Here k¢ means the partial coefficient of viscosity for volume dilatation corresponding
to ui for shearing deformation, and i/ = %//k; a time of relaxation, where k; means
the partial modulus of compression corresponding to u; for shear.

Now we can construct the general stress-strain relations for the plasto-elastic body
under consideration on the ground of (9) and (10). According to the general usage,
we denote the components of the stress tensor and the strain tensor refering to Car-

tesian coordinates as

Xay Yy, 22, Vo= 2y, Ze= Xz, Xy = Yy e (1D
and "
o 0w
* = 50 yy"ay’ 27 0z °

Yz _ &y _ 1(ow  ov

= ‘2(ay+aZ)’ e (12)
2 _x_ 1o, ow |
2“2‘"?(az+ax)’

Xy _Yx_ 1 (ov  ou

‘2“2“2(ax+ay)’ )

respectively, where #, v and w are the components of a displacement.
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For the tangential tractions — Y;, — Zy and — Xj, we can apply directly the re-
lation (9) for shear, i.e. :

(21+1D)y“ etec.  eeseeees (13)

However, for the three normal component tractions — Xy, — Y, and — Z;, the situ-
ation is not so simple. Considering that for an isotropic body the stress tensor should
be obtained from the strain tensor by multiplying a scalar factor containing the elas-
tic constants. Since the factor is as a matter of course common for the all com-
ponent, the normal component tractions may be written as

(2121' Op )+ K

Yy=~—( 7 Yyy+ K,
Z;= —( v V2 + K,

ll

Xz

where K is a common additive scalar quantity being proportional to the strain. On
addition we have

Xt Yo+ Ze = — (3 lzf' ,D) s+ 3K,

if we recognize that for the cubical dilatation

€= Xx+ Yyt 2z.
Defining the pressure by

= LXKt Yo+ 2,

we obtain

_ 2  w'D

-7 (23— 1+ TiD)E+ K.
Since this must coinéide with (10),

K-—(ko+2 1+3D 321—*-1', )

And on substitution in (14) we have the stress-strain relations. These are, together
with (13),

M S n g n J \
o= (ot By - s aiien) (5 4 )
Yy=—- (7 4 ” Je —( ” )y s
Z;=— (7 7 ” e = ( 7 )Zz,&

Zy =Xy = —( 7 )zx s
Xy':Yx:"( e Yy . v . /

If we put m = 0, » =1 the results of the author’s previous work are obtained. It
is natural because of there considered only one sort of relaxation and assumed tacitly
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the absence of volume viscosity.

The work of Frenkel and Obratzov cited above is also included as a special case.
To show this, we use the notation S;z for a component of the stress-tensor and rix
for that of the strain tensor, namely,

X
Sin=Xz, See=Xy,0..5 T = Xx, T:-:=“'2'2,---,
and consequently

*31—25:'.‘=1>, Srii = ¢,

On applying these notations to our result (15), this is transformed into

p=-Ayg
....... (16)
Sir — Oixp = — B(Tik — Ok %‘) s
where A and B are the operators
ki D
A=3(b+X170p)
........ 17)
2 ,u,
B=3 1+ oD
respectively. On the other hand, the theory of Frenkel and Obratzov gives
N ¢
P - ? 37
........ 18)
L o ¢
Sik — Otkp = - ‘M(T;k — Oik ?) s
where L, M, N and P are the operators, ‘
L =2(Gi +mnD)
G1 N1 Gy e
M=(1+Z+2)+ ED+ 7D,
........ (19)

1
—-x—+772D,

P = (1 +7:6D),

consisting of the time differencial operator D = d/dt and the seven material con-
stants G, Gy, 71, 12, £, ks, 7. Comparing (18) with (16), there must exist the corre-
spondence

N L
—P -> A and ﬂ—) B e . ssesasan (20)
From (19) we have

7 =330

and
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7
L _ 2(G, + m D) - 26, (G + ”'D)D
M- (€ g Q_l.l - K G M e
(1+@+2)+r &p p tE(trEt )D+GGD
........ (21)
On the other hand, if we put 72 =1 and # = 2 in (17), our theory leads to
— kl,D - kn + (knT]l + k]')D
A“3(k°+1+r,'0)‘3 1+o'D  °
cee (22) .

B = 2/41'D + 2up' D - 2{(pny + pd) + (#1’724‘#2’71)1)}
“1+oD " 1+ D 1+ (zy+ 72)D + vy D?

H

which is entirely of the same form with (21), as (20) requires, and we can derive
from the correspondence the relations among the constants included in the two theo-

ries if needed. These are

1 1
LSRR 7 T

m= ol +pd, G ooy b,

5 E} = T1T2
7\ are obtainable from
GiJ A [ - w'Ti+ pd T,
G : wl +pd

Application to the Supersonic Waves

In (15) if the relaxation of a component of the normal tranction and that of a
component of the tangential traction are to be attried to a same cause, it is natural

to give them the equal time constant, e.g.

g R e (23)

Ti = Tie.
T ki o

Putting thus the times of relaxation for the both 7-th components equal, (15) becomes

_{ko-f- E(k, - 3 i )l+r,D} ( lzi"‘DD)xx,

Xx=
Yy:’—( 4 E—( 7 )yy’
Zo=—( v e=C v Dz |y

Y= 2=~ (S5 0p )
Zy=X;=—( & )2z,
Xy=Ye=—( 7 )Xy . /-
Since %/ or ui’ can vanish for some mechanisms, the generality of (15) is never lost
in (24). We shall principally adopt this form in the following.
The equations of motion are

d'u oX, . 90X, . 0%
Par = (ax+8y+az)

=‘{k°+2%1——+2’/g%)_D e (212:th )+ (2 1”’ )(%J“ 2z). ete.
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where p is density. Expressing the components of shear in terms of the displace-

ments #, v, w, by (12), and neglecting the second power of the displacements, which
are assumed to be small, we have

o= {hv 24~ ) 2 )

o o*v 8 i | O o*w
(2 T+ o D)(zax" Ty Tar Tt axaz) ete.

or introducing the components of rot (z, ». w), i.e.

we obtain

pDu—-{ko+2(k, 3#')1+D':','D aa; (E lz-l:r D)(aajs"873@2&;)’1

and similarly

S N R R
ol 200 )EE-D).

To duscuss the dilatational wave we differentiate these three equations with #, y and
z respectively and add, resulting

oD% = (ks + Sk + G )52 THaDle e (26)

Consider a wave propagating toward -+ x-direction with the frequency » = 0/2 7,
e = const.exp (dwf — fx), ... (27)

the velocity » and the absorption coefficient « for intensity per wave-length of which
are given by

v= gl e (28)
and
_2R
= 5(8) (29)

Here $(B) and 3(F) express the real and the imaginary parts of p respectively.
Substitution of (27) in (26) means mere replacement of D or 3/2¢ by éw and p* = 2%/ox®
by (, as is familiar in operational calculus. We have, therefore, the equation
. i
— ot = {k°+2(k’ 3”’)1+zr,m

from which £ is determined as
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-1/2

B = ;wp‘IQ {ko + g(ki’ S )1 T Zrzw} ........ (30)

If w econsider only one kind of relaxation, that is, put # =1, we get

iw

8= ioos (o + (B + Gl ) 155 s ie \/kﬁ ( Itimo
1+

B+ 4 /3y,
%o )2

1+

Ty

which, taking % = 0, coincides with the result formerly obtained. The velocity v and

the absorption coefficient « versus fre-

quency calculated from (28) and (29) < W | " :
for the three cases for which the ratio ELGCITY | ( '*3“‘)/ =2
(k; + %u, ) : By equals to §,1and 2 re- /-1-5
spectively are shown in Fig. L i T .y
When the ratio is very small, viz. / 7
(k; + %,u;)/kg <1, we have by expan- f—" v = o
sion the approximative formulae for the ,v_@:,//
- 7.0
velocity, R \ ,
1+ rfo? ‘ oer ot = T00 WT
V=17
) Ri+4/3\ 5 o
14 (1 —~——~——-2 7 ) w «
. ABSORPTION |
and that for the absorption coefficient T o5
per ‘unit length /\\ / (,+ 3#@/1% =2
r;w =I
(X—&<6) 22100 1+T1 w*’ V =o.5
where / )
_ R\ s f
Vo = (7{) , (3D cor %ol I 10 100  WT

respectively the velocity for sufficiently
small frequencies. These formulas and curves resemble very much that derived on
the basis of the molecular theory by Kneser.®

If the more sorts of relaxations are taken into account, 8 is given by (30), that is

( () V5 (32)
B = z'wp’/giko-{— zwgmi .
For continuous distribution of the times of relaxation, we may replace the summation
by the integration.

However, to write up generally and explicitly the real and the imaginary parts of
B, and therefore the velocity and the absorption coefficient, is rather tedeous and of
little use. Let us make the assumption that the component instantaneous elastic-
moduli, &i,%, ...k, and s, s, . . . pn are considerably small compared with the
static k&, Le.

(kf+—£§—/«ti)/ku<<1 (z‘=1,2,.'.-,7’1)-
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Then we can expand (32) in power series in terms of this ratio, and, neglecting the
higher terms, we have

o n (ki‘l‘ %m oT;

_ o\
NP =0 (~k;) DI s ST TELI (33)

N (ki + %/Ji) w”n‘g]

aran o (0VE L
38 —w(ku) [1 ?:‘: 2k (1 + 0°1i)

........ (34)
The absorption coeflicient per unit length becomes
. ot & ki + -%‘/h" )
a=N(P) = 2%3‘); Trerat e (35)
For sufficiently low frequencies this reduces to
— 20)2 ’ _3_ ’ / 3 ’ . ..
a—3vogp(m+4k1+/1:+Tkg+...) ..... (36)
If we identify p/ with the ordinary coefficient of viscosity, the first term
20w
=Sure e (37)

gives the classical dissipation, arising from the ordinary viscosity, which was derived
by Stokes. Then &/ is what was called by Kirchhoff the second coefficient of viscosity,
and is considered to vanish for gases. Owing to the additional viscosity p/, k' and
so on, the absorption generally becomes larger than the classical value, giving a
phenomenological explanation of the large absorption of the supersonic wave.

The time of relaxation t, of ordinary viscosity is considered to be very short, being
the order of 107" sec. for ordinary liquids. So wr; <1 for the superscnic waves,
whose frequencies lie between 10° and 10° sec.”’ Then (35) becomes, if only one
extra relaxation is considered,

4 4 7/
o= w? (k'.!._s k2+3#2
2vp !

. 4

1 4 7231 + 1 + T:’g (1)2
According to this «/»* decreases with increasing frequency from
2w (., i ’ ’ _f!: N 2n%f,, _4__ ’ PO ;
o (k, -+ 3t + k' + 3 /,:-_-) to vo"p(k’ - 34 ) The fact that most Ilquxds show
no distinguishable change of a/»* with frequency can be interpreted as the second
period 72 of relaxation is so small that the product wr. is also fairly smaller than unity.

A few liquids, including acetic acid, methyl acetate and ethyl acetate, however,
show the apparent decrement of the absorption coefficients with increasing frequency.

For acetic acid at about 20°C putting
7o = 4.83 x 10-%sec.,

kY + %.u,’ = 0.14 poises,

ke + —131—;42’ = 8.4 poises,
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(38) gives good agreements with the experimental data, as shown in Fig. 2. If we

identify p, with the ordinary coefficient of viscosity, which is 0.012 poises for acetic

acid at 20°C, the second coefficient &/ should be equal to 0.14 — 0.012 = 0.128 poises.
In this case, the postulation, that

4 1/, 4 N _ ‘ -2
ke + g = g(k: + ?m) = 1.74 x 10% dynes.cm.

is far smaller than k,, is fulfiled, because the latter is larger than 10" dyne.cm.™
The dispersion is always accompanied with absorption. From (34) we have, as the
formula for sound velocity corresponding the absorption given by (38),

4
ot b oo
= a)‘_‘ = ( 3 ........
”‘3(3)‘”"[” ST ¥ o%ed) ] (39)

If the frequency becomes so large that wz: is much larger than unity, but still o7, <1,

the velocity comes to

ks + '§ e
’ s —— 0 e ees e
v =w| 14+ 5 , (40)
and the relative dispersion
4
v —v Pt
(2 - 2 ko

for acetic acid becomes approximately 0.8% using the figures cited above. Spako-
vskij ® found experimentally 0.9 % relative dispersion for the frequency range from
024 to 2.7 MHz. Since wr. varies from 0.073 to 0.82 instead of from zero to a num-
ber sufficiently larger than unity, we can calculate from (39) the relative dispersion
for this range to be about 0.3%. Though decided conclusion cannot be drawn, be-
cause of the sample used by Spakovskij was not pure, and of the ambiguity of the
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figures above on which our calculation grounds, the theoretical and the experimental
results are in agreement in order of magnitude, that is to say, at any rate, not contra-
dictory each other. .

The abnormal absorption of methyl acetate and ethyl acetate found by Claeys,
Errera and Sack”™ is not easy to understand. According to Byer and Smith,» the
absorption coefficicnt a for ethyl acetate is directly proportional to frequency from
3 to 40 MHz, and 2 a/v is approximately constant, being (20 ~ 30) x 10~? c.g.s. unit.
Such a fact cannot be explained by (838). A combination of three or more relaxations
might reproduce the experimental result approximately, but we can hardly say any-
‘Ehing about the reality of these individual relaxations. The exact comprehension of
the fact remains, therefore, unsolved until the molecular mechanism is clarified.

Thermal Condition. Relation to the Molecular Theory

We have hitherto disregarded the thermal condition for the sake of simplicity.
Now, in this chapter, it will be treated in some detail, and, by the way, the relation
of our theory to the molecular-kinetic theory, which we owe mainly Kneser, will be
discussed.

If a cubical expansion ¢ is produced, isothermally in a purely elastic body, the
pressure p is given by

D= —kre, i (41)
where %z is the isothermal volume modulus. However, in general, the process is not
isothermal, but there occurs the change of the temperature T, and the pressure be-
comes .

b=kiia(T—-Ty) =<}y, .. (42)
where @ is the coefficient of cubical thermal expansion, and 7, the original temper-
ature before the expansion takes place. If the process is perfectly adiabatic, the rise
of the temperature is, according to thermodynamics, given by

oeo(T — Ty = —ake Tye, — cevevens (43)

¢s being the specific heat at constant volume. Substituting the temperature change
in (42), we have

= e ‘—.—-‘—_‘ZZkTTO . s areer e
p=—he(1+ - ) (44)
Comparing this to (41), we recognize that
ke T
ks=k(1+a: ") ........ (45)

means the adiabatic volume modulus. In ordinary sound waves, it is well known
that the change is almost adiabatic, and the velocity is given by

. Jks_ \/kT( akrTo) ........ (46)

but not by
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Vy = J?. ....... . (47)

There is, of course, the effect of the conduction of heat, which brings the process
from the adiabatic to the isothermal one, but generally the effect is very small, and
for a while we neglect it.

For such frequent repetition of expansion and contraction as the supersonic waves
create, the situation is more complicated. Kneser? conceived that the energy sup-
plied by the sudden compression is delivered at first to the translational and
rotational motion of the molecules, and then after a finite time interval, it tranafers
to the internal degrees of freedom, that is the intramolecular vibration. Consequentlgr
the external and the internal motion of the melecules are not in thermal equilibrium.
If 77 denotes the temperature when only the translational and rotational motion of
the molecules are considered, we have for a sudden compression or dilatation

e/ (T — To) = — a' by’ Tye
in the place of (43). Here ¢, @ and %k mean the specific heat at constant volume,
@', the coefficient of cubical expansion and k/, the isothermal volume modulus re-
spectively, all being the imaginary values that they would take when the internal

degrees of freedom are frozen. The intramolecular vibration hardly contributes to
‘he mechanical or to the thermal expansion, we can put 2/ = ks, & = a, and

If ¢ varies with time, we have the differential equality.

d o _ _akTyde
dt (17 =To) = ey di
But, on the other hand, the temperature 7 dissipates according to the energy con-
version from the external to the internal motion. Thg rate of the conversion seems
to be proportional to the temperature difference 7" — T, where T denotes the

temperature corresponding to the internal energy, thus
%‘(T’ =T = - ‘}K(T 7 A0 T (50)

rx is a constant having the dimension of time, and is a measure of the velocity of
this conversion. Since the total energy is conserved during the process,

ped (T — Th) + pcy” (T — Ty) = pco(T — T,
where ¢, being equal to ¢, — ¢/, means the specific heat at constant volume when
only the internal motion of the molecules is considered. Then

T = To = 25(T = To) — 25(T" = Ta) reveeees (B1)
Cy Cy

and, considering that the thermodynamical temperature T — T, retains constant value
given by (43) during the process, we have by differentiation

g}(T” - T) = — Co g—t-(T' —To) .  eeeerees (52)

Cu”
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Using (51) and (52) we can eliminate 7" from (50), and obtain
LT -1y =~ -my+ Lo -1,
Combining this and (49), we have the equation ;
A -1y = =D Loy Lao-Ty. (59)

From the three equations, (43), (53) and
p=kla(T - T) —e}. e (54)

we can eliminate 7 and 77, and have the relation between ¢ and p, that is

_ @keToc/co+ DY 5
]b - kT(l + pcvl 1 + TKD )c (50)

_ . kAT, kAT _@Z . =D . .

- (kT t e T e el T4 D)s ) 0

‘This is utterly of the same form with the phenomenoiogical result (10), and by com-

parison, the following correspondence, which is in accordance with that of Frenkel 1,
is obtained.

agkaa
ky = EBr + T’

By - gg_}frﬂ Tu/cv/’ . J
0Cy Cy

‘We recognize that %, corresponds to the adiabatic volume modulus ks. Even when

we consider many sorts of internal motion, as Richards,”” each of which has differ-

ent tx, the generalization of the discussion above is not difficult.

For liquids and solids, however, it is sure that there exists another cause of stress
relaxation, perhaps owing to the fact that the molecular rearrangement accompanied
by deformation needs a finite time period. But the time period is presumably ex-
tremely short for ordinary liquids.

According to Eyring’s theory of viscosity,” the rate of flow of liquids is regulated
by the probability that a molecule jumps in unit time from a point of equilibrium,
to another, adjacent one. Thé coefficient 2/ of viscosity is proportional to the re-
ciprocal of the probability, having dimension of time, and being expressed by 7z,
such as

., MET
u o= 2:)@)‘2 tE, e (58)
“where A is the distance between the two adjacent points of equilibrium, and 4;, 2.,
4s are the intermolecular distances, 1. being in the direction of flow, 2; being in the
slip Iayers and being perpendicular to the flow, and 4; being perpendicular to the slip
layers. For nearly spherical molecules, we can put approximately

z=11=12:33=(%)”3 L e (59)
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where V is molecular volume and NN the Loschmidt’s number. Introducing (59) in
(58), we have

where R is the universal gas constant. It is sure that, for so rapid deformation,
completes in a period shorter than tz the flow cannot take place and a liquid be-
haves as it were a non-plastic solid. Therefore we can identify rz with =, = »//z,
that is the coefficient viscosity divided by the coefficient of rigidity. Calculating 7z
for some liquids at 20°C, we have

for acetic acid e = 2.1 X 107" sec.
carbon bisulphide 9.0 X 107" sec.
water 7.4 x 10~ sec.
methyle alcohol 9.8 x 10~ sec.
glycerine 4.5 x 10-%sec.

From these figures we can see that for most liquids wrz is yet very small compared

with unity even in the supersonic region. Nevertheléss we take this mechanism of

relaxation into account to make possible to go beyond the supersonic regioh.
Combining the two mechanisms, (54) and

#o D y2, etc.,

Y2=2Zy=-11:D

we obtain the stress-strain relations, as we have done in the preceding chapter,

= Pk, ‘. _ 2 /l‘i'lD_.A _ 2pt,D \
Xx—kl'a(T To) fere + 3 1+T;De 1+rlex’
2 puD 2 puty D

Yy=kea(T'=To) ~kre+ 37D~ T4 D

- r_ — 2 _puD 2, D
Zy = kra(T To) — kre+ 3 ]-{-'z"‘De 1+1’1Dzz’
. y -0 (61)

N A 13 E

Y:=2y= 1,+1'1Dyz,
- x = D

Zy =Xz = 1+.‘.1Dz"’
—y. = — #uD

Xy=Ye=— g D /

It is easily seen that, by the aid of (56), this is of the same form with the phe-
nomenological equations (15), putting m = 2= 1.

Now we complete the temperature equations (43) and (53) by considering the con-
duction of heat. The heat inflow Kp*(T — T,), where K is thermal conductivity,
should be added to the differential form of (43), i.e.

cvw= _akTTO%;,

e o

expressing the rate of the production of heat by compression, namely



The Theory of the Mechanical Properties of Liquids 43

pcoa—(TaT-TQ = — ke Ty 2 = ELKP(T =T .  eevennns (62)

Similarly (53) should be altered as

2 o ke T de , K
2@ -my=-hE (- T+ (T -T)+ - T, ()

where K’ means the thermal conductivity for the external, i.e. the translational and
rotational energy only. Since it is known that for gases the translational energy of
molecules propagates more rapidly than the other sorts of energy,‘ the ratio of the
velocity being about 5 to 2, K’ may be scmewhat larger than K, and owing to this
fact, the new additive absorption of sound waves can occur. For liquids, however,
it seems there is less difference and, for the sake of simplicity, we put X’ and K
equal.

Substituting (61) to the equations of motion,

duw _ _dX, °X, 00X,

Par = T dx Ty T ez
av _ _oY: 09Yy 0Y:
Par T T ox oy oz’
W _ _9Zx 0Ly 9Z.
Par = " ox "oy oz’

differentiating these equations with respect to x, y, and z respectively, and adding
them, we have

0% = (bt 5 L L Ve — hraprr 1) 64)
We can find ¢, 7 and 7" from the equations (62), (63) and (64). |
Putting e = Aexp (ot — px),
T-T

T, = Bexp (iwt — fx),

Z""%_I_“! = C exp (iwt -—-.Bx) s
0

and introducing them to (64), (62) and (63), we get

{00 + (ke + 5 425 ) 8 }A ~ leaTof?C = 0,

1+ oty
kraToio 5 _ 1 o+ L — K g =0, b e
HENRA - DB+ (io+ o= 28 ) TiC = 0, (65)
‘kpaTyio

A+(m——7)£{~ﬁ' )TB = 0.

oCy

To have the simultaneous equations (65) the solution other than the trivial one,
A =B =C=0, 8 must satisfy the following equation.
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| 9 4 /_lZ(.Qu] o _ P [
po’ + (kT+ 31+ zwrn)ﬁ 0 kraTyB I
! [
{ aky Taw) _ 1‘ : v..l_ — K |

' ocy Txl® (”" t o T el )T" ‘ = 0. (66)
| akeToio . K _, I
———-pCv-— (ta) = bEv_B ) To 0 ’

Using the thermal diffusivities;
K K ,

=g — =
PCy ’ ﬂCv’ ’

in the place of the thermal conductivities, and the kinematic viscosity
v =0 = pnifo
in the place of the coefficient of viscosity, with (46) and (47), (66) becomes

oy 4 Vo B _wal F
1+ (Z)_v te iy zu)r,) 0 Tt ‘
vrf = 0y* | ey 0Tk ~1 1+ jotx — &'t B | = =0.

vN° ¢/ aT, |

J
i

vl — O otk iwtx — KTx 3 0

l
|
This leads to

{1 + (1));g + g —l—jz—z%r—l )B‘,—} (1 + fotr — &' & B°) (fwtk — KK B*)

+ B (g o) {1+ Stiome — k) } =0, oo (67
which is a cubic equation for 3*.

If rx vanishes, and moreover wr; <1, the classical result must be obtained. In
this case, (67) becomes

giv)ﬁg}-_z B e ey o

{1+(21N + g i) (iw — kf3*) + w(vz, vy*) =0

8, being a complex number, lies near iw/v; at least for low frequencies. Noting that
» and x are of the same order of magnitude and neglecting the square of the small
quantities »’o/vy* and ro/vy®, we have

o . 4 ww ma) 'UL _— vvs
s - o R R )

VL Z)L 2)L

and

iw w irw (v — vy?)
zu;{l T + 20,1 } ‘

The absorption coefficient is, therefore, given by

a = R(B) = _2_ Vv(l; + xw-(vzyvg ox")

The first term corresponds to the classical absorption being originated from viscosity,
and the second, that from the conduction of heat, both coincide with the results of
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Stokes and Kirchhoff respectively ™.

In reality, cx is not zero but has a finite value, and is sometimes called the period
of adjustment. For gases, its order of magnitude is known as 10-°~10-% sec. Since
the mean period between two succeeding collisions for a molecule in gas at 1 atm.
and room temperature is about 10" sec., it is concluded that among 10* to 10° col-
lisions only one is effective for the transfer of energy from the external to the in-
ternal one, or vice versa.

For liquids, owing to their quasi-crystalline structure, a molecule oscillates about
its point of equilibrium, which also moves about gradually in the liquid. The quantity,
corresponding to the collision frequency for a gas molecule, is twice the inter-
molecular frequency, and therefore estimated as approximately 10" sec.”' If the
fraction of the effective collisions were unaltered, the period of adjustment for liquids
becomes 10-% x (10'~10%) = 107°~10~% sec.

There exists, however, the condition which reduces this value remarkably. In gases,
two molecules interact only when the two are in collision. But, in a condensed phase,
solid or liquid, the situation is utterly altered. The neighbouring molecules always
exert the intermolecular force each other, so that the molecular rotation and the
intramolecular vibration are easily excited by the intermolecular vibration, and the
transfer of the different kind of energy is much easier than that in gas phase. The
effect is almost perfect for solids, in which the energy of lattice vibration seems to
transfer instantly, or, to speak more exactly, within a period of the vibration, to the
internal motion of the molecules. Accordingly, for solids tx is exceedingly small,
and this explains the small absorption of crystalline solids.

Concerning liquids, the interaction of the intermolecular and the intramolecular
motion is not so complete, especially for high temperatures. If we consider that the
effect reduces the assumed period tx above cited to 1/100, which is not unnatural,
we can explain the observed absorption of the supersonic waves in liquids, as follows..

Heerupon the period cx for liquids comes to 10-°~107° sec. wrx is yet far smaller
than unity for the ultrasonic waves, for which « varies from 10° to 10% sec. This is
the reason why the dispersion of velocity does not take place for most liquids. But
the absorption suffers large alteration. From (57) we have the volume viscosity,

B = a*kr*Tye”

cvll
T = kw — k —TK o
0Cy Cy' K ( S ’.") cv, K

For ordinary liquids, the difference ks — %r between the adiabatic and the isothermal
volume modulus is (2~5) x 10° dyne.cm.=* Thereupon, considering that ¢,” /¢, is of
the order of unity, &/ becomes 1~10 poises. This value is from 10 to 10,000 times
larger than the ordinary coefficient of viscosity, whose value lies mostly between 10-?
and 10-2? poises, and hereby we can understand the large absorption of the super-
sonics, being from several times to thousands times larger than the classical value.

With increasing temperature, the quasicrystalline structure of liquids is broken up

gradually and the liquids approach to gaseous state to some extent. Consequently
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the period =x becomes longer, and the coefficient k! of volume viscosity increases,
being contrary to the ordinary viscosity. This accords with the fact that for a ma-
jority of liquids the absorption increases with increasing temperature.

Accordingly, though exact evaluation is too difficult to put into action, the mecha-
nism considered here gives a general view concerning to the behaviours of the ultra-
sonic waves in liquids. There are, however, some exceptions, for which the rear-

rangement of molecules presumably plays an important part.

The Hypersonic and the Transverse Waves

It is difficult to produce artificially the supersonics the frequencies being over 10°
cycles per second. However, it is believed at present the elastic waves of about.10"
cycles per second exist naturally in solids and liquids owing to their thermal motion
of the constituent molecules, and are sometimes called the “hypersonics.”

The existence of the hypersonics is shown indirectly by the appearance of hyperfine
structures in scattered monochrimatic light, which results from the reflection of the
light by the regular spacing of the denser part in the liquid caused by the longitudi-
nal elastic waves. ‘

Such hyperfine structures were observed first by Gross in 1930."  Gross found, in
the spectrum of the scattered monochromatic light, two satellite lines on either side
of the intense, principal line, the differences in frequency of the satellite and the
principal line being given by Brillouin,'” as

dp = £ 20p ‘0/ sin ‘g— s e (68)

where ¢ is the velocity of light and 0 the angle between the incident beam and the
direction of the observation.

Gross and many other authors has observed the hyperfine structure and verified
the Brillouin’s formula (68). But in most cases the calculated vaiue of 4dv was some-
what smaller than the observed value. This is comprehensible if we assume that the
velocity V of the hypersonicé is 5 to 20 per cent larger than that of the audible or
the supersonic sound. The experiments are difficult ones, and the results of the
different authors do not necessarily agree each other, but it is undeniable that there

exists such a tendency.

For glycerine, which is a highly viscous liquid, the effect is large and cannot be
overlooked. According to Raman and Venkateswaran,” the velocity of the hyper-
sonic wave, whose frequency is thought to be about 5 x 10° cycles per second, is 30
per cent larger than that of the supersonics, the frequency being 1 X 107 cycles per
second. They attributed the discrepancy to that the liquid possesses dissipating ri-
gidity, which is effective for the hypersonics, but not for the supersonics.

Now we apply the results of the previous chapter to extremely high frequencies.
Hiedemann ' noted that for sufficiently large frequencies, the wave-lengths become
shorter, the transfer of heat from compressed, hot places to extended, cold places
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occurs more violently, and finally the process becomes better to say isothermal rather
than adiabatic. The transition from the adiabatic to the isothermal condition is de-
termined by the quantity #x/2,*, which has dimension of time. This is shorter than
10~ geconds; for example,

£/vy* = 0.63 x 10~ sec. for water,
7 = 0.63 x 107" sec. for benzene,
7 = 0.26 x 107" sec. for glycerine.

Therefore the dimensionless quantity xw/v,® is yet far smaller than unity even for
the hypersonic frequency, that is considered 10° to 10" cycles per second. This shows
the condition is adiabatic enough even for these high frequencies. Of course, for
higher frequencies this is not true, but such waves have so small wave-lengths, being
comparable to the molecular spacing in liquids, that they hardly exist when the de-
screte, molecular structure of matter is taken into account.

Thus we neglect zo/vy* and also #’w/vy* which is the same order of magnitude with
&0 /vy, in (67), considering (° is near — w?/vy* and leaving the predominant terms
only, we have

_’ﬂ. Cof 2 N o
I ) ST ——-
If 0)1‘1>>1,
=~ = =
oyt + ,(UL—UV)-F?“‘,—

Herefrom we have the velocity

_ e . . C . . 4
Vg = 38 = \/UN" + E:_,('vl.' - oy*) + 3‘%

=’\/sz+2_1;,.(1)"2_”‘\’2)+%_;‘__ Ceesineas (69)

Only when ¢, = 0, this agrees with the result of Raman and Venkateswaran:

vg = \/y 2 11_ ,,/‘ ........ (70)

(69) shows the internal specific heat ¢,” also contributes to the velocity of the hyper-
sonic waves, accordingly the opinion of Raman and Venkateswaran cited above should
be modified.

Although 7, is not known exactly, it lies near 10~ seconds for ordinary liquids, as
stated in the preceding chapter. Hence it follows that wt; < 1 is more preferable to

4

MoK

the reverse. i is considered tolerably smaller than v;%, since #/~10~* poises,
p~1 gr.cm.™ and v,~10° cm.sec.”! Therefore the term

4 Ve _ 4 p . doty

31+i&)T1—3 0 1+ ot

in (68) can be neglected referring to »5® or »:% and we have, in the place of (70),
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"
V= '\/UL’ + %:,“-(vﬁ —_ 1&\") N . (71)

Taking benzene as an example, we introduce the numerical values
¢/’ = 13.8 cal.mol='*"

¢y’ = 8.1 cal.mol™!*"

'”-"? = _’fl — L)
o = =070

in (71), and have

Yz _ 123.
VL

On the other hand, the observations of Gross*’ and Mitra* lead to the correspond-
ing values 1.22 and 1.15 respectively. The agreement is satisfactory, and also for
most liquids it is perhaps sure that the 5 to 20 per cent excesses of vy over vr are
principally caused by the same reason.

Water is not the case. Since ¢, is very small for water, vx/v. calculated from
(71) is undistinguishable practically from unity. On the other hand, the observed
value 4y = 0.24 = 0.02 for § = 90° by Gross* leads to vu/vz = 115 = 0.10. The dis-
crepancy is hard to explain even if we take the rigidity term —; g— into account
because wt; < 1 is also probable for the hypersonic waves in water.

It is believed, as already referred to, that some liquids, including water, have differ-
ent origin of absorption for sound wave from that stated somewhat long in the pre-
ceding chapter. Hall*' thought a structural change, namely a transformation of the
type of molecular lattice, accompanied by the change of pressure change, and this
cause the absorption. Such process, if it exists, has presumably much longer time
of relaxation than t;, has influence upon the normal tractions rather than upon the
shearing stress, and this perhaps gives the explanation of the behaviour of water in
the supersonic and hypersonic frequencies, though the reliable numerical calculation
is hard to do.

The fact, that B, has very nearly a purely imaginary value for the hypersonic
waves, shows that these waves propagates in liquids without much absorption.

For the hypersonic frequency, there is also possibility of the existence of the trans-
verse elastic waves in liquids. On elimination of ¢ from (25), we have

_____ PiTil) N o~ — .
"at" (21+mD)V“’"" (s=1,23). (72)

Assuming
@ s = exp (iwt — fx) ,
(72) becomes

_ o _ po 1#10)1';_
put = B Z:1-+-z(z)n ’

or,

—+ 07T

p= - pwg/(izi l_u;_wr_:_)
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The velocity and the coefficient of absorption can, as well as the longitudinal waves,
be obtained from (28) and (29) respectively. If o is so large that wr; is much larger
than unity even for the smallest 7;, f is given approximately by

B = - pw”/(lz i) .

In this case j is a pure imaginary number, showing the absorption is slight. No ex-
perimental evidence has been heretofore obtained, but it is not absurd to consider
the transverse wave in liquid. According to the theory of specific heat of Debye
the heat energy of solid is distributed on the longitudinal aﬁd the transverse elastic
waves in it. If there was no transverse wave in liquid, its specific heat should be
diminished largely compared with that of solid phase. In general, the difference of
the specific heat is rather small, and we must assume the transverse waves in liquids,
if Debye’s theory holds, even though approximately, for the liquids.

Summary

The general stress-strain relations for plasto-elastic bodies having any number of
time of relaxation were obtained. The author’s previous theory and Frenkel and
Obrtatzov’s theory are included as special cases.

The elastic waves in such a body were discussed, and the results were compared
with that of the molecular theory. It was shown that the mechanism, postulated by
Kneser in his theory of the absorption of the supersonic wave in gases, plays im-
portant role also in liquids. By this mechanism, the behaviour of most liquids for
supersonic frequency is comprehensible at least qualitatively. The effects of viscosi-
ty and conduction of heat were discussed. The existence and the high velocity of
the hypersonic waves, or the elastic waves of extremely high frequencies caused by
thermal agitation, were also explained being grounded on the same mechanism.

There are, however, some exceptions, including water, for which the other mecha-
nism, that is perhaps the rearrangement of molecules, predominates.

As the transverse waves have also the possibility of existence, they were discussed
briefly at the end.
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