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1. Introduction

A violent vibration of pressure is apt to occur when a blower or a pump is work-
ing at its small discharge or shut-off condition. It is said that the vibration is
caused by the praticular part of the characteristic curve — the negative characte-
ristic or the part of increasing head by increasing discharge, such as AB in Fig. 1,
— and pressure and discharge vary along the line
ADBEA of Fig.1 during the vibration®. But in the
pipe line if there is no non-return valve, such as check
valve or foot valve, the change along FA can not occur

and it must be corrected in the way that the cyclic

path of a surging is A’D'BE'A’, where E'A’A is the S
chéracteristic curve for a negative discharge. But in s é

this explanation the inertia force of the fluid column ? ’

in vibration and the spring force are not taken into ._’D ichange
account satisfactorily and accordingly the period of vib- Fig. 1. Cyclic change of

ration is not known pressure and discharge.

The surging of a pump has recently been treated by some authors precisely®
but compreésibility of the fluid in vibration has not been taken into account hi-
therto. In this paper the sustained vibration of a compessible fluid column was
considered, as caused in a pipe line of a blower by the particular part of its charac-
teristic curve.

2. Vibration of a fluid column

Let » be the velocity along the axis of a straight pipe of uniform section (x-direc-
tion). p the density, p the pressure, and f the time. The equations of motion and
of continuity are as follows:-

ov o0 _ 109
8t+”ax_ S Ee (1)
ap ap ov
T +v———ax +p———ax =0, . eeeeeea (2)

(1) It may be recognized that the working condition of the pump changes abruptly from B to
A while the surging vibration goes along BEA and the difference of head EA is supported
by the check valve or foot valve suddenly closed.

(2) R. Dziallas: Untersuchungen an einer Kreiselpumpe mit labiler Kenlinie.
Sumiji Fujii, Trans. of the Japan Society of Mechanical Engineers. Vol. 13, No. 44, 46, and 48.
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Assume now v and the variations of  and p are small in the case of the small vib-
ration of a fluid column, as usually done, and 2 —35— and v —Z'% may be neglected in
comparison with the other terms in the above equations. As the definition of the
modulus of elasticity K of a fluid in compression is 4p = —K 4V/V, where V is the
volume of a fluid and 4V the decrease of volume due to increase of pressure 4p.

we can write dp = Kdp/p and the above equations are

ov _ _19p ob _ _gov. .
=5 o = —K<. (1a),(22)
Differentiating (1a) with respect to ¢ and (2a) with x, we obtain
v _ e
Eakd- @
and also differentiating (1a) with respect to ¥ and (2a) with #, we obtain
e
ot = Yot )

where @* = K/p and « is the velocity of propagation of sound in a fluid. Equation
(3) or (4) is known as the differential equation of wave motion.

When the surging occurs, the one end of the pipe line, which is either the deli-
very or the suction side of a blower, is usually closed or almost closed and the other
end open. Now we assume the suction side is open and the delivery side closed.
Denoting the distance along the pipe from its open end by x, » = 0 and ovjfox =0 at
x = 0%, The solutions of (3) and (4) satisfying these boundary conditions can be
written by using normal co-ordinates as follows:-

b= > s sin ksx, V= + 2(15’ cos ksx,
s s

where #, is the mean velocity of a fluid in a pipe and ¢s; and ¢¢ are the normal co-
ordinates, which are the functions of time. And from (2a) we have g4 = qs/ (ksK).
where ¢s = dgs/dt. Then the above equations are
P = Esqg sin ksx, v =1+ % 2 —g: Cos ks, eeeeees (5)

Now if the dimensions of the pipe line are given, we can determine the value of k.
Let 7 be the length of the pipe of sectional area A. Its one end is open and a cham-
ber of volume V is attached at the other end. The fluid is flowing out from the
chamber at a constant rate #,A. The pressure in the chamber is equal to the press-
ure at x =/ at every moment, provided the wave length of the vibration of the
fluid column in the pipe is sufficiently longer than the linear dimensions of the
chamber. The excess volume of fluid flowing in over flowing out from the chamber
in time 4t is (Av.-; — Auy)4t. Accordingly the rise of pressure 4p in the chamber
18 K(Avz=1 — Auo)4E/V in time 4f or we can write

éf)_ — ;4(1),,,-.(1 - uo)
(), = &5
Putting equation (5) into this relation we obtain

(3) The origin of the co-ordinate is to be shifted if the mouth correction is necessary.
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kdtankd = AlJV.  eeeeeeen (6)
This is the equation for determining % and if we put ks = ass7/(21), the value of as
is shown in Fig. 2 for various values of Al/V, s being odd number only in this case.
We can see from equation (6) that,

! [l
_— i T ; : .
ce,({; _;/7%‘ if AI/V becomes infinitely large. then
08 Yy T as = 1 and the vibration of fluid column
bt
" % in a pipe with one end closed is Ob-
/ . Y "
) P £, =0, _2_7[ . taxtr.led. In cbase of t{ll/l;/>u0 t:;edwb
0/ : ration may be practically regarded as
3 % tnf, ) =AL

o &‘Q %’ﬂ Vv that in a pipe with one end closed®.
) When Al/V is small, equation (6) be-
) TR T T K_,gs TR comes ()= AlJV for s =1 and so

v «a; is equal to (2/z)~Al/V. This

Fig. 2. shows that when Al/V is less than 0.2,

it is practically allowable that the compressibility of the fluid in a pipe may be neg-

lected for the vibration of s = 1 and the fluid column in a pipe behaves like a solid

piston during the vibration®. But vibrations other than s =1 are nearly equal to

those of fluid column in a pipe with both ends open. The theory of surging of a
pump hitherto investigated is applicable to the case of s = 1 for Al/V < 0.2.

3. The equation of motion for the surging

Let us consider the pipe line as treated in the previous article and shown in Fig. 3,
to which a blower is attached at x = ¢, We

Bpemm—m T c have known that the vibration of fluid column
0 _— in the pipe can be expressed in the form of
AT T T e

equation (5) using normal co-ordinates (s.
Here we take gs as generalized co-ordinates

—(‘3— RO and consld-er that generahzec} forces act on
v the vibrating column of fluid at x = &/ by
80— ' the blower.
L Lagrange’s equation of motion is given in
e x - .
Fig. 3 the form

9 (oT 2T oV -

[, - o — _‘_ — T . e I

5 (5a) St et @ )

where T is the kinetic energy, V; the potential energy, F the dissipation function,
and s the generalized force having no potentlal

As the velocity of fluid in the chamber is very slow as compared with the one in
the plpe the kinetic energy of the fluid in the chamber may be neglected So the

(4) The d:ﬁerence of periods of v1bratxons is about 3% when Al/V = 30.
(6) The difference of periods of vibrations is about 3% when Al/V = 0.2.
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kinetic energy of the system is
T= »pAf vdy = ‘, pA [ (u.,-}- yig! ‘;: cosksx) dx
=5 pAlu sl ‘35’" k . sinkg + L‘%f . 72’5%{ 1+ (7177{/%1/%}?‘1" } . e (8)

In this calculation, using equation (6), the following relations may be used.

I, sin2kd _ AV
27" Ak {1 M (Al V)* + ks l'}' ()
Sln(ks -+ k, )l + Eil(ks - kr)l - 0' ........ (b)

Y ks — k.

In these equations both kg and %, satisfy equation (6) and 7 % s.
When the pressure at x rises by an amount 4p, the fluid of volume Adx is
comipressed by an amount A-dx*4p/K. Accordingly the work of compression is

‘/; " P(Adx/K)dp = (1/2)(A/K)pdx and the potential energy of the system is

f Ddx + 5 % Do

_ 1A oge s 1V : 2

=9 K5J, (/_.I(].s sin ksx) dx + 5K (%‘,qssmksl)

- Al < § Ayv. .y o,
T 4K >—‘°{1 "(Al/V) T+ ks } )

In this calculation, using equation (6), the following relations may be used.

I _sin2zd _Alp LAYV oy
A("'z 1% )+ Vsin® ksl {H @nvy = k;r} (©

A {kysinksl cos k;l — (k%] ks) cos ksl sin k,—l}{/’(ksS — k*) + Vsinkdsinkd = 0.---(d)

We assume that the loss of head is proportional to the velocity in the pipe. The
pressure drop is 2epvdxy between the distance dx, where 2¢ is a constant of propor-
tionality. As the quantity of flow is Aw, the loss of energy between dx is z.epAv"dx
per unit time. Then the dissipation function is

= %. jo' ,2spA'l-"-'(1x = zpAluy* + ,2_5%11’0 (]];“ sin ksl
L+ Al Ngsfrg ., AV
"ok 'k'?_{l @y T ) (10)

The generalized force from the blower may be determined as the following. When
one of the generalized co-ordinates ¢s varies by an amount dgs, the change of pres-
sure is 0p = dgssin kex from equation (5). The change of volume between x = &/
and x =17 and at the chamber is given by using (6) as follows:-

= 0gs

o [ ObAdx ., (3D)eV
0% = [ PET +g

JEl

A cos ksfl
N

As the pressure P acts at x = £/ by the blower, work done by the pressure P is Pé%B
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while one of the co-ordinates gs changes by an amount dgs. Then we can determine
generalized force @; by putting the work done equal to §sd¢s, thus:-

PAcos ksl
Q=" ()

As the characteristic curve of a blower may be represented by a straight line in a
small range of vibration of discharge, we can write

P =P+ pm(Vyery — ) = Py + pm (}; cos ksfl, e (12)
S

for the small amplitude of vibration in the vicinity of M shown in Fig. 4, where m
is constant. But m is no longer constant for the large am-
‘TA«P:‘ plitude of vibration and the discussion will be made later

\ for this case. Inserting equation (12) into (11) we obtain

pmA
ks KE

cos ksél cos k&L, -+ (11a)

_ PRA
Qs = PK cos ksél + k

- A
where 7 includes the case 7 = s. .

The equation of motion of the fluid column is obtained by
inserting (8), (9), (10), and (11a) into (7).

1
|
E
0 q&.n — U
Fig. 4.
s + 2ely — 2mlesas 08 kbl 1,07 cos sl + kia'as
» T

= 2ahas Py COS bsfl — deupKossin ksl e (13)

Here o5 is given by 1 - .2 ul

AV
{1+ @Al V) AV = e A e

'/

The magnitude of s is shown in Fig. 5 A I —
and it is between 1/ and 1/(21). =

4. Its solution » . I Q@

If we assume m is constant, equa-

. . . . . P00 2 0
tion (13) is a linear differential equa- a0 1 _AV_9._4 e810 4060‘ et

tion of second order and its solution is Fig. 5. _
the sum of a particular solution of it and the general solution of the equation, which
is the same as (13) except that the right-hand side is zero.

The particular solution of equation (13) is

qs = 29 Pycos k&l — ﬁ@!ﬁgi@ sin fgl.
S S
R ks*

The equation which is the same as (13) except that the right-hand side is zero has
the solution of the form ¢s = As¢" and inserting it to this we have

Il + AsZelh + 2mbsash COS kSl Y, 47 cos kel + dsksia® = 0.
» P
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Eliminating 2; we have the so-called “frequency equation” which determines /i as
follow:-

4= by by b+ | =0
by bss bsse -
bsy bss bsse -+

where, s and 7 being odd number,

bss = I* + 2(e — mas cos kst ) I + ksa,

bsy = —2mas Ilz—sh cos ks&l cos kyEl.
r

It is difficult to determine % from the above determinant whose constituents are
infinite in number. But if |e— moscos® ks#l| and |mos cos k2l cos k£l| are much
smaller compared with ke, we may neglect without serious error the second order
and more of smallness in the development of the determinant. It seems that Rs/ Ry
becomes very large when s> 7 But it may be easily seen that the development
contains no more ks/k, as the product of this-value becomes 1 in DsrDys.

Let 4,, 45, 4,- - - be the first minor of 4, and

4 = bydy + bisds + bysds + -0 = 0.

In this equation all the terms except &;,4; contain the second order or more of small-
ness and will be neglected. Accordingly the above equation can be written b4y = 0.
From this 4; =0 or 4, =0 is obtained. The same process is' repeated again to
4, = 0 and so on. Then we obtain finally in a general form as follows:—

h* — 2(mos cos® ksl — ) + ksa = 0.
This is the equation to determine % and we have
I = vs %= fws,
where
0s = k'@ — (moscos® ksfl — )2, ... (15)

and
Cvs=moscosthil — e eieeean. (16)

The general solution of equation (13) is

gs = e""(As cos wst + Bs sin wgt) + Ekg_s Py cos ksfl — %sin ksl
. S S

The pressure and the velocity in the pipe are given from equation (5) and the above
as follow:-

2/;75 Do cos ksl — 4%“,_?‘7% sin ksl} sin ke -~ (17)
s .

&)

b= 2 {e"sr(As cos wst + Besin mgt) 4+
)
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evst

V= U+ _%Z {(vsAs + wsBs) cos wst + (vsBs — wsAs) sin wst }cos ksx. ----(18)
Here As and Bs are constants to be determined from initial conditions.

It seems from equation (13) that the co-ordinates ¢s are not independent to cach
other but it is known from the above discussions that the degree of interaction of
the co-ordinates is so weak that all co-ordinates behave as if they are independent to
each others. And it is allowa.ble that all the terms except s =7 are neglected in
E(q,/kr) cos k&1 of equation (13).

We can see from equations (17) and (18) that the pressure and the velocity in the
pipe vibrate with the circular frequency s and the amplitudes of vibrations increase
with time when »s > 0, that is to say, the vibrations are self-excited when »s >> 0.

The value of Z(zas/ks)Po cos k&l sin ksx  in equation (17) represents zero at
0L x<L ¢l and Py at gl < x < I, and 2(4 eptty o5/ ks*) sin ksl sin ksx represents 2 epuo¥
between 0 < x < I, which is the pressure drop in the pipe due to loss. These are
easily seen from the following. We assume that a function f(x) may be developed in
the form f(x) = ;Aa sin ksx, where ks satisfies the conditions (6). Multiplying

sin kyx by both sides and integrating from 0 to ! we have
A1 7
ff(x) sin kyxdx + /(1) 5 Vsin bl = >,1As {j sin ksx sin kyxdx + -‘% sin ksl sin ksl}.
0

Using (7), (a) and (d) we obtain that the value of { } in the right-hand side of the
above equation is zero at 7= s and 1/(20s) at 7 = s. Accordingly we obtain

']
A =2 as{ [ £6) sin ksxds + 7 (D) 7‘{ sin kel } )

The afore-mentioned relations are at once obtained by using this equation. And we
see from equation (17) that the mean pressure in the pipe is shown by OABC in
Fig. 3

5. The surging
The condition of self-excitation of the fluid column is from the previous article
moscost ksl >e. e (19)

The value of ¢ may be estimated by referring Kundt’s experiment and the loss of
energy at the end of the pipe. But it is recommended that the correct value of =
should be determined by a direct experiment.

We can see from the above equation that if cos ks£l is zero or very small vibration
is not self-excited. This means that when the blower is attached near the node of
the vibration of velocity —that is, near the loop of the vibration of pressure.—such
a vibration would not be excited. Accordingly when the pipe line is closed at the
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immediate back of the blower at its discharge sice, the surging would not cccur.

As the value of g5 is proportional to 1/I, the surging would hardly cccur in a very
long pipe. This means that much energy is necessary for exciting a vibration in a
long pipe. The length of the pipe line should ke the sum of the actual length of the
pipe line and a certain equivalent length corresponding to the motion of fluid in a
blower.

The other conditicn of self-excitation is 22 > 0 and a2 should be larger than a cir-
tain limiting value. We can see frcm Fig. 4 that a2 is positive at the part of nega-
tive characteristic of a blower. Various methcds have been adopted for representing
the characteristic curves of blowers. But here we represent them by taking ¢ and
¢ as abscissa and ordinate, which are defined by the following equations.

AU O @« L

¢= oo = 807w s (20)
- P o

¢ a2 7295 on*D*’ @)

Here @ is the discharge in m?/s, P the total mancmetric pressure in kg/m?®, » revo-
lutions per minuite, D, b the outside diameter and breadth of imgeller in m respec-
tively, 2 the peripheral velocity of the imgeller in m/s and Q = b/D. The characte-
ristic curves represented in this way may be drawn approximately in a single curve
for the same types of blowers irrespective of its sizes, speed, and kinds of fluids'™. .

Let ¢, and ¢, be the values of ¢ and ¢ corresponding to @ = uA and P = P, res-
pectively. and the characteristic curve of a blower can be represented by the following
equation in the neighbourhood of M (see Fig. 6).

N
\ s oo
TR .
?Mk: Here f8 is a function of ¢, and ¢ — ¢o-for a characteristic
1 1
S l curve but it is allowable for small |¢ — ¢,| that S is
1 18
T Pl S constant. We have from equations (14), (20), and (21)
3] ]
] ]
! i
- m=0008333 A% 5. e (23)
% ¢ —9
Fig. 6. And we see that m is proportional to the diameter of the

pipe, speed of the blower, and {3, and inversly proportional to diameter of the impeller
and Q.

Assiduous efforts have been continued to design for preventing surging a blower
which has the characteristic of 8 < 0 at every points of discharge. But this kind of
blower has very poor efficiency and the characteristics of ordinary blowers have
always some range of >0 at the small value of ¢. When the working condition
of a blower is in this range, vibrations are apt to be excited. And if the diameter of
the pipe line is determined by the rule of @/A = constant, where  is the quatity of

(6) The effect of compressicn ratio must te taken into account when it is large.
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discharge of a blower at its normal running condition and @ cc 2D°(), we have
mosoc 0° DR/ e (24)

Accordingly severe vibrations of surging are liable to occur for high speed blowers or
high pressue blowers and it is reasonable that large and high speed blowers have
often made severe surgings. If the blower is of multistage, m cc zAnf/(QD), where 3
is the value per one stage.

If the vibration is produced and its amplitude grows large gradually, 2 is no more
constant but varies with the amplitude. As m becomes zero and negative at large
amplitude even if it is positive in the vicinity of its equilibrium position, damping force
acts there. So the amplitude of vibration does not exceed a cirtain value.

When the vibration of surging is very large it extends very often to the range of
negative discharge and we must investigate the characteristic curve of a blower at
negative discharge. We have had not too much of the experimental investigation of
the characteristic curves of blowers and pumps at their negative discharges, as far
as the writer is aware. Some of them are shown in Fig.7. The curve A is the cha-
racteristic curve per single stage of the

small multi-stage turbine pump which is \ L‘D""

investigated by R. Dziallas'” and has the " \ - 7}\'\\ -

impellers of exit angle B. = 90°. The \V svpu(eu,ddwm&)
curves B anb C are from Tabusi’s ex- L N \‘ 3

periment®™ which was carried out by ) C\%ﬂ

using the pump of D = 300mm and f. //\‘ —\1 D
= 30°. The curve B is the case fitted S 08

| i TKa.m\

with guide vanes of a small inlet angle
and C the case without guide vane. The

curves C lacks the parts at large ¢ 04
and the curve D is added for the sake

of .comparison, which is obtained from a e

nearly similar pump by T. Kasai®. It is 0

regrettable not to be able to add in this oo °°_°._.°"g§ e
figure the D. Thoma’s experiments®® for Fig. 7.

the lack of dimenssions of the impeller. But his experiments covered very wide
range of working condition and very useful.

6. The amplitude of surging
When we consider the vibration of surging only, there is no objection to put .the

(7) See (2).
(8) K. Tabusi, Kikai and Denki, Vol. 5, No. 12.

(9) T. Kasai, The Memoirs of the Faculty of Engineering, Kyushu Imperial University Vol. 8,
No. I, 1936.

(10) D. Thoma, Mitt. d. Hyd. Inst. d. T. H. Miinchen, H. 4.
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right-hand side of equation (13) to zero. And if the small quantities are ignored, all
the terms of >} except 7 = s may be neglected in the eqation, as previously stated.

Thus the equations of vibrative motion of fluid column is
Gs — 2(mos cos® ksfl — 2)gs + ksfa®qs = 0. ... - (25)

Multiplying ¢s and integrating we have
t .
(1/2) (35 + ksfa‘qs) = C + 2 f (mas cos® kel — &)gsidt,
0

where C is a cnstant of integration and is determined from the energy of vibration
at £ = 0. If the second term of the right-hand side in the above equation increases
with time, the amplitude grows up, and if it decreases with time, the amplitude fall
off gradually and vibratory motions stop finally when the right-hand side of the
above equation becomes zero. Accordingly if the last integral of the above equation
is zero when integrating over one period, the vibration is sustained with the same
amplitude. This is also true for the case of varying m unless the right-hand side of
the equation becomes zero in the course of integration. Therefore we can determine
the amplitude of surging by the following equation:-

‘/; ’ ( Mmas COS* kefl — ¢ )ég‘-’dt = 0. L (26)

Here t is the period of vibration. If m is a function of @s, the vibration is non-
harmonic but if m0scos? ksl — ¢ is small in comparison with ksa@, the vibration has
very much resemblance to the harmonic, and it is allowable to assume a harmonic
vibration in this case.

It is not "impossible but very tedious to represent s by a function of §s by means
of experimental formula, but it is rather convenient to determine the amplitude by
way of graphical integration, using P-Q curve or ¢-¢ curve directly.

Now we have from (26)

§ (moscos® kefl — e)gsdg = 0. ..., (262a)

Here f means integration over one complete oscillation. If the vibration is har-
monic and one mode of vibration occurs only", we have

gs = @ssinwst, ... (27)

where Qs is the amplitude of vibration which is to be determined.
From equation (27) we obtain

gs/os = Qscoswst. ... (28)
Referring to (5), we have
V=V —uy = 'kg—sK cosksl. .. (29)

(11) When the many modes of vibrations start together, the vibrations do not reach the stationary
states unless there is the least common multiple in their periods.
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Here we put ws = ksa.

Putting
= ”.?D.: I_(ﬂs & _ nD*Q Ko
H= g5qs ~g 95€0S kstl, G = 6.57536?5“]:;?1 , eeeeeees (30)
we have ~
g | o) AT
ZZ/G:?_@): W—-—O;I—,ﬁsgl&=¢"¢’u,
e—as_ =/e Q—D——I?-Q ( _ ) } ........ (31)
H n Agcost kgl ¥ T

from (20), (21), (22), (23), and (29). By using these relations we can determine the
amplitude of surging from ¢-¢ curve of the blower. Now let us draw, in Fig. 8, the
horizontal line MA through M, which is on the ¢-¢ curve and is the point corres-
ponding to ¢, and ¢ Next draw MB which

represents the third of equation (31), that is ]
efs/H, and the difference between the ¢-¢ - i .
curve and MB is 1/H of the integrand of \\ 5 // -5 _,\\
equation (26a). But the integration (262a) is 7 i = \\
with ¢ and so we must transform this curve e N
to the one which is taken g as abscissa. If =
we read from M the length along MA by } ! o4 e
using the scale of ¢, we see from the first -6 -z 0 | o2 004 Joos  qo8
of equation (31) that it represents (ds/ws)/G. :
The relation between §s/ws and gs is shown i {')\‘n'
in equations (28) and (27). Now take MA (/ ¥ ,,}
as {s/os-axis and M'N as gs-axis perpendi- N’

Fig. 8.

cular to M'A’. Assuming appropriate value
of amplitude @s and describing a semi-circle with its centre M’ and radius Qs/G, we
can easily transform the point F on the §s/ws-axis to the corresponding point /2’ on
the gs-axis as shown in the figure. The scale of the gs-axis is 1/G as well as the
l‘Is/ws;aXiS. :

Taking E'D' equal to ED, we finally obtain the D'-curve by repeating the same
method. The transformation of the curve is enough for the semi-circle as the other
is completely symmeztrical to the one. The integration of (26a) is performed by
measuring the area enclossd with the D' curve. If the area is zero, the assumed
Qs corresponds to the amplitude of sustained vibration. If the area be not zero, the
same method will be repeated by assuming Qsa little large or smaller in accordance
with a positive or negative value of the area and finally we can obtain the ampli-

tude of sustained vibration by interpolation.
By using @ thus found the amplitudes of vibration of pressure and velocity are

: Qsws . Qﬁ
Qssin ksx  and hE cos ks¥ = b cos ksx,
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at x of the pipe line respectively.

31

If the values of @s are found for the combinations of several points of A and
various inclinations of the line MB, we can draw a convenient graph from which

the amplitude of surging may immediately be found for the combinations of a

similar blower at any working conditions and any pipe lines.

Fig. 9 shows an ex-

ample of this. Ilere the B- 057
curve of Fig.7 is used as the

characteristic curve of a 06 \\
blower and as the curve lacks 005

some necessary parts the o \\
004

dotted curve is extended ap-

AN

- - . g q
propriately as shown in Fig.  Z[qps
- o
7. We can see from the figure = °

N

J

that the amplitude of surging 002 \ \\ N
is somewhat larger when the 1 w01 %= 004 \\
small quantity of discharge is ' \ \ \
mac.ie than when no discharge. 0 05 —ap 5, 2 25 3 5
Fig. 10 shows the characte- T CM AGe%td
Fig. 9.

ristic curve of the blower of

D = 300mm, Q = 0.05 and z = 10000 r.p.m. for p = 0.142 kgs*/m’, whose ¢-¢ curve
is the same as the B curve of Fig. 7. The pipe of length 5 m and diameter 125 mm

is fitted te it. The suction-side of the
pipe-is open and a chamber of Al/V =1

i/ fitted to the other end of the pipe. .

The position of the blower is given by
& =0.1. When the blower runs at the
condition of no discharge, the surging
may occur and its amplitude can be de-
termined from the curve shown by ¢, =0
in Fig.9. Variations of pressure and
discharge are shown in Fig. 10 at the po-
sition of blower (full line) and of air
chamber (dotted line) for s=1,3,5,and
7. The vibration for s =9 may not
occur as cos ks&l is small. The direction
of change of pressure and discharge are
all in counter.clockwise as well as s =1,
as shown by arrows, but when
cos ksx and sin ksx are different in sign
the direction of change is clock-wise.
If the position of blower is & = 0.5 the
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vibrations of s = 3 and 5 may not occur.
When the P-Q curve of the blower is used, the similar method may be adopted

for finding the amplitude of surging. This is clearly understood by comparing fhe
following equations with (31).

ds _ K _
“ws  akKcos k¢l (Q = Q).

mascosthstlis = &ﬁ’iﬁ‘fﬂ (P=PR). Y e (32)

. eKws _
&qs = m— (Q @).

7. Conclusion

When a blower attached to a pipe line works at a point of negative characteristic,
the vibrations of each mode will be excited on the fluid column in the pipe. The
vibrations is self-excited severly in proportions to the square of the peripheral velo-
city of the impeller and to the value of 3 (see equation (22)). But when the blower
is situated near the loop of the vibration of the pressure or the node of the vibra-
tion of velocity, the vibrations may not be excited. And the vibrations is less excited
for a long pipe line and a large coefficient of damping.

When the amplitude of vibration becomes large the self-excitation becomes weak
and negative ultimately at the parts of large displacement owing to the characteristic
of the blower. So the amplitude does not grow up over a certain value snd the
vibration is sustained with this amplitude. The amplitude of sustained vibration
can be determined graphically from the characteristic curve of the blower including
the part of negative discharge. And if the amplitude is represented with no dimen-
sion. as shown in Fig. 9, we can find easily from the figure the amlitudes of sus-
tained vibrations of various modes for the combination of blower with various sizes
and speed and pipe lines, provided the blowers are similar.





