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1. Introduction

This paper is concerned with the synthesis for finite settled time response in
sampled data-control systems which consist of samplers, discrete compensator,
hold circuit and controlled system having nonlinear characteristics—such as
saturation, dead zone and hysteresis—and disturdances at the final control element.

The following sections show that the compensation for disturbances at the
final control element is equal to the compensation for nonlinear characteristics at
the same place by replacing nonlinear effects with equivalent disturbances which
can be fixed by the order of hold circuit.

Especially, for the saturating system, this paper shows that it is very effective
to use the saturation element of the same character in discrete compensator.

2. Disturbances at the final control element

Fig. 1 illustrates a representative linear sampled-data control system.
Let R(s): reference input, N(s): disturbances, C(s): controlled variable, D(z):
sampling compensator, H(z, s): hold element, G(s): controlled system, K(z)

_ D) - HG(z) . .
T 14 D(z) - HG(z) ~ overall pulse transfer function.
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FI1G. 1. A representative sampled-data control system.
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Now our aim is that steady state error after a finite settled time should be
zero for any reference input and disturbances.

2.1. For reference input R(s)

Finite settled time response syntheses for reference input have been made by
some researchers. The results are as follows,

(1) K(z) must be a finite polynomial in z77,

(2) When R(s) =1/s” HG(s) must have n-poles at the origin, and zero steady
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state error condition must be satisfied, that is,

m
d(—;ij);;; [1=k(z]mter=0 (m=0,1,...,n—1). (1)

2.2. For disturbances N(s) which is added at sampling instant
When R(s)=0,

C(z) = —C(2) D(2) HG(z) + NG(2)
C(z) ={1 = K(2)} NG(2) (2)
HG(z, =)

C(Z, 'Z') = NG(Z, T) - K(z) ° __HG(_Z_) M NG(Z),
so if we choose H(s) as
H(s) = N(s), (3}
C(z, ) ={1—Fk(2)} NG(z ). (4)

So when it is desired that the system has zero steady state error after a finite
settled time for disturbances N(s), as well as R(s), the following requirements
must be satisfied.

(1) H(s) = R(s),
(2) 1 - K(z"') must include the denominater of NG(z) = HG(z).

2.3. For N(s) which is added in the sampling interval
When N(s) is actuated L seconds later than some sampling instant, (L <7, T":
sampling period), and H(s) = N(s),

C(z) =~ C(2) » D(2) - HG(z) + HG(z, —L)
C(z) ={1 - K(z)y HG(z, —L). (5)

The equation (5) shows that the error is zero at sampling instant after some
finite settled time, though the settled time is longer by one sampling period than
in the previous case.

On the other hand, the output Yi(z) of compensator D(z) is

Yilz) = —ff—‘i%(—z")mmz). (6)
So yi(nT) is zero after some time because K(z) includes the numerater of HG(z)
and Yi(z) is a finite polynomial in z~.
After the instant y:(n7T) =0, the output of H(s) is similar to N(s) in opposite
sign, and from the equation (5) the error must be zero in the sampling interval
as well as at the sampling instant after some finite settled time.

3. Saturation at the final control element

The illustrative system in this case is shown in Fig. 2, and the characteristics
equation is as follows,
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FIG, 2. Sampled-data control system with saturation.
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9| =ys: y=9s O —9s.

Now a property seen in sampled date control system is that the system can
be solved as linear in such a case by expecting equivalent disturbances decided
by the order of the hold element. Fig. 3 illustrates the appearance of saturation
for zero order hold element and the equivalent disturbance. So for zero order
hold element, if the system is synthesized for step disturbance at the final control
element, it is also compensated for saturation.

Ez) .
=T T emy T
CTTTT v“l‘“} Y
: I T 3
1y -
il
-
yEC—
0-order hold Equivalent >
disturbance .A—ys
F1G. 3. Equivalent disturbance. F1G. 4. Discrete compensator with Satu-

ration element.

But the following examples show that it is better to use the compensator
using saturation element in the feedback path as the construction of D(z) as
illustrated in Fig. 4, because there is desired to obtain the information of saturat-
ing as quickly as possible.

Example 1
(N @ 1=z _
G‘S)—‘ S“f“a’ H(Z, S)-— __S » R(S)——l/s
from §2,
_ 14+d—dzt _ —ar
Diz) = =)A= 2T (d=e™").

In the calculation of manipulated variable y(#) if D(z) such as Fig. 4 is used,

27(0) = %23’3

¥
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(0) =ys= l=e where e =1~y:(1—d)

1-ad’
() = %i‘zel— 1fd e 1fd e
When »7(1) < s, that is, 55 2 5+
¥(2) = ~—1—iz—d—e1+y{k(1)=1

yin) =1, (n=2)
c=1—e, cn)=1 (n=2).

When the saturating continues till the time, (% —1)T,

* _ﬁl—!—d ¥ _ d Y
yl(n)—l_de(n) 1_de(n 1) + s

yn) <ys, say, yszr»f:}a,ﬁi« (7)
So the steady state error is zero after the time (- 1)7, if the equation (7) is
satisfied.

On the other hand, if D(z) without saturation element is used, the similar
calculation in the real time domain shows that the finite settled time response
can be also achieved, but that the settling time is longer. Fig. 5 explains the

. 1 1
difference, when By R p

yn

0 i 3 0T 1 3 KR oT
ciny clnj
P N = i
0 1 2 HT 4 i é 3 4 t/T
(a) For the compensator with (b) For the ordinary compensator

saturation element

F1G6. 5. Inditial response in example 1.

Fig. 6 illustrates the relations between ys, ¢ and settling time, appearing in
the equation (7).
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F1G. 6. Relationship in @, 7, ys, and n.

Example 2

-l
! 2, R&)=1s.

_ . a -1s —
Gls) = st a , H(z, s)

From the equation (7) in §(2), k=1

1+d+d>—(d+d>)z"*
—Hl—zH{l+1+d)z Y’

Dlz) =

The one after another calculation in real time domain as in the example 1
shows the following results when D(z) as in Fig. 4 is used.

1+d+d* 1
When lf—g“_>3’s_1 a2’
1+d+d’ 1—e,
y(0)= ﬁ%——?_ys, coy0) == f—il
) =ef (1) =1 @) =e=1—y(1—-d)
A =14 % <y, n @ =1

yn)=1 (n=2) e'(n)=0, (n=3).
Furthermore when saturating continues till the time (n—1)7T,

1—-d+d .

% d+d
i—d (n) — ~

yi(n) = e (n—1) —dys+ (1+d)ys.
Next unequality must be satisfied for |y (2)] < ys,

1
ysZTW . (8)
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If the equation (8) is satisfied, the system is settled after the time (n-2)T.
Fig. 7 illustrates the response in this case.
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F1G. 7. Inditial response in example 2.

Example 3
G(s)=1/s, H(z s)=1—2z""/s, R(s)=1/s
%—(5-8z_1)
Dla) = Syt

yi(n) =5/2e%(n) —3/2e"(n—1) —8/4yF(n—1).

In this case D(z) is identical with that by Jury and Schriéder because HG(z)
has no pole other than one.

In this example maximum manipulated variable appears at the second sampling
instant, as indicated in Table I, and the response is more complicated than in the
previous examples. In Table II ~VII, the condition of variables is stated when

ys?_%, and the phase plane trajectory is 'shown in Fig. 9 when yszé, and ys
1
=1

But in this calculation, a compensator is used such as in Fig. 4, and the simi-
lar one after another calculation was made in the real time domain.
We can conclude as follows from Table I~ VII and Fig. 8.

TABLE I. . Without Saturating TABLE II. 4>y:2>5/2

" y(n) e(n) é(n) o y(n) } e(n) ! é(n)

0 sz | 1| o S T R R R

1 —4 =14 52 L e e

2 32 | —3/4 -3/ 2| 29-13/2 | yo/2-11/4 | ys—5/2

=00 o s i | sz | i
>4 o | o -
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TABLE III. 5/2>ys=>1 TABLE IV. 1>y.=>1/2
_—n_ﬂi ;V(Vn) | e(n) Tvé(n) nf yk(nV)i l e(n) e(n)
o | w10 o x| 1 | o
R L T I I -3
2 (=D | ~t=1) | 0 2 1oy | (g2 | —(-ye)
Y ].,,,;;:1,,._!_%_1)/2; yo—1 =30 0 0
> o | o 0 -
TABLE V. 1/2>y:=2/5 TABLE VI 2/5>y:=1/3
n | y(n) emy | ém n s em | élm
0 w1 0 0 10
1 1-2y 1-3/2 =y 1 1-2y | 1-3/2 s
2 ey (-yof2 | —(1-y) 2 x| (epfz| (o)
3 | —2(1-2y) | —(1/2—ys) | —(1—2ys) 3 —ys i-—(l/Z—ys) —(1—23s)
4 | 1-2y | —(1/2-30) 1-29 4 8y,—3 ~(3=73)/2, 3ye—1
>5 0 ; 0 0 5 . 2-5y §—(2—-5y,)/2§ 2575
’ > ! o 0o | o

TABLE VIL 1/3>7y,=>1/4

n y(v"n)_ | e(n) é(n)
o T
1| s T —ys

2 : —¥s l—éy, ’ ' F—Zys o
3| % 1-11y/z —%s
4| —(p- —(43s—1) 0

5 ! dy,—1 —1/2(4ys—1) dye—1
=6 | 0 0 0

(1) The system is settled when non-saturating state continues for two sampling
periods.

(2) Macroscopically speaking, settling time becomes longer, but the overshoot
becomes smaller according as the range of y; becomes smaller.

(3) It should be noticed that the optimal response which is achieved in non-

linear optimal control appears when ys=1, and %: .



150 Research Reports

ABlm)

hedi<s

FIG. 8. Phase plane trajectory in example 3.

4. Dead zone and Hysteresis at the final control element

In this case it is also supposed that the same equivalent disturbance can be
applied as shown in the previous section.

But a very laborious calculation shows that the system is not so easily settled
as in saturation.

So the authors present here a new idea to accomplish finite settled time re-
sponse in the system with dead zone and hysteresis. Suppose the reverse nonlinear
element whose nonlinear characteristics is quite reverse with the nonlinear element
in the system, that is, if y =/(2), then x =f(z) as shown in Fig. 9.

Let N be nonlinear element in the system, and N-! be the inverse nonlinear
element, and then Fig. 9-¢ illustrates this method.

When it is possible to realize this element, general nonlinearity can be com-
pensated by connecting them in series, and can be reduced to saturation element
as illustrated in Fig. 10. The saturation can be compensated by the method shown
in §3.

5. Conclusions

(1) In order to comenpensate both the disturbances N(s) at the final control
element, and reference input, N(s) = H(s), and 1 — K(z™!) must include the denomi-
nator of HG(z) in addition to the Jury and Schréder conditions.

(2) Saturation at the final control element can be compensated by the same
synthesis for disturbances there, and it is effective to use the saturation element
in D(z).
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Though there is a paper saying that there may be some hunting phenomena
when the controlled system has delay or is of high order and synthesized by the
procedure as proposed in §2, such oscillation can never be seen in these ex-
amples if we use the compensater having saturation element.

(3) Dead zone and Hysteresis can be reduced to saturation element by using
the reverse nonlinear elements.
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