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RESUME

Being based on Debye’s and Brillouin’s theories, the specific heat and thermal
conductivity of rheological body with relaxation-phenomena are calculated under
the assumption of small relaxation-coefficients in the maxwellian stress-strain re-
lation of the material.

The results obtained include, as a special case, the expression presented by
Lucas, who treated liquid body taking into account shearing viscosity and no volume
relaxation.

The expression of specific heat obtained here is also conveniently applied
to many rheological bodies such as liquids, visco-elastic bodies and plastic bodies,
mutatis mutandis, i.e. with slight numerical modification of the rheological constants.

I. Preliminaries

It is considered that the thermal characters of rheological body play a rather
important rdle in the case of working of plastic bodies and of the behaviour of
materials in the combustion chamber of jet engines. These properties of the
materials are seemed to be not yet much investigated at present. Especially, the
temperature-dependence of the specific heat and thermal conductivity comes into
question. This temperature-dependence shows very complicated aspects through
the so-called relaxation times.

As is well known in the kinetic theory of gases and in the theory of solid
bodies (Debye’s theory), the temperature-dependence of many thermodynamical
coefficients of gases is quite different from that of elastic solid bodies. For
liquid, which is an intermediate state of gasious and solid-phases, these properties
will be here investigated, especially taking into account the relaxation-phenomena
of the material.

Recently much experimental evidence concerning liquids has been accumulated
and the results so far obtained have manifested the fact that liquids are more
similar to solid crystalline bodies than to compressed gases at ordinary tempera-
tures and moderate pressures. The thermodynamical properties of liquids, in
particular, resemble those of the corresponding solid phases. At temperatures
near the fusion point, a liquid must be more similar to a solid crystalline body
with respect to its structure, character of thermal motion, and many kinds of
mechanical properties. The application of the method of X-ray structure analysis
to liquid bodies has elucidated the vivid image of liquid structure, that is, the
liquids consist of a very large number of randomly orientated crystals of sub-
microscopic size, smaller than 10° A in diameter. This can also be interpreted
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by a very close similarity in the X-ray diagramms between a liquid and its cor-
responding solid phase.

The hyperfine structures observed in the spectrum of the scattered mono-
chromatic light have directly proved the existence of the thermal motion or
thermoelastic waves in liquids. According to the theory of specific heat proposed
by Debye?, the thermal energy of solid body is distributed among three thermo-
elastic waves, i.e. one longitudinal and two transverse phonons. The fact that
the difference between the specific heat of a liquid and that of the corresponding
solid is rather small, may lead us to apply the Debeye theory to liquids.

In the case of liquids, so similar to solids in their structure, it is quite sug-
gestible to estimate the internal energy, which is supposed to be consisted of the
thermal waves in liquids. Thus we can calculate the specific heat of liquids in
a way similar to the Debye theory, even in such phases as of high viscosity and
of rigidity of fugitive nature. At the starting point of calculating ‘the specific
heat, Debye took the stress-strain relation of perfectly elastic solid body. On
the other hand, Lucas? started from the expression of Stokes, applicable to
viscous fluids. Brillouin® considered that the compressional wave still remains
in liquid but the energy of the two transverse waves dissipates into the rotation
of molecules. Qomori? treated the equation of motion of plasto-elastic body
presented by Frenkel-Obratzov.?

For the present treatment of thermodynamical character of liquids, we shall
take a generalized stress-strain relation®”®, which is directly proved from the
viewpoint of the theory of irreversible thermodynamics.” Accordingly, we are
now in the position of treating the specific heat of the system with relaxation
phenomena, but, for the sake of simplicity, we shall here consider the specific
heat and thermal conductivity of liquids.

1I. Notations and Fundamental Equations
Notations

x; : rectangular coordinates, (=1, 2, 3)

g; : components of displacement, (i=1, 2, 3)

T : temperature,

$o : initial pressure,

o : density in static state,

ky : static bulk modulus,

J, and p,: partial compressional and shearing rigidities,

A=At partial volume viscosities,

sb= o partial shearing viscosities,

x : thermal conductivity,

C, : static specific heat at constant volume,

7y, o' relaxation times,

D=d/dt=0/ot: partial differential operator with respect to time,
1 /9% ofi

T

~ 1y _ 9%, . o
wij = 9 ( 5% %7 ) components of rotation, (¢, j=1, 2, 3)

> : components of strain tensor ¢, (4, =1, 2, 3)
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Aj;: components of stress tensor A,

E (iw, v): complex elastic compliance,

E, : elasticity moduli,

v, : propagation velocity of longitudinal wave,

v; : propagation velocity of transverse wave,
w=2nrv: circular frequency,

vi" ¢ Debye maximum frequency of longitudinal wave,
vt © Debye maximum frequency of transverse wave,
g(v): weight function for frequency »,

N : Loschmidt number,

M : molar volume of liquid,

F . energy per unit volume,

k : Boltzmann constant,

U*: activation energy,

W=dv/d(v/v): group velocity of waves,

« : amplitude absorption coefficient of wave (per unit length),
v =vhjo and vie =+11/p .

As usual in the tensorial notations, one should sum up over repeated indices.

All the quantities corresponding to the longitudinal and the transverse waves,
shall be denoted by the suffixes I and #, respectively.

Fundamental equations

The generalized equations of state (stress-strain relations) are written as
A=E o, @

where A is stress tensor, ¢ strain tensor, and E the so-called complex elastic com-
pliance. The latter is decomposed as

E= E0+E1(D, T)

K, is elastic moduli, and r is a parameter which shows the aggregate of the so-
called relaxation times. When wr tends to infinity, Ei(c) represents the extra
moduli of elasticity of the material.

For the visco-elastic body, we can express (1) more concretely® ¥, for example,
by taking into consideration the linear deformation of the substance, which is
subjected to the maxwellian relexational process,

! B ,;‘D ) 2 72 /l;«D m ﬂ?”D
Aij = Podij = (ko + E 1+oD ~ '??%; 1+:7D ) akkﬁij—Zg LD i (1-1)

where ky is the volume modulus,” or

Aij= [Cz‘jkl - %%—’fg%] ol (1-2)

where Ciji and @'s are all material constants.® (4, 7, &, I=1, 2, 3)
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III. Internal Energy, Specific Heat and Thermal
Conductivity of Liquid

Taking a plane progressive wave, we put

2= Re2e™ M R(B) >0, Fm(B) >0,

—0 2 - 9 _
f=4&=0, 5 =5 =0. (2)

For the transverse wave, we put, in the analogous manner,

~).___1‘<an o5
U=\ T ox;

Jm(B2) >0, Re(B2)>0. (3)

) = Ro g et (1, j=1,23)

Next we obtain the velocities v of waves, longitudinal and transverse; and the
absorption coefficients a per unit length with suffixes I and ¢, respectively:

w w
= T e 4:
RO YT (B ”
&) = gl\e(BL), ai = m‘e(ﬁz), (5)
% _ _ Ay

after solving the equations of motion: 0 ap = B
7

For example, if we take (1—1) with /=1 and = =1, i.e. one relaxation time
for shear and one for compression we obtain
't 2 s a)qr“)q
5 (1)t }a
1

1 X
ﬂ[——?)o"{l'!‘ 2 ke 1+t T3 kb l4+ao'c

vt = \/ZMZ . ‘(\/1+(a)rm) + ot}

- {li& o 2 el }
a= 12 By 1+ o7l + 3k 140

\/2”7'?5‘ V1t (0r")? = 0P

i

ay

with v =vVE/o ,
under the assumption :

A =y
7 1 and T K1

From the velocities of wave, we have the internal energy of liquid per unit
volume:

F=F;+ Fy, (6)

Fi=4n g W zg(v\dv, (7)

W

Fi=8r) ”ﬁ;:*gg(v)dv, (8)
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where F; and F; are the thermal energies of longitudinal and transverse waves,
respectively. v represents phase velocity and W group velocity. The frequency
distribution function g(») for » comes from Planck’s law. »* are the cut-off
frequencies,”® which come from the finite number of degrees of freedom in the
system considered, and are written as:

vit = w4, (9)

vi = vt d, (10)
(3N P

A= (47rM) ’

with the Loschmidt number N and molar volume M.

The expressions (9) and (10) satisfy the following condition for the total
degrees of freedom of constituent molecules, Ze. for the total number of the
stationary waves:

vi 4t vi 8 m’
3N=M{So T+ Y

du}~

The cut-off frequencies »/ and »# are determined by use of (9), (10) and (5-1),
and satisfy the following equations:

. 1 4 (po)? 2 pm Aqul)?
AR S BTN N S LRSI S
v ”‘“{ Tk 1t o) 3k 1+(qy1‘)2}
and
ot = 3 2B AT @l + Y,
z.e.
oL 1 j\l (ﬁ’vo/f)z _%_/Ll,(_ ((]1)[)/1)2 _
i s wa{lt g g 15 oD’ T 3 T IF qud)? } (e-1)
2 —-1/2
vi= 240 el AT e (9-2)
4 o

with p =2 rr; and ¢ =2 noi®.

Thus the limitting frequencies »/ and »7 are determined as functions of «
and 7. Accordingly we can also find the temperature-dependence of these
frequencies, if we find out the temperature dependence of r; and i (cf. the
expression (19)).

The group velocities W are defined by:

1 dw/v) _ dlo/u, )

Wi = 0 = a7’ (1)
and
hy ho .
o(v) = TR + 5 = kT, (12)

with Planck’s constant k. At elevated temperatures we can put g(»)=k7, and
we shall use this hereafter,
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When we take (5-1) for liquids, we obtain from (7):

L 4akT 3 A (ppi)? L (quz*\2 o
= T LT3 —_— N Ty T T e e N T u)
Fr="34 {1-5 B 1+ (poi)? "2 hy 1 (gof)? } (1
As for the equation (8) with m=1, it is written by:
. B T S o
Fo= TEL(mm ) TR 1 (@) + o) (1 (@) d
2 0 Jo
kT k2f2 . — N
= “3‘7[172‘;%27;;‘: V1 4+ (g ) + qui }3/2, (14)

with e = v/ ko . o
At temperatures near the fusion point, where liquids are very similar to
solids in their structure, we can put r— o in the expression (13),

L i IR U ) e

39} 2rewi)? T 7 ke (2 me}
4 nkTui? [ 3 A gm }
Y 2 T e
- N (16)
= kT

Thus the expression (13) approaches that for the internal energy of the cor-
responding solid body, and it is clear that the final expression (16) is just the
expression presented by Debye.

On the other hand, in liquids it is more interesting to consider the effect of
transverse waves than that of the longitudinal one.

Considering the approximation:

‘z‘;l) - OO

in the expression (14), we can easily obtain

8 nkTuvi® ¢
3 08, {1+ 3(2 m“w*)z} (17

N 8 kT v

3
3 Vix

_ 2N
= S kT (18)

Fr =

The expression (17) corresponds to that of Lucas and (18) is just the contribution
to the internal energy from the transverse waves in a solid body.

We may also consider that the temperature dependence of the relaxation
time is expressed, according to Eyring®, as follows:

=1 .exp[U*/kT] (19)

where U* is the the so-called activation energy corresponding to the transition
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of a molecule from an equilibrium position to the other adjacent one, and is

perhaps of order of magnitude of 0.1 eV. «+ represents the mean life time of
oscillation of the molecule. ¢* is the period of oscillation of the molecule at that
point.

From (6), (13} und (14), we obtain the molar specific heat at constant volume C,,

____4kMa' _3)1 (‘7"'1111)~
Co=M7r = "5 o7l D1 ko 1+ Grosd )
PRCEE LS
7 |

By 1+ (2 meinf)

kM Toi™? e .o
+ 3 7_1/-7)3 BT[ (m/» {\/1+ (27w ) + 2 a7 |

(20)

In the irreversible process, in which we are now interested, the damping
coefficient plays a rather important réle. This quantity is directly measured by
the ultrasonic experiments.

By applying the theory of thermal conduction in solids, which we owe to
Brillouin, to liquids, we obtain the thermal conductivity of liquid,

K = K+ ki, (21)
_ 4 vi o4 "~ 112

K] = 3 50 2“[ —a—T[m:wg(v)]dv, (22)
_8xph 1 8

Kt = *é—So S a:r[ W g(u)]du, (23)

where x; and r; represent thermal conductivities due to the longitudinal and the
transverse waves, respectively.

K| = §k17¢; Q( Il[*, 2 Ty, 2 TIT;”), (22_1)
__hﬁﬁ_ﬁﬁ:ﬁ APt 4w Y
* vi BT{T\]‘ o G 3 ]o H +- ko G* "3 ko H? }J
Q(D" ’ P’ q) = 1 o d”)
0 1 b 2 maq
2 ke G 3 ke H
(22-1)

with G =1+ p*»" and H=1+ ¢%~

k ) e [ .
o= B o + 2 mef b
teo *

o 1 T\W1+ (270" 0)? +2nr o wh?
, , 23-1
| e ey i, @31

with 2te = Viu/p .
If we consider the limitting case:

‘g”v <<1,

which means that the effect of shearing viscosity predominates in the medium,
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the expression (23-1) reduces to
kg B (TN, san -
Kt =g Un ‘/p,cq aT(ﬂ;)*v; . (23-2)

with shearing viscosity ui= V.  This expression (23-2) corresponds to the
expression of thermal conductivity at elevated temperatures presented by Lucas.
In addition, we can see that, as an approximation for small ("), x: is
roughly equal to (23-2) times {1+ 0(z{”»/)}. Thus the term 0(z{"»;"), shows the
order of magnitude of the effect of shearing relaxation on # for liquids when
(1" 28) is small.
For many liquids at ordinary temperatures, we can take zf = 107* poises,

1 =10"%~10"" sec., i’ =10""~10"" sec,,

1

vit =10" sec™. !

and »f = 10* sec.”

Accordingly, we obtain wv*=10*~10°. This figure shows that the terms (zr*)
hardly contribute to the curled brackets in the expressions of internal energy,
(15) and (16). And the expression (15) is almost equal to (16), which includes
partial elastic moduli 4; and ;. For some solutions of high-polymeric substance,
it happens semetimes that <i" is of order of magnitude 10-"~10"* sec., and (z{"»/")
reaches 10°~10°. In this case, the expression (17) does not differ practically from
(18). Thus we can see that calculations of specific heats by the methods of
Debye, or of Lucas, are valid for many kinds of liquids exhibiting relaxation

properties.
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