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1. Introduction

A gas turbine rotor may consist of a turbine wheel at one end and a turbo-com-
pressor runner at the other end of the turbine shaft. The distribution of tempera-
ture in the surrounding medium varies from place to place. To solve such an actual
problem, the wrighter of this papers tried to get the required results, such as, the
distribution of temperature, the eifect of local cooling, the dissipation of heat and the
like, by simplifying the problems to some extent.

2. Given Problems

Fig. 1 (a) shows the construction of the gas turbine rotor under question, A being the
turbine disc, B the compressor runner and C the common shaft. In order to get
approximate results, the following procedure has been taken:

1) The turbine wheel is assumed, firstly, to be a circular disc of uniform thickness,
as shown in Fig. 1 (b).

2) Secondly, the distribution of temperature in the actual turbine wheel of variable
thickness, as shown in Fig. 1 (a), is to be determined in a more rigorous way.

3) The heating effect of the moving blades is to be taken into account by deter-
mining, theoretically, the equivalent heat transfer coefficient at the peripheral surface
of the turbine wheel.

4) The distribution of temperature in the moving blades is to be computed in two
ways: a) by assuming the uniform distribution of temperature at any section per-
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pendicular to the longitudinal axis of the blades,
b) by assuming the blade to be a sectoral co- -

lumn, thus, giving always lower temperature at
the inner parts than the temperature at the outer
surface at any section.

5) The cocling effect of the turbine shaft as
well as the compressor runner is to be taken into

account by considering the equivalent heat trans-

fer coefficient at the side surface of the turbine
disc to which the shaft is attached.
6) The heat transfer coefficient at the surface
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of the moving blades is to be estimated by the

empirical formula given by Schérner.
7) The heat transfer coefficient at the side sur-
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face of the turbine wheel and the compressor
runner, as well, is to be estimated by the empiri- 25
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cal formula given by Stanton.

3. Distribution of Temperature in Moving Blades

In gas turbines, the moving blades taper off gradually from their roots to the tips,
but the working edges at the entry and exit of the gas flow are rounded to the great
extent, instead of the sharp edges as seen in steam turbine blades. Hence, these may
be assumed to be heating fins of uniform section. In such a case, the temperature
at the section x is given by the following equation:

" — — - -Z) HUX]=X)
B = Dyas — Dgas = Oxzo , (1 —€)ee™™H jﬁ(}j;i)ﬂﬁ.__’#, e @

where m =,/ a U,
Aptade I
o
g = —it—
= e Aplade

Jpiade = thermal conductivity for the material of the blade, kcal/mh°C;

« = heat transfer coeficient between the working gas and the side surface
of the moving blades, kcal/m®h °C;

x; = Do. between the working gas and the tip surface of the moving blades,
keal/m*h °C

Dgas = mean temperature of the working gas;

Oxzo = ’zemi)eramre of the moving blades at their roots;

x; = height of the blades, m;

F, = mean area of the blade section, m*;

77, = mean perimeter of the blade section, m

These are shown in Fig. 2. '
When the blade is assumed to be a sectoral column as shown in Fig. 3, the tem-
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perature at the distance x from its root, at a radius # and at an angular distance ¢
from its central section, may be expressed by the following equation:

02: 7,8 = 19'5'(13 + EE (Amne'”z + ane”'z) Cos nv {]1)(7‘717’) - ()K)(”Zr) } s """ (2)

m n

7+ 7 ——
where v = ;él- o ¢ and p = ~m® + 7.

In this equation, J, and Y; denote the ordinary Bessel function of order zero and
of the first and the second kind, respectively. '

The solution (2) must satisfy the heat transfer conditions at the inner and outer
surfaces of the blades. These boundary conditions indicate that 7 and p must be the
roots of the following equations:

Ji(mrs) = pY (mmr2) _

M2 Jo(mrey = pYo(mrey T T hb’}\ @a)
......... 2a
i) — oYi(mry) _ i
M Ty = pYo(mr) = T he . )
= % . — %
where  h; = Qbtade’ ¢~ Jblade’

-«ar.= heat transfer coefficient at the working surface of blade;
ac = Do. at the back surface of the blade.
-Ji and Y, represent Bessel functions of order unity.
The solution (2) must also satisfy the heat transfer condition at the edges of the
blades, which gives the following condition:
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ntanav, =hy, - aieiee.. @b)
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ay = heat transfer coefficient at the entry and the exit edges of the blade.
Finally, the values of A;um and B, are to be determined by the boundary condi-
tions at 2 =0 and z = z,. The surface condition of the heat transfer at the tip of
the blade is expressed by .

(aj)z=21 = fa (00 = feesr) |

oz

«
where R, = EI-—‘;— .
adae

By substituting the relations given by Eq. (2), we obtain

22{1( — Amnera1 4 B-mne“z’) cos nv+{Jp "'ﬂYo}

e 7

-+ haEZ(Amhe-“z’ + Bm'ne-"zj) Ccos ‘121)'<Ju - OZY(J) = ha(ﬂa - ﬁgas) .

mon

Multiply the both sides by cosne«dy and integrate from ¢ =0 to ¢ = ¢;, we get

%—"{_ (];:z - I)Am,,e"“fl + (]r;:za + 1)ane”21}= Yoo (Pa — Jgas) »

e
C vedy .
), cosnv-de 2sin no,

" 20, + sin nv;- cos 2w, ¢

where Y, =

N -
J. cos® 20 dv
0

Next, multiply the both sides of the last equation by {Ji(mr) — pYy(m7)}7+dr and
integrate from 7 = 7: to 7 = 7;, then we get

- (]{l’ - 1) Apne™31 + (;l'; + 1) Bune*® = Xy Yo (Fa — Pgas) » +++(20)

[ 1o = ovyrar [ —em0]]

where X, = — .
j‘r:(]ﬂ — pYo)'redr z;[?""{(]u - oY)+ (fi — py’)ﬂ}]n

The boundary condition at the root of the blade may be divided into the following
three cases:

1) 62=p = 0y = constant (independent of » and ¢).

2) G220 = f(7,¢)

3) (@ = constant for all values of 7 and ¢,
02 /z=n

When 0.-; = 6y = constant, this must be equal to the right-hand side of Eq. (2) for
z = 0. Treating the equation, thus obtained, just in the same way as before, we get

finally
A + an = = me’yln('l?a - 00) « e (2 d)

In our case, we may assume ¥, = @¥gos. Then Eq. (2c) and (2d) give the values
of A,un and By, in the following form:
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Amn B (ﬁ B l)eiu‘z'.(ﬂg‘" - 00)'me‘Yn
an = e treseeen (2 e)

N

In actual case, e-*%1 may be neglected in comparison with e*?1. In such a case Eq.
(2 e) becomes

Amn = - (‘l?gas - 00) 'me'Yn ) *

w_q b (2f)
Bymeer®t = — (Pgas — 00) * Xonps Y Z:f e Ha

. +1

In the second case, we get
Oz=0 = @y + Zﬂan cos 1.
This must be equal to the right-hand side of Eq. (2) for z = 0. Hence we have
ay + gan COS Y = Vgas + %‘,%‘(Amn + Bin) cos nve{Jo(mr) — 0Yo(mr)} .
This relation must hold good for all values of ». Multiply the both sides by {Js(#27)
—10Yo(mr) }redr and integrate from » = 7, to » = r;, then we get
Awin + Bon = — (Fgas — @) Xonpo Yo + @n* Xmp . wooveve (2g)
Combining Eq. (2¢) with (2g), we obtain’

( o + 1)8*“‘ '{(’l?gas - (lo) o Yn — vn}' me
Apmn _ _ \Da e (2h)
By~ Mo wzyp no_ -}

(Gt D)ot (= 1)em

In the. third case, we may assume that the temperature gradient at the root of
the blade is constant for all values of #» and ¢. Then we have

(22) =353 (= Aun + Bun) cos v+ (Jo(mr) = o¥a(m)}.

az m n

Treat this equation in the same way as before, then we have

— Amn + Bun = (%%)z-—o . XL"-;‘—.Y" e eeemsses (21)
Combining Ep. (2i) with (2c), we get
_ (% S £p2
Amn _ ( aZ)z=n (ha = 1) e e X"'P_'_l/'_‘ ........ (27)
Bun = ( 12 2 T Y no
(ha+1)eu'+(ha 1)6"”
If we neglect e ##1 as compared with ¢*%, Eq. (2]) becoms
_ 20  Xmp*Yn 1
A= = 32)=-° @ S k)

(30 X Yayam |
an—"'(az)z=o N e A,
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The value of ob = constant can be determined in the following way. As shown
92 /2=

by Eq. (1), the temperature at any section of the btade is given by

(h + 1)em<z;—z> +( e 1,),e-m<z;-z)
@ .

02:19‘}‘ (30—730)9
Yr [hba. -Mz
(Fr1)ems+ (G- 1)em
where m =,/ & kg which is quite different from the value of m found in Eq. (2).

Derive the expression for 4, of the equation for —a—g and put z = 0, then we get

‘ m ~
(55 ~ (ha+ 1)8?7121 — ('ha - 1)g mzy ‘
' §é)~-o' - m e (fy = D). ceeeens 2h
T (e s ()
Qr, neglecting e-?%, this expression becomes
(%—g) n=m-{7§lc—60). ........ (2m)
2=

4, Equivalent Heat Transfer Coefficient at the Periphery of Turbine Dise

. As shown in Fig. 2, the sectional area of the blade is F» m® the perimeter of the
same section U: m, the area of the clear surface at the periphery of the turbine disc
Fym-. Simplifying Eq. (1), we get the expression for the temperature difference be-
tween the working gas and the blade surface

&gas - 63: = (ﬁgm 1%) COSISO’;E%; x)

Hence the heat transferred to the moving blade from the working gas is given by

21 cosh m{%; — %) Paas
. = | e(z — ) T A dx = o U, #E .
Q- S‘D (P gas —0s cosh 7%, A i ‘tanh Xy

On the other hand, the heat transferred to the turbine disc through the surface &
is given by
Q, = a-Fy(gas — b) .
Let a’ be the required equivalent heat transfer coefficient at the peripheral surface
of the turbine disc, then it may be given by
Q= a'(Fi+ Fy)+«(Pgas — Oy) -
Putting @ = @ + &, we obtain

« = Q{F + F,,+ ﬂ“zkﬂuﬂ tanh mx;} keal/m*h°C, - vv--- (3)

where « stands for the heat transfer coefficient between the blade surface and the
working gas. '
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5. Distribution of Temperature in Turbine Dise

Assuming the turbine disc to be a circular disc of uniform thickness as shown in

Fig. 4, we get the expression for the temperature at a point «(7, z) as follows:
Oz = Do+ S Ape?" + Buel™)Jo(pr). -+ (4) 1
r B

The surface condition at the periphery 7 = 7, gives Ve,

7

I (P;"J) _ He
P ypry = e = e

Adise’

which enables us to determine the every value of p.
The solution (4) must satisfy the surface condition at z = 0.
The temperature of the gas at the left-hand side of the disc

&
- GEaisc

ap

can be generally expressed by 7

o = fa(7) . o,

The surface condition gives % S

;ﬁ(* Ap + Bp)«Jo(pr) + halfa(r)
= e — Z,}(A@ + Bp)Jo@r)} =0,

where h; = ag/aisc . w N
Multiply the both sides of this equation by J,(p7)#-ds and
integrate from 7 = 0 to » = #,, then we get

(l]zb ) Ay “(;ifa - 1)'311 = Qap — 73-C-JQ ,  eeeens S(4b)

S Jo(pryredr 2 Lem
(TLnpr gy P1IEB) + TEBR)

where Xp =

[ far) Jotoryrear

PLap = 7

Similarly. the surface condition at z = 2z, gives

(7.~ ) Aser i — (L4 1) Bprett = 90— gy, o (1)
where @ = f5(#), I = ap/laisc »

fﬁ@h@ﬂm

[ Cnenzrar

Chp =

Combine Eq. (4c¢) with (4b), then we obtain
A (¢ap = DorXp)- ( + 1)e=wzl — (962 Xp — Opp) » ( x 1)

T e () )

< (4h)

&
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The integration for the value of ¢.p or @z may be possible if the temperature
Je = fol#) or 9 = fp(7) can be expressed in the form of the so-called Bessel-Fourier
series which has been specially developed by the writer of this papers.

Apart from such analytical solutions, we proceed to compute the actual case of
local cooling by blowing cold air jets at the temperature 4. or %, , whereas the tem-
perature of the gas in contact with the other parts of the disc surface remains con-
stant at 9, or ¥ as shown in Fig. 5. In such a case, the integration is quite easily
done as follows:

gup = [ L) Dooryr-ar)  Uotom) Frea
;[3g:{jfjn(ﬁr) e+ " nwnrar}+ o\ 1ipnrdr]« [ Lo Trar
= [9g % tom) + 90 (% Tior) =7 Juom)
00 (5 nom) =% 1w Y]+ [ 5 {ss0m + st ] s (4e)

The solution for the case of a turbine disc of
variable thickness, variable gas temperature and
variable heat transfer coefficient is somewhat toil-
some. At any rate, the temperature of the disc is
expressed evidently by Eq. (4). The surface con-
dition of heat transfer can be generally given by

(5

Bu=Ful ¥

Gas Temperatue

)0 = (P —0y), eeeeeens (5)

R S
« e
M

where I = a/Aaise; 0o = surface temperature of the
disc at the point under question; (gfl )n = normal . Fadius
temperature gradient at the same point.

The normal temperature gradient at the disc surface is expressed by

of  of ~, of . . -

S = .- €080 + ~-sind,  seeseees 5a

on oz + or ’ (5a)
where ¢ denotes the angular incli- . ﬁ’i

nation of the normal at this point
to z-axis, as shown in Fig. 6.
Let Grad. 6 denote the resultant

of the two principal components of
aof

57 and

the temperature gradient

80 , then we have
oz

»’O:—ﬁ = Grad.f.sin 3
or

and ?,g = Grad.f.cos 3. - v
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Hence we get
g% = Grad. 0 (cos §cos ¢ + sin fsind) = Grad.f.cos (8 — 9) = Grad.f+cos¢, (5b)

where ¢ = angle between Grad.f and gfz ,

B = angle between Grad.f and z-axis.
Applying Eq. (5) to the various points, 2 2 points in all, at the surface of the turbine
disc on both sides, we have 27 equations involving 7 pairs of Ap and Bg.  Solve these
simultaneous equations for Ap’s and Bp’s. '

6. Distribution of Temperature in Turbine Shaft

The surface condition of the turbine shaft is shown in Fig. 7. The heat transfer

coefficient «, at the inner surface of
L]

the hollow shaft may be assumed to "'t]

~

be infinitely small, since the hollow
shaft is made air-tight at both ends.

In such a case, the temperature of the

G,y -

VIO
@, b B I

shaft may be expressed by

Dige
Runner

///////// LLLLLSLLL L
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|

0 - 2?(1 + (A,e—mz + B.emz) . (6)

Lodedeldl L L L LLLLLL L L

e 2

j

Compressor

‘where m = \/QZIJZF{; U =2z,

F =z —177);
7, = outer radius of the hollow

_r;;___
R

shaft;
7» = inner radius of the holiow shait;
aq = heat transfer coefficient at the outer surface of the shaft;
2 = thermal conductivity of the shaft material;
Ja = temperature of the medium in contact with the outer surface of the shaft.

The solution (6) must satisfy the boundary conditions at z = 0 and z = z,. These
conditions will give two simultaneous equations involving A and B, which give

a (- u)(,:; = 1 )eum + (Ja = 9)

R

L e (Ga)

where hy = ay/d; 9y = temperature of the swrrounding medium in contact with the
end surface of the shaft at z = z;; #, = temperature of the shaft at z = 0.
The temperature gradient at the section z = 0 is given by

(%Z)z:() = - m(A - B).

And the heat quantity flowing through this section is expressed by
Qe=0 = im(A — B)F.
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On the other hand, the heat transferred at this section may be expressed in the
form of Newton’s cooling equation as follows:
Qz:o = Cll(ﬁu - 730)F,
where «’ stands for the equivalent heat transfer coefficient.
Equate the right-hand sides of these two equations, then we get the expression for

the equivalent heat transfer coefficient reduced to at the outer surface of the turbine
disc.

PR (R R = 1 (i
o o (e

7. Cooling Effect of Compressor Runner

On the other end of the hollow shaft, a compressor runner is fixed. The runner
has the impeller vanes which add the cooling surface so much to the base area of

the disc itself. Standing on this point of view, we may reduce the runner to a SImple
circular disc of uniform thickness, as shown in Fig. 7.

The temperature of the disc at radius 7 is given by

07- = ’19g + A[ﬂ(/.lr) + B[{o(/j?’) P R (7)

where g = } b ; A = thermal conductivity of the runner disc, kcal/mh °C;
« = heat transfer coefficient between the impeller vane surface and the flow-
ing air; b = thickness of the reduced disc.
The values of A and B are to be determined by the boundary conditions at the
inher surface 7 = #; and the outer surface 7 = #, of the disc. The results of the com-
putations are as follows:

Sk, .
A = MA¢E, ,(EABQ.._ ........ (7 a)
B 7 gl pr) + ¢ilo(py) _

where ¢; ;:0 Li(pro) + Lur);

1l

Sk

,‘; K(pre) — Ko(pro)
0

L, Ki. I, K, = Bessel functions of imaginary argument, the first and second kind,
order zero and unity, respectively; Iy = ay/d; ¥4 = temperature of the cooling air;
ao = heat transfer coefficient at the periphery of the disc; ¢, = temperature of the
disc at 7 = 7.

The dissipation of heat from the side surface of the disc is given by

iy @le]o(l”'l) + O;Ko (,U?'x)

The dissipatiori of heat from the peripheral surface 7 = 7, of the disc is given by
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Q@ = a2 arb{Al(pun) + BEy(ur)y . eeeeeees (7¢)
Next, the dissipation of heat from the end surface of the shaft which is to be con-
sidered solid in this case is expressed by
@ = amr®(Oamsy ~ 85) . eeeeeens (7d)
If the total heat (@, + @- 4 @;) is to be dissipated from the end surface =(7* — #.*)
of the hollow shaft, we have the following relation which enables us to determine the
value of the equivalent heat transfer coefficient af.
G+ @+ Q=afz(rf = 1) (Oozey — Fp) . e (7e)
Since 0=, = 0, Eq. (7€) gives

— _...?‘_ls.... da . gok{”olx(lﬂ‘n) - 7‘1]1(;1”'1)} — @i(”nKn(,m’n\ — 7 Ki(pr) )}
af = ay rierr T m(r® — 77°) orl(pry) + @ilo(pury)

4 2adry opb(pr) + @ilo(prs) (7)
77— ¥ ﬂﬁ’kln(l-lrl) + (,OiKo(I”'l)
Thus, we see that the value &/ = af /A must be used instead of the actual value
hr = ay/A in order to take account of the cooling effect of the compressor runner.

8. Heat Transfer Coefficient between Moving Blades and Working Gas

Schorner (Luftf.-Forschung, Bd. 15, 1938) studied on the transfer of heat between

the working gas and the moving blade surface and came to the conclusion that the

-d . . , ., wed
Nusselt number Nu = 9’—/1-(! is proportional to 0.86 power of Péclet number FPé = E 7
According to his experimental researches, the proportionality constant varies from

0.0235 to 0.0265. Taking the mean value 0.0230, we may put

~ x' u)°d 0.56
@ gas = 0,0250 _‘5(325( - ) E i (8)

where d = %{ = hydraulic mean diameter, m; f = sectional area for the gas flow

o

through the blabe passage, m®; # = perimeter of the section for the gas flow, m;
w = mean gas velocity relative to the working surface of the moving blades, m/h;

a= (%"—”—‘; = thermometric conductivity, m®/h; Ages = therrﬁal conductivity of the work-

ing gas, kcal/mh°C; Cp = specific heat of the working gas at constant pressure,
kecal/kg °C; r = specific weight of the working gas, kg/m®
The specific weight of the working gas at temperature 7°K and pressure P kg/m®
is given by
_ M . 273.2 . P
TERa T "By
where Py =10,332kg/m®; M = molecular weight of the working gas. Thus, we see
that the denominator of the expression of @ is given by

€
Crr= .

2241 5ms + 5
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where €, = molecular specific heat of the working gas at constant pressure, kcal/mol °C.
The molecular specific heat of the working gas may be given by

€p = Ej{.‘f Cpeis i (8h)

where €z = molecular specific heat at constant pressure of any constituent gas; #;
= number of mols of the same gas; IV = total number of mols of the working gas as
a whole mixture. :

The thermal conductivity of gases can be expressed in the following form:

2B CT S . ,
2= de S (27“3) kcal/mh°C,  ..ee.... o)

where J:z; and C are the characteristic constants for individual gas. For the consti-
tuent gases of the working gas under question, we have the following data:
For the gaseous mixture, the thermal conductivity is

T T
{

given by ’ Gas I
2 - W A e (9a) Oz and N : 00208 | 144

gas = 277 Ai CO: | 001212 519

H:0 | 0.0140 | 581

In these equations, the temperature 7°K must be the

mean temperature ranging from the gas temperature Pas”K to the surface tempera-
ture 6,°K. Standing on the experimental point of view, we may assume the tem-
perature distribution as follows:

Ty = constant,

where y denotes the normal distance from the solid surface. Then we have

= Jogedeus/00w
T = 175, —1/5 0 (19

which is the mean temperature under guestion.

9. Heat Transfer Coefficient at the Surface of Turbine Dise

Stanton gives the following empirical for’mula for the heat -transfer coefficient be-
tween air stream and fixed plates:

Oair = 118(1 + 0.00075 T,)20*™®  keal/m*h°C, ---v--.. (11)
where 77, = mean temperature, °K and w = air velocity, km/h.

In the case of a rotating disc, the air velocity may be assumed to be equal to the
tangential velocity of the disc surface, which is evidently proportional to the radius
7. Thus, we have

a=f(r),
for the variation of the heat transfer coefficient along the disc surface. The mean
value of « is given by

1

. 9
YEN

Amean =

X:f( 7) 2 mredy
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10. Calculated Results

The foregoing theories have been applied to the case of a gas turbine used in
turbo-jet propulsion.

1) Characteristics of the working gas

The ratio by weight of gasoline to combustion air is 1:835. Assuming the chemical
formula for the gasoline used for C;I,. the burnt products have been found to con-
sist of the following constituents:

The surface temperature o - e

: ! i | wixtuce
of the moving blades 0w Component | COa & H:0 | O i Nz f,‘\{l\ttl,i'
| i v -
= 758°K. The gas tempe- Mols T 'i 8 505 |2822 2077
rature varies from 660°C at Mol ratio % | 0.0235 00269 | 01697| 07799 1.0000

Gpkeal/mol °C| 037 | 7.28 | 522 | 522 | 537
I}
|

i ° : E
the entry to 570°C at the % o i/mhec | 00419 00495 | 00565 00565 00559
exit of the blade passage, ‘ : : U

giving the maen value Jg: = 615°C = 833°K. Substituting these values in Eq. (10),
we have T = 825°K.
The values of §, for the constituent gases at this mean temperature are given in

the table above. The molecular specific heat ©p44 for the working gas can be esti-
mated by Eq. (8b) as given in the last column. The thermal conductivity of the
individual gas can be estimated by Eq. (9) and that of the working gas by Eq. (9a).
The figures thus obtained are also tabulated above.

From Eq. (8a), we have Cper = 0.0800, hence the thermometric conductivity of the
working gas @ = 0.699. The relative velocity of the flowing gas being 445 m/s at the
entry and 230 m/s at the exit, the mean velocity will be 2 = 338 m/s = 1215km/h.

The sectional area for the gas flow through the blade passage is 649 mm? at the
inlet, 345 mm?® at the outlet and 426 mm® at the halfway section. Taking the mean
out of these three, we obtain f = 473 mm® In similar way, the perimeter of the sec-
tion for the gas flow varies from 112 to 109 mm, giving the mean perimeter # = 110
mm. Thus, we can estimate the value of the hydraulic mean diameter ¢ = 0.0172 m.
The Péclet number becomes Pé¢ = 29,900 and 1/d = 3.746.

The heat transfer coefficient between the working gas and the blade suri‘ace is now

to be estimated by Eq. (8) by making use of these values, namely, ag.; = 574
kecal/m*h °C.

2) Equivaient heat transfer coefficients

The thermal conductivity of the moving blade is Apreze = 31.0kcal/mh °C at 550°C.

In Fig. 2, Fo = 70 mm® and U, = 38.6 mm, whence we have m = Xeas. g“ = 101 m~".
Ablade Fs

The height of the moving blades being x, = 0.050 m, we have mx; = 5.056, ¢ = 0.183
for Ea. (1).

Next, the area of the clear surface at the periphery of the turbine disc F; = 310
g _
mm®, hence we have 7+ F, = (.816 and

merical values, thus obtained, in Eq. (3), we can evaluate the equivalent heat trans-

B o o )
- + b 101.6 m~%. Substituting these nu
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fer coefficient at the periphery of the turbine disc, namely, a’ = 1045kcal/m*h°C,
which shows an increase by 82 % due to the heating effect of the turbine blades as
heating fins.

In Fig. 7, 7 = 0.326m, 7, = 0.041m, 7 = 0.034 m, b = 0.015m. The peripheral speed
being 130 m/s at 7 = 7, and 63m/s at 7 = 7;, the mean speed may take w = 96.5m/s
= 347km/h. The mean temperature of the air through the compressor runner 7'
— 328°K. By making use of these data, Stanton’s formula gives « = 292 kcal/m*h"C.

The thermal conductivity of the material for the compressor runner may take 4

= 30. Then we have it =i, = 9.73m; p = N/P)I(; = 36.0m~'. The 'values of Bessel

functions involved in Eq. (7a) are as follows:

Argument Iy I Ky i)
wiv = 1477 | 1.624,4 | 0.959,1 0.223,2 | 0.290,9
ury = 1173 | 14,635 . 13,997 | 29152 x 10-% | 3.037,0 % 10-°

By making use of these numerical values, we have
¢; = 533,100 and ¢ = 0.1154 X 107%.

Substituting these values in Eq. (7e), we have a’ = 3330 keal/m*h°C. The cooling
effect of the compressor runner has been thus ‘estimated as an increased heat trans-
fer coefficient a/ instead of actaul value ar = 30 at the end surface of the shaft itself,
their ratio being 111.

Thirdly, we proceed to compute the cooling efect of the turbine shaft on the tem-
perature distribution of the turbine disc proper. In Fig. (7), 6, = 227°C, 5= 25°C,
94 =100°C. The heat transfer coefficient at the outer surface of the shaft is given
by Stanton’s formula as ag = 59.4, corresponding to the mean temperature Ty = 403°K
and the air velocity w = 151km/h. The thermal conductivity of the material for the
shaft being 2 = 31.4, we have hq = 1.89, ks = 111, and the latter corresponds to a’ = 3330
as explained above. The perimeter of the outer surface of the hollow shaft U
= (157 m, the sectional area F = (0.00165m*, hence m = \/‘_’d U i34m-. The
length of the turbine shaft z; = 0.400 m, and then mz, = 5.57. By putting these values
in Eq. (6e), we get the value of the equivalent heat transfer coefficient a’ = 421
kcal/m*h°C. On the other hand, Stanton’s formula gives the actual heat transfer
coefficient at this part of the disc surface as a = 96. Thus, we see that the cooling
effect of the turbine shaft with the compressor runner at its other end increases the
heat transfer coefficient 4.4 times as much.

In the fourth place, we have to consider the cooling effect of the projection at the
center of the turbine disc as shown in Fig.1 (a). The dimensions and the boundary
conditions are given in Fig. 8. The temperature distribution of this projection is
given by Eq. (6), and the equivalent heat transfer coefficient by Eq. (6e). Thus, by
taking 4. = J5, we obtain
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efficient &’ = 166 kcal/m*2°C, showing that this projection [
increases the heat transfer coefficient from 30 to 166, i.e., 5.5

a = im (-;;%—!- 1)8”‘2’ N (77,% N 1)3""2' . ;
(7 +1)emsr (G —1)em '\ /

Stanton’s formula gives a, = 41 and ap = 30 in our case. - I"‘ / Z
The thermal conductivity A = 31.7, hence &y = 0.945, mz, P /
= 0.308 for z; =0.021m. The equivalent heat transfer co- ;
4

times as much.

3) Distribution of temperature

The following eight cases have been worked out.

Case I and II! The temperature #. of the working gas was first found to be 615°C
when the edges of the moving blades were partly damaged. Improving the com-
pression efficiency by replacing the original centrifugal compressor with a propeller
type. the temperature of the workir‘lg gas was reduced to 515°C, and the fuel-air ratio
remains the same.

Case III and IV: The temperature J, of the fluid in contact with the downstream-
side of the turbine disc was at first found to be 400°C, which was lowered to 250°C
by supplying some quantity of cooling air.

Case V and VI: The temperature 7J; of the fluid in contact with the upstream-side
of the turbine disc remained unaltered at 300°C. In order to cool the turbine disc
positively, cooling air at 100°C or 200°C was tried to blow against the surface of the
disc on both sides. This local cooling was carried out at the rim of the turbine disc
ranging from # = 0.20 to 7 = 0.22 m, whereas the outside radius of the disc 7 = 0.225 m.

Case VII and VIII: In order to get better lubricating condition at the turbine shaft
bearings, the temperature of the shaft was tried to be lowered by blowing some
quantity of cooling air at 100°C or 200°C against the both sides of the disc. This
was done over the central part of the disc ranging from the center to 7 = 0.04 m.
The temperature of the fluid in contact with the outer surface of the turbine shaft
remained constant at 100°C and at 23°C

Boundary conditions
at the end surface.

The calculated results are shown in | Working | Down- .‘[7117337tream:
. e Case gas Istream-side | side
diagrams in four plates. L 2:°C | 2e°C ,°C
a) Plate 1and 2 corresponding to Case I 615 400 L 200 S
L 1L, III and IV. i . 515 | " [ 7
Plate 1 shows the surface temperature R,I | g%g i 2,530 l ::
|

!

of the turbine disc of uniform thickness
of 25 mm. Lowering the gas temperature affects distinctly the temperature distribu-
tion near the wheel rim, but little effect can be seen near the disc center. The tem-
perature of the moving blades is affected most distinctly, differing by about 1.5°C at
their tip surface from the temperature of the working gas.
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In Plate 2, the distribution of temperature in the disc are shown with groups of
isothermals or isothermal surfaces. Heat flows into the disc through the peripheral
surface of the disc and flows out of the disc into the surrounding fluid on both sides
of the disc. But this tendency will subside immediately. Toward the center of the
disc, heat flows from one side to the other due to the temperature diference between
the fluids on both sides of the disc.

Plate 1 also shows the distribution of temperature in the shaft. The temperature
drops rapidly at first, but the dropping rate of temperature ,will soon become very
gradual. Toward the other end of the shaft, the temperature drops very rapidly once
more. This is due to the cooling effect of the cmpressor runner.

The distribution of temperature in the compressor runner can be determined by
Eq. (7). The followings are some of the results of caiculations:

Radius, | 4 | } | 1a0 | s

mmo 4 60 | 80 | 10 120 | 10 180 3%
Casel | 5L0 | 817 | 279 = 263 256 | 253 | 251 | 250
Case IIl | 493 | 2 | 251 | 250

310 | 276 261 | 255 | 25

b) Plate 3 and 4 corresponding to Case V, VI, VIi, and VIIL

As stated above, the distribution of temperature in the disc will become more uni-
form when the disc is locally cooled by blowing cold air against the side surface’ near
the wheel rim (Case V and VI).

The temperature of the shaft at the left-hand bearing has been lowered by blowing
cold air against the central part of the turbine disc (Case VII and VIII). The boun-
dary conditions are shown in the following table:

4) Three-dimensional a- | Gas Downstream-side [ Upstream-
Case | $.°C 590 i side
nalysis of the distribution | > 1 “ | wec
‘ : ’ For r = 200~220 mm 200° |  200°
of temperature in moving v | 615 ’ { Other parts 400° | 300°
blades. vi | 4| {Ferr=20~zomm 10 00
In Fig. 3, we are given | Other parts 400° & 300°
| For 7 = 0~40 mm 200° | 200°
7 = 0.0?36 m, 7= 0.0190 m, VII i ” { Other parts 400° 300°
¢y = 48°24' = 0.845 rad., J. VI j " For = 0~40mm  100°  100°
| Oth rt 400° 300°
=9 = % = J = 615°C, - { O parts ~ -
Qgas = 374 kcal/m*h°C, 2 = 21.0kcal/mh°C, hy = hp = he = Iy = 27.332m"".
The caluculated values of o8 = 13310°C/m by Eq. (2 m). Starting from this
32 2=0

datum, the values of the coeﬁicfents Amn and By, by Eq. (2k) have been determined
and the temperature distribution in the blades by Eq. (2). Some details of the cal-
culated results are given in the following table.

These results show that the temperature of the blade is lowest at the middle of
its section. Approaching to the edges of the blade (¢; = 48°24’), and also to the outer
surface (# = 0.0236 m) or the inner surface (» = 0.019 m), the temperature increases
gradually. This variation in temperature distribution is seen most distinctly at the



132 Akira Kobayashi

Temperature distribution in turbine blades

G z [ { | =S T
Rr:g; \:\mm;‘ 0 | 10 I‘l 20 | 30 2, mm| 8°C
¢ | 1 o S
|
0° 4996 | 5762 | 6024 | 6110 S | 2009
19 20° | 4982 | 577.1 | 6026 ” 20 | eose
43°24' | 5108 | 5830 | 6049 | 6118 S0 | e114
0° ' 4923 | 5751 | 6021 | 610.8 40 | 6139
21 20° 4950 | 576.1 | 6025 | 611.0 50 l 614.6
48°24' 5080 | 5820 | 6046 | 6117 v
; | 88 | 6150
0° 497.1 | 576.4 | 6025 | 611.0 S S
23.6 | 20° | 4988 | 577.3 | 6029 | 6112 -
48°24 | 5113 | 5833 | 6049 | 6118

root of the blade (z = 0), subsiding rapidly as z increases.

In conclusion. we may use Eq. (1) for the sake of simple calculations without much
error, except for special purposes. The figures in the other table obtained from Eq.
(1) will show you a good comparison.

11, Heating and Cooling Effect on Moving Blades

Suppose the case that an aircraft begins hell-diving, the gas turbine, having run
with full power till now, will cease the internal combustion and oaly the cold air at
higher altitudes will pass through the turbine blading. Such a sudden cooling of the
moving blades will cause local shrinkage at the periphery of the turbine disc, result-
ing in radial cracks in the disc at its rim. Here arises another problem to be solved.

The temperature of the blade at any instant will be given by

0 = &+ SISISVCu{Jo(mr) — pYo(mer)} cos nuecos pzee™#at, nnne (12)
m o n

where 2 = ~m® + 75 + p* and ¢, = temperature of cold air through the blade passage.

The values of m and p in pairs are given by Eq. (2a) and that of 2 by Eq. (2D),
as explained before. The boundary condition at the tip of the blade (z = z,) gives
the following relation:

vtanwzy = lg,  eeeeaens (12a)

which determines the every value of ».

At the beginning of the cooling, the temperature distribution in the moving blades
is the same as given by Eq. (2), which means the stationary temperature distribution
after a long-time running. Thus, we have

J+ 20 (Amare VmiEntE o By e eV mi+ni?) (10(7727’) — pY,(m7)} cos nv

mon

=9+ SISNC{Jo(mr) — pYo(anr) ) COS nv+COS pZ.

This equation must hold good for all values of 7, zand ». Treating this equation
just in the same way as before, we get

Cp= (Pa— D) X Ynr Vo + Apn W + Bun Wy, 2oveeee (12 Db)

" where X, and ¥, are the same as before and Y, may be obtained by putting »z:



Distribution of Temperature in Gas Turbine Rotor 133
for nv, in the expression of ¥,. Furthermore

Z1
j‘ eEVmErnIZ.cos pzedz
n

I/Viy = z1
f cos®pz+dz
9

vz; + Sin vz; COS vz
2v

where the denominater is equal to and the numerater

-/-t—g{(:t ~N'm® - n® COS vzy + v Sin ;) e VIEFREE T A/t gty |

12. Résumé

The foregoing theories and calculations lead us to the following conclusions:

1) The distributions of temperature, thermal deformations and also thermal stresses
can be estimated accurately to some extent which affords more reliable data to the
practical designers.

2) The quantity of heat to be carried away for cooling can be worked out. This
will furnish to the designers a certain starting point in designing the cooling system.

3) Experimental researches can be replaced by the foregoing computations of this
kind, resulting in great saving of time and labour.

The writer of this papers looks forward to more detailed and reliable data about
the heat transfer coefficient for the gas stream at high speed along solid surfaces,
especially at higher temperatures.
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