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Introduection

It has been shown in a periodic boundary layer flow that a potential flow
which is periodic with respect to time induces a steady, secondary motion at a
large distance from a body as a result of viscous effect.’ If the fluid becomes to
be electrically conducting, or to be magnetic, due to the interaction between the
magnetic field and the flow field in the presence of the magnetic field, the motions
of this fluid show various phenomena which are different from the non-magnetic
fluid: the increase of the rigidity,? the tendency of stabilization,® and the re-
duction of the viscous effect,¥® etc.

This new field is called “magnetohydrodynamics” and has been considered to
be important in connexion with the problems of nuclear fusion and of the aero-
space science. Here as an example for the reduction of the viscous effect in
magnetohydrodynamics we consider a periodic boundary layer flow of an electri-
cally conducting fluid in the presence of the magnetic field.

The equations

Let us consider the unsteady plane boundary layer flow of an electrically con-
ducting, viscous, incompressible fluid over the solid surface y=0, parallel to the
xaxis, in the uniform magnetic field B, applied normal to it. The oscillating
stream with respect to time ¢ is given by

#a (%, 1) = 2p(%) €77, (1)

where u,(x) is the amplitude of the oscillation, and o is the frequency of the oscil-
lation. With the assumption that the induced fields is negligible compared with

the applied fields, the equations of motion are derived (in Appendix)
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with the boundary conditions

u=v=0at y=0, and % =#. at y = o, (4)
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where % and v are velocity components, p the density, » the kinematic viscosity,
¢ the electric conductivity.

Introducing the stream function defined in the form

ox, p, ) = \/»Z;uoe"‘”tF(x, n, £), ‘ (5)
where
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and hence
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we obtain from the equation (3),
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0
We take for F the series
F(x, 7, t) = F'(9) + —1— dl;’ (Fi(p) ™ + Fy(p) e ™ + - - -, (10)
and then the functions F°, F}, F}, ... satisfy the ordinary differential equations
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etc.,

the boundary conditions

... _dr'® _dFi _ dF; _ . .. _ _
=Fl=F= B Rl =0 at 7=0, (14)
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and

d = finite at 7= oc,

where the symbol ~ denotes a complex conjugate

The solutions
These equations can be solved easily

The solution as the first approximation
to the non-dimensional function g»f— is obtained from the equation (11) in the form
‘Z; —1-eT // 777;1+~+z\// % +1- . (15)
Putting
T2, e 3y -2
V2 w ) V2 o w
and from the solution (15) and the boundary condition, we obtain
Fl=pg ot {e o1y, (16)
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Then the equations (12) and (13) become
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Solving these equations, as the second approximation to gf){ > we have
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where
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The result given by Schlichting? is obtained from these solutions by carrying
out the limiting process m— 0. But as 7 — «, we find the solution (21) vanish.
It seems to show that due to the effect of the magnetic field, the viscous effect

is reduced and that the periodic free stream does not induce a secondary flow at
a large distance from the body.

Appendix

The fundamental equations in magnetohydrodynamics neglecting the displace-
ment current and excess charges are as follows:

the equation of continuity

““““““ +d1v (pV) = (A1)

the modified Navier-Stokes’ equation

g: +Vegrad V= —%gradp—l—ﬂzv—l— %«JXB, (A2)

the equations of the electromagnetic field

curl H=1J, (A3)

divB =0, (A4)
- °oB

curl E Tt (A53)

div D=0. (A6)

As a complementary relation to these equations, the general Ohm’s law is
assumed:

J=0(E+V xB). (A7)

Here we adopt the rationalized M.K.S. system. There are the following two

relations which connect the magnetic induction B with the magnetic field H and
the electrical displacement D with the electric field E, respectively:

B = uH, (A8)
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D=c¢E, (A9)

where the constants z and ¢ are the magnetic permeability and the dielectric
constant, respectively. The notations in the above equations are as follows: p
the density; V the velocity, » the pressure; » the kinematic viscosity; ¢ the
electric conductivity, J the current density.,

In the case of the two dimensional incompressible fluid, the velocity and the

magnetic induction, ie. the magnetic field, are assumed to ha

ve the following
components :

V= (#, v, 0), (A1)
B= (Bm By; 0). (All)

Putting \gz =0, the current density J and the electric field E have only the
z components, j. and E, respectively.

If we choose the uniform magnetic field B, applied in the y direction, the in-
duced magnetic fields occur in the x and » directions. But these induced magnetic
fields are negligible compared with the uniform applied magnetic field? The ratio
of the induced magnetic field to the applied magnetic field R, is called “mag-
netic Reynolds’ number”, and in many practical situations magnetic Reynolds’
number is very small® As for the induced electric field, we may presume that

it is of the order V7, except some factors.” If R, is very small, the fundamental
equations are derived as follows -

aﬁ + \8_}7 — 0, (AlZ)
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In the case of the boundary layer flows, we may carry out the boundary
layer approximation in the equations from (A12) to (Al4). And then the required
boundary layer equations in magnetohydrodynamics are
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Using the free stream u..(x, #) outside the boundary layer, we can eleminate
the pressure gradient. The equation (A16) becomes

ou ou ou Otheo OUo 'u oB:
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The boundary conditions are imposed only on the flow field,
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