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§I. Introduction

In order to take account the interaction between =-electrons in organic com-
pounds, Kuhn' has recently proposed to consider Coulombnic potential between
two electrons, which are considered as free electrons, running parallel each other.
According to his model (if available), one of the two electrons, say electron 1,
runs on the upper side of the molecular chain, being composed of atomic ions and
g-bonds. While, the other electron, say electron 2, runs on the under side of the
molecular skeleton. The Coulombnic interaction between the electrons is screened
by positive atoms and o-bonds, which result in the effective dielectric constant.
One can calculate the wave-length of absorption band and that of phosphorescence
or fluorescence band by perturbation or two-dimensional electronic digital com-
putor,” taking into consideration the singlet and the triplet states.

In this paper, we shall consider another approach to solving the wave
equations, and show that the wave function in the first approximation is expressed
either by an elliptic function if one replaces Kuhn’s interaction potential by 4-
function, or by a Mathieu function if one takes successive approximation. In both
cases, the results obtained agree quite will up to the terms of the first order of
the correlation energy of the electrons.

§II. Fundamental equations

We shall write the wave function for electron 1 of mass m as ¢i(x), where
x shows the coordinate measured along the orbit of electron 1, which is assumed
to be subjected to a potential Vi(x;). The electron 1 is also suffered from the
Coulombic repulsion of electron 2; then, the interaction potential shall be read

2

= L
I/"int D«(x1—x2)2+bz (1)

with elementary charge e.

While, ¢.(x,) means the wave function for electron 2, running on %, which is
measured along the other side of the molecular chain. The separation distance
between x and x is equal to b, and D shows the effective dielectric constant of
the medium, where the electrons 1 and 2 are inbeded (cf. Fig. 1).

Let us take the wave functions for the electrons in the Hartree approximation.
The character of the electrons as fermions is taken into account, by putting two
electrons which correspond to the parallel and the anti-parallel spin-states, into
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the same orbit. Furthermore, if necessary, the singlet and the triplet states can
be calculated by perturbation-method. Then, the wave equations for the electrons
are written as

a 2 (
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Fi1G. 1. Model of the system with two =-electrons.

with gt = 227
lecular chain. E" and E'® represent the eigenwerts of energy for the electrons
1 and 2, respectively. From the nature of the problem about electrons in question,
the functional form of the potentials V3 and V. is to be choosen quite the same.
We shall write it simply as V(x). The precise form of the potential V(x) shall
be sinusoidal or complicated wavy form as shown by Kuhn.® For the simple
calculation, however, it is already well known that one can take a potential box
with infinitely high potential barrier at the both ends of the molecule, leading to
a fairely good result for the problem of light-absorption of organic dyes. Accord-
ingly, we shall take

, where the integration covers over the orbit parallel to the mo-

Vix) =0 for 0<x<L
=co for x< 0, and L<x, (5)

with the length of the molecular chain L, and x represents either x or x,.

Let us consider the functional form of the interaction potential V.. We can
find at once that the function has a maximum at x =x; and the value at the
points, where x is very different from x, is quite small. Then, it may be possible
to take the so-called “Sattelpunkt-Methode” to evaluate the Coulomb- or exchange-
integral.

Here, however, the potential (1) is also seen quite resembled to d-function, so
we may perhaps put

Viee=a « 6(x: — 1), (6)

where a constant « should be determined by the condition :
1 A2 v
or

jj G (x) ¢ () Vi (1) ol x2) dxi dx =
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=« jS ¢f<(x1)¢;k(x2) 0(%1 — %) d1(x1) G2 2) dxi ds. 7

One can also choose the value of «, so that the total interaction energy should be
minimized. The assumption (6) may be applied the better, the shorter the length
b becomes.

§ III. Solutions of wave equations

Under the assumptions (5) and (6), we shall be concerned with the solutions
of (3) and (4).

Method I

If we are confined ourselves merely to the problem of light absorption of
organic dyes, we could take the same functional form for the eigenfunctions ¢
and ¢.. This means that the electrons 1 and 2 interact each other at the same
energy state and that the interaction among different states can be neglected.

Then, the equation (3) and (4) lead to the same form:

é—g;(h(xl\) =+ B?(Em' - a:gbf(xl) dilx)) dilx) =0, (8)
1

2
g};%(xz) + BHE — ags (2:) ¢a(:)) o) =0, (9)

where EW' = EM = F—~ V.
The expression (8) or (9) is just the fundamental equation® presented by the

author in 1952.
For the real valued function, we obtain the exact solutions? :

d1(x) = sn(Bry+ 7', k), (10)

D1() = sn(Bra.+ 71, k), (11)

EW = E9 = y2(1 4+ B), (12)
R 4

with integration constants r and v/, Sr(x, k) being an elliptic function.
Considering the condition at the both ends of the molecule

x§:0;¢§:0 and x;:L;gb;:O, (14)

we find
=0, (15)
T o= .-‘% <7’K+ iSK'}, (16)

where 7 represents integers including zero, i =v —1 and s=0 (¢ is a real function),
with

/2
! du
K = ——, (17)
je V1 - R sin®u
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/2
~S VTT'@P , (18)

B =y1-F. (19)

The eigenwert of energy is determined by

E=r+ 5 (20)

5 -
Method II
Other successive approximation can be carried out as follows. First, we neg-
lect Viw in (3), and obtain the solution in the zero-th approximation under the

assumption (6)

1) o< sin (ILE xl), (21)
w _ h ?'2

after considering the boundary condition (14), where 7 represents integers. Then
we put (21) into (4) and obtain the equation in the first approximation:

2
L) + B{EY = V= a 2T )} gnt) =0, (23)
2

This equation with the boundary condition (14) gives

¢a(2) o< Sey(uxp 5 H?), (24)

where Sz, is a Mathieu function of order » = *?; (n = integers),

~

n= 7 (7 = integers) (25)
and

2 _ OCB
H = Yy (26)
The normalization factor of the wave function ¢, should by determined in
such a way that the electron finds itself in the n-orbital, Ze. in the whole (%, x2)-
space.
The eigenwert of energy for small H? is given by the following equation® :

_ — s wsinVdr $
cospr=cosy Arx+H PRV +O(H), (27)
where
_B(po_y_
4= (B2 -v- %) (28)

For H? « 1, we find, up to the terms of O(H?), that the equation »?= 4 folds,

ie.
v V8 a W

e Rl 2 (n = integers) (29)

El E(2)
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It is interesting to mension that the expression (20) gives the eigenwert in
the first approximation up to the terms of O(«)

ns a .

= 22 — — !

E = sz T 5 (s = integers) (20"

and the correction term /2 of the eigenwert of energy appears completely in the

same form both in the expression (29) and in (20'). This term has a simple physi-

cal meaning. It shows that the first approximation of the eigenwert of the energy

shifts towards the higher level from the energy level without interaction by a half

of the interaction energy of the two electrons. The term «/2 in (29) and (20')

corresponds to the first order perturbation energy, when one considers the term

,‘23 ( 1—cos E—L?’i xz) in (23) as a perturbed potential. Starting from an unperturbed
eigenfunction

oV (x2) = sin pg X

2,32

with eigenwert of energy E}%ﬂ? (p = integers), we can find at once that the first

order perturbation energy is expressed by ‘; if p=# and %cx if p=r.

By comparison with the experiment,®” we can estimate the order of magni-
tude of « appeared in the present theory. The numerical value of « is seen to
be about 0.12 eV for thiazolino-cyanine (1, 1'-dialkyl-2, 2'-trimethine-thiazolino-
cyanine) with bond length of the chain elements 1.39 A and bond number 1.5.
The C— C = C valency angle is 180° — ¢ = 124° and the number of electrons which
contribute to the resonance structure is taken to be 8. For symmetrical 4, 4'-
carbo-cyanine, we find « =0.15 eV for j =6, where j means the number of double
bonds caunted in either of the resonance structure. In this case, the number of
n-electrons contributing to the resonance is 2j+ 2 =14. These figures for a are
not physically very unreasonable, and it is seen that the expansion of eigenwert
of energy in power series of « is quite reasonable in these examples.
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