EFFECTS OF ALTITUDES ON THE COOLING CHARACTERISTICS
OF AIR-COOLED AERO-ENGINES

Axira KOBAYASHI
Department of Mechanical Engineering

(Received April 30th, 1949)

Contents

. Introduction

. Heat Transfer from Finned Cylinder

- Power Required for Air Cooling

. Tokyo Standard Atmosphere

. Reduction to the Running Conditions in the Standard Atmosphere

. Construction of Diagrams and their Applications

- Comparison of Cooling Characteristics between the Three Cases, viz.,
22z = constant, Ty = constant and AP. = constant.

8. Comparison between the Calculated Results and the Experimental

Data.
9. Résumé.

SO O s s Do

1. Introduction

.

The cooling characteristics, such as the temperature of finned cylinders, the power
required for air-cooling etc., can be determined by the wind-tunnel experiments at
ground level. Starting from the data thus obtained, we may deduce the variations
of these items when an aircraft fitted with the engines under question flies at higher
altitudes. The object of this analytical study is to derive some general formulae
relating to these factors. The diagrams given at the end of this paper will furnish
to the practical designers some facilities in computing such problems here treated.
The numerical calculations have been based upon the “ Tokyo Standard Atmosphere”
as well as the so-called * International Standard Atmosphere.” The former is the
yearly mean conditions of the atmosphere observed at Tateno near Tokyo. These
diagrams can be applied to cylinder heads with ordinary cast fins and also with
sheet metal fins cast in the cylinder heads.

2. Heat Transfer from Finned Cylinder

Let T;,°K denote the mean absolute temperature of the outside surface of the cy-
linder to which the fins are attached and ¥,,°K the mean absolute temperature of
the cooling air passing around the cylinder. Then the heat dissipation is given by

Q = U'F(Tm - 191)1) kcal/h
where F = the outside area of the cylinder, m?,
U = the surface coefficient of *heat transfer based upon the outside area F of

the cylinder to which the fins are attached, kcal/m*h°C.
Then the relation between the cooling heats @, near the ground surface and Q.
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at a height of z meters is given by
_Qz — _[_Iz . 11_"2 - 197712.

Qo__ Un; Tmo - 57710 ........ (a)
Next, the temperature efficiency of the cooling surface can be defined by
= 79: —._191 . .
T T =9, (b)

where ?J; and J; are the absolute temperature of the cooling air at the entry and
the exit of the passage between the cylinder fins.

Then the temperature rise 4¢ of the cooling air can be expressed by the following
relation:

A'l?=l92—'191=7I(Tm""191)=77(7"‘1)l9h """" (c)

where 7 may be called factor of cylinder temperature, as defined by
' y=Tu/d. e (d)

Assuming a linear law of temperature rise of the cooling air stream, the mean
temperature of the cooling air may be expressed by
Im=Lt(h+9) =0 —=s1+3m)dh. e (e)
Combining Eq. (d) with (e), we get the mean temperature difference between the
hot cylinder surface and the cooling air as follows: .
T — Om= (1 — (7 — 1) .
Thus. the height factor of the mean temperature difference is expressed by
Tz = Ome _ L= 3% 72— 1 D (£)
T — P 1—-387 n-— 1
The-relation between the local heat transfer coefficient « and
the equivalent heat transfer coefficient U for the finned surface
with rectangular section, as shown Fig.1. may be expressed by
_a 2 2a YL
U= '§+t{J“2_a tanh /-3 (6+ 5 )+s}

where s = free space between the fins, m,
t = thickness of fins, m,
b = height of fins. m,
% = thermal conductivity of the finned metal cylinder, kcal/mh°C.
Then the height factor of the equivalent heat transfer coefficient is given by
0+5
%:_= ( %_:_) L e (h)

By the law of similarity in the heat transfer phenomena, we can express the Nus- -

selt numder Nz = ‘f')d'

as a function of the Pécelet number Pé = ?‘;‘i in the following
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form:

where d = hydraulic diameter, m,
# = air velocity, m/s.

a= ‘Cﬁ? = thermometric conductivity of the cooling air, m/h,

v = specific weight of air, kg/m?,
C» = specific heat at constant pressure of air, kcal/kg°C.
On the other hand, the time-rate of flow of the cooling air is given by
- G =7.u-S kg/s,
where S = sectional area for the air stream, m®
Thus, we see that
u _Cpreu_ Cp G

a = A

=-Feg-
Since the specific heat of the atmospheric air is given by

Loz 1 0,000,000,11 .
Co
We may assume Cjp: = Cy. practically constant at all heights.
Then the height factor for the local heat transfer coefficient can be expressed by

the foIlowing relation:
Xz _ _i?_ = . _Gz_ ........ i
~-Otwo ( Ao ) ) ( Go ) : : (J)

The thermal conductivity of air at an absolute temperature T°K is given by

2 =0.001,67 1.+ 0.000,194 T VT ECT™, .. (k)
14 117
+ ==L
- T
In our case, the temperature 7 may be the mean temperature between the cooling
air and the hot surface. Thus, combining Eq. (d) with (e), we get
T=:1§(Tm+79m)=?‘?((1—51.i77)+(1+5}77)7’}?91- )
Put this relation into Eq. (k), then we get the height factor for the thermal con-
ductivity of the cooling air as follows:
e (L) {4 QI Dy
Ao T (L—3§%)+ (14 37)7 Do *
- Substituting Eq. (1), (j), (k) and (f) into (a), we obtain the expression for the
height factor of the heat dissipation d

Qz _ (1 - %7;2) + (1 + 21, 7,)72 29]2 }0-4(1-711) . ( Gz )o.sm . 1 =1 .

Q L T=17)+Txi%)n Do Go

The heat dissipation @ from the cylinder surface must be equal to the increase
~of heat content of the cooling air. This will be proportional to the mass flow G
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kg/s multiplied by the temperature rise 47 of the cooling air. Thus, we have
Q = 3,600 Cp+ G+ 49 kcal/h.
Then the height factor for the cooling heat becomes
Q _G. 43 _G: M 72=1 P
Q G, 49, Go n—1 o’
The values of the height factors for the heat dissipation given by Ep. (1a) and
(1b) must be equal to each other at any instant. Equating the right-hand sides of

these equations, we get the following relation for the quantity of air flow G, in terms
of the temperature efficiency 7, the cylmder temperature factor 7 and the inlet tem-

perature ¥, of the cooling air.
04(1=m)

Ge _ [(L=37)+ (14870 ;9&} oo | [ 1)1 =3 }r%— ........ @)
Go T =&y + (T +§7%)7 o 1/ — 3 )

The equation, thus obtained, shows the direct relation of the temperature #°K and

quantity G kg/s of the cooling air to its temperature rise and the cylinder tempera-
ture, these being expressed by Eq. (c) and (d), respectively.

Next, we proceed to derive a similar expression as Eq. (2) in terms of the tempe-
rature rise factor of the cooling air. This factor may be defined by

& =95, e (m)
Then the temperature rise of the cooling air is
A =9 —Hh=(E-D%. e (n)
Equating the right-hand side of Eq. (n) to that of (c), we get the following rela-
tion:
Nr—1)=§-1 or r=1+ 21 L (3)

7

Substitute this relation in Eq. (1b) and (2). and we get the following two equa-
tions:

0,4(1-m)

GZ (1 b :)'777_) + (1/77; - 1‘)(772 + 5z - l) '(913 }wl_:-'lf’m

G U@ =1m) + (1)t —= N0+ & —1) " e

11, — } }1—%—
1/7 — &

According to the results of experimental researches on the aero-engines by several
authorities, we may take m = 0.75. Then the values of the exponents become

0.4(1L—m) _ 16 and L

T—05m ~ I o5m - 8-

If @./Q =1, then the mean temperature of the finned cylinder #n = Twm — 273°C
is given by

tm = 01: + (tmo - 010) 772 %:_ C eeeesens (6)

where 0, = ¥, — 273 = initial temperature of cooling air at the entry.
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3. Power Required for Air Cooling

The principle of conservation of energy a;Sp]ied to the flowing air between section
1 and 2 shown in Fig. 2 gives '

L+Ag—;+a=IQ+A;—‘§- keal/kg, — eeeennn. (2)

where I; and 7, stand for the enthalpy and #, and #: for the velocity of cooling air
just before and just after the engine cylin-
der, respectively. The heat ¢ = Q/G keal/kg
denotes the heat given to the unit mass of
cooling air from the hot cylinder surface.

——————r

3
i
]
'
1
.
I
|

On the other hand, the general relation
for the heat supplied to the air is

d(q + gr) = dI — AvdP.

By integration, we get

L-L=@+¢)+A[ 0P, -.-(b)
1

where g, denotes the friction heat corres-
ponding to the work done W, against the
frictional’ resistance. Thus

@y = AWy keal/kg,  eeeea... ()
where A stands for heat equivalent of mechanical work. Combining Eq. (a), (b)

and (c), we obtain ‘ .
[Goap=w,+ 229 qigg. L (@
7, &
For the sake of simplicity, we may put practically as
P
,l vdP = Y(v, + 0)dP, . (e)

where 4P = P, — P. kg/m® = pressure drop between the sections 1 and 2, as shown
in Fig. 2. '
The characteristic equation for the cooling air as an ideal gas will give the fol-

lowing relations:
P, = R, at section 1, ‘

Pg?}g = R 19 e 7 v 2'
Hence, we have
b B —dP .
Uy P 1, '191 '
In the case of aero-engines, the value of the ratio 4P/P; hardly exceed over 2 %,
which may be neglected as compared with unity. Thus, we get

V2 ,-___Z?’z_‘_ -1 R
o Sg=E=1-n4r, ()
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The mean specific volume of the cooling air is, therefore,
o+ o) =0l =37+3m), e ()
which enables us to evaluate the value of the left-hand side of Eq. (d) as follows:
Py ’
SPW vdP = (1 — }7 + § 77)v;4P mkg/kg.
Next, the equation of continuity for the air stream between the sections 1 and 2
gives

I

5

I
9]
®
~
@

v, Vs
which gives the equation for the velocity ratio of the air stream at the inlet and
exit

w S, 0

Uy S v’
where the sectional areas S, and S: for the air stream at the sections 1 and 2 may
be assumed to be equal to each other. In such a case, we have

U _ Yo g gy, eeeseees
“ o 1-74%7. . (h)

Thus, the second term in the right-hand side of Eq. -(d) becomes
e —wt _ e 1) .2
o = {(1 7 + 17) 1} =
=2‘f/(r—1)(1—-5n—i—.3,7?7‘)-»22ﬂ§ ------- (i)
which indicates the increase of kinetic energy of the cooling air.
Lastly, the work done W; against the frictional resistance is to be considered. The
analogy between heat transfer and skin friction, originally given by Reynolds and
afterwards developed by Prandtl gives the following relation:

Heat dissipation by convection _ @+Cy(Tin — Om) |, 1
“Resisting force by friction Um T+¢Pr-1°

In our case, the heat transfer is

P - ‘dF ( T_m”‘_’l?]y)
Heat dissipated = 3,600 kcal/s.
On the other hand, the resisting force is expressed by the product of work done
W, mkg/kg and the mass flow G kg/s divided by the mean velocity of air stream

#m m/s. Thus

Resisting force = G—z;m' kg.
m

Substituting these relations into the analogy epuation above mentioned, we obtain

2 Ry 1 % S S—
3,GOOGW1‘ - Zlm2 1+(‘9(Pr_l).
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Next. consider the heat exchange between the hot gas at rest and the cold air

stream, as shown in Fig. 3. The temperature of the hot gas remains constant at T,

while the temperature of the cold air varies

| T=consh J%2 : from ¢, at the entry and to J: at the exit. In

I such a case, the ratio of the temperature dffer-

< Gj%_’ % ‘\d' :'jz ence between the two fluids at the inlet and
Tm-s%  the outlet is expressed by following relation:

in which C, stands for the specific heat at con-
stant pressure of the cooling air. The heat
. transmission coefficient « is given by the rela-

tion as
_ 1 o 1

1
T T TR T

Fig. 3.

in ordinary conception. If the heat transfer coefficient at the gas side a. increases
infinitely large, we have 1/a. = 0 and the temperation of the partition wall will be-
come equal to the gas temperature T Furthermore, if the thickness of the parti-
tion wall ¢ tends to zero, the value of 0/k will become zero and the surface temp-
erature of the partition wall at the air side will be equal to 7). This is the case

of air-cooled cylinder under question. Thus we have

. _Tm —‘75;'4 — e'?ﬁ%‘i@

T?Il - 191 :

The temperature efficiency is. therefore,

aF
e — 1 — ¢ 3800G-T,

N = - —_— =

Tin —

or 1 aF
log: 1775 = wm06c;-
By substitution of Eq. (k) in (j), we get the requived expression of the work done
W, mkg/kg against the frictional resistanck in terms of the temperature efficiency
7 as follows:

| 1
Wy = g';g{ 1+ ¢(Pr—1) }log. =

= ~% (1 -3+ A-nr)'1§'10g,o
where K = 2 x 2.3026 {1 + o(Pr—1)}
The Prandtl number Pr for air is equal to 0.725, which is practically constant,

The factor ¢ is given by

1
1-9’

© =14 Pr-015.Re-01 e (m)
The calculated values of ¢ and K are as follows:
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For the flow of cooling air through the space bet-
ween the cylinder fins, the Reynolds Number Re

2‘3‘;39‘ “ may vary from 10° to 104 Thus, we may take the

Re ; 10° ! 104 i 105

0.5915
3.856

0.7447
3.662

@
K

mean value K = 3.76

Before proceeding fﬁrther, we may check the results thus obtained.

Take the temperature efficiency 7 = 0.25 which is the case of ordinary cast-finned
cylinder head of light alloy, the mean absolute temperature of cylinder head Tm
— 273 + 190°K and the absolute temperature of the cooling air at the entry @ = 273
+ 15°K, then we have '

273 +190 _ 1.608.

TETo13 415
Substituting these values in Eq. (1) and (i), we get
- . et — oy’
Wy = 0.579 2g and 58 = 0.327 25"
and Increase in kinetic energy _ 0327 _ 1

Work done against resistance, 0579 ~ 1768
The result of this calculation shows that, in computing the work done required for
air cooling, both the loss of head due to the increase of kinetic energy and the loss
of head due to the skin friction are to be taken into account, and neither of which
is to be neglected.
Substitute the relations given by Eq. (e), (g), (i) and (1) in Eq. (d), and we get
the expression for the pressure drop as follows:

AP = T,%{(l — 17 + 1)K logu 1{—-,5 +27(r — 1)}

o B L 1 - :
=Tigg {2(5 DKlogwy— + 2(¢ 1)} kg/m® or mm Ag.

And, the height factor for the pressure drop becomes

o (L= 37+ 377 Klogu = + 2 7a(7: = 1)

4P, _ Tz (ﬂ)

Zl?o_ T : Uso

(1 = 3 Mot § 7o) K loguo + 270(70 — 1)

1
1-="%

1
_ Te, (-u’_z)z 56— 1)K loguw T———TOZ +2(8; - 1) .

T U % (50 — I)Iflogm T:%—v—; + 2 (50 - 1)

The horse power /P theoretically required to force the cooling air through the
finned space around the cylinder is next to be computed. Since the work done by
the expansion of 1 kg of flowing air is f vdP mkg/kg, the corresponding horse power
for the mass flow G kg/s will be

_ 1 _1 _ 1 fenvans
EPe = vadP_w,TS—va-AP_,i—s— Ve dP, 9)
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where V;; = mean volume of air flow in m/s Hence, the height factor for the horse

power is

P - sz 4P, B (n)
HDCO I,ﬂ.m APO

The mean volume V, is given by the product of thé mean specific volume v,
=3 (v + v:) m’/kg and the mass flow G kg/s. Thus
1 1
m=3 (040G = (1 =7+ 10,6 = L—%L—”lc = (1= 37+ 377)V, m¥/s,
1

S e (0)
where V; m’/s stands for the volume of air passing through the section 1 (Fig. 2)
per second. Hence, the height factor for the volume of cooling air becomes

Ve e _ G: | (102} e
Vio Uy Gy ( 70 ) ? (10)
and Vme _ Vie 1=8Td 3% Vie &4+1 (p)
) Vino Vi = &%+ § M7, Vie o &-+1°
By putting these relations in Eq. (n), we get
ez _ iz 1=8% 4 5% | AP,
g 230} 1 —3n4+1 5 N7 4P
= Y2 Sl 4P (11)

up &So+1 4P,

4. Tokyo Standard Atmosphere

According .to the meteorological observations at Tateno near Tokyo, the mean at-
moshperic temperature in November, as shown in Diagram F, coincides with that of
the International Standard Atmosphere up to the height of 11 km. From the height
of 11 km to 17 km, the atmospheric temperature decreases at the rate of 2.25°C per
km, whereas, in the case of the International Standard Atmosphere, it is considered
to remain constant at —56.5°C. The same inclination of the temperaturé drop has
been observed through the whole year. Thus, we propose the Tokyo Standard At-
mosphere, in which the variation of the atmospheric temperature is ‘given by the
following two linear laws

Pz = %9 — 0.006,5 2 ° for 0=2z<11,000m,
2 = %o — 56.50 — 0. 002,25 (2 —11,000) °K for 11,000 &£ z < 17,000 m,
where 2} = atmospheric temperature at the ground level, °K = 288°K
z = height, m.

Consider a vertical column of air at an altitude of z m. The pressure at any level

is due to the weight of the air column above, then we have

dP = — g;)z_ i deeeeeen (a)

where P = pressure in kg/m® or mm Aq,
v = specific volume, m?/kg.
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The polytropic law % = constant holds good’ in the atmospheric condition.
By differentiating this equation, we get
' vdP+nPdv =0. e (b)
On the other hand we have the characteristic equation for the atmospheric air as
a perfect gas '
Py = R.
By differentiation, we get ‘
‘ vdP + Pdv = R&9. e ()
Elliminating dv between Eq. (b) and (c), we obtain
nRdd = (n — 1)vdP,
which gives the value of the specific volume 2.
Substitute the relation thus obtained in Eq. (a), then we get

__nm—1_ 1
dg = " 7 dz,

which gives dy integration

19?_=190_””“1._é_z, ........ (d)
Eq. (d) being identical with the linear laws given above, we have the following re-
lations:
21,1 00065 for 0&z<L1L000m,

n—-1_ 1 —0.00225 f 11,000 < z = 17.000
¢ p 300022 for 110M &z LA

The value of the gas constant for air is R = 29.269,

and we get
n =123 and ' = 1L070.

The value of 7' thus obtained being nearly equal to unity, we may assume an iso-
thermal change instead of a polytropic change. But, as far as the cooling characteris-
tics are concerned, the temperature drop of atmospheric air with altitudes plays a

remarkable part.
Be that as it may, we proceed to compute the relative density of atmospheric air
as follows: Let 7. and 7y be the specific density at the altitudes z m and 11,000 m,

respectively. Then we have
. 1

Tz _ (19_1_ ) P!

_ Tu Pu '

The relative density becomes

. 1
Tz _ Tu Tz _ Tn (192)37{71

To _—7‘0- Tu - ﬂ— o

The International Standard Atmosphere gives

- z -11,000
Te RE:E .e 216,523,269

To To
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The following table shows the results of calculations.

Heihgt ‘{ International Std. Atmos. i Tokyo Std. Atmos.
zm | , - - . : .
| Temp. °C iRelatl;::/ Yc}]enslty,i Temp. °C Relatl;rze/ ;‘loensny
11000 | —5650 0.2071 —56.50 0.2071
12,000 E ” 0.2538 —58.75 0.2562
13,000 4 ; 0.2167 —61.00 0.2206
14,000 ‘ v 0assl —63.25 0.1896
15,000 | " 0.1581 —65.50 0.1626
16,000 l " 0.1351 : —67.75 0.1394
17,000 | " 0.1154 —70.00 0.1192

Thus, we find little difference in the density of the atmospheric air, but some dif-
ference in the atmespheric temperature effects so much on the cooling characteristics,
e.g., the mass flow of the air, the horse power required for cooling, heat dissfpa~

tion etc.
5. Reduction to the Running Conditions in the Standard Atmosphere

The foregoing theories can be applied with facilities to the practical problems by
graphical solutions. For example, consider &./@Q-z diagrams in curves correspond-
ing to constant values of 7, 7, £ or ¢ It is repuired to find the value (Q./@;)’ cor-
responding to the actual running conditions, 7 + d%, » + dr and &+ d or 7+ d7,
&+ dé and ¢ + dd. In such a case, take, by interpolations, the values (@./@)n.dn,
(Q2/@0)rsdrs (Qz/@)sraz and (Q./Q)s+as and substitute them in the following rela-
tions. Then we will have the required value of (@./@:)’.

(8: )'= (_gf)wd'z + (_g:—)r-uir + (%)#ﬁw -2

!
. ' (_g_:_) - (%)Md’z T (%f)s+d= + (‘gf)gla -2.

The diagrams given at the end of this paper, have been prepared for the case
Q./@ = 1, i.e., the heat dissipation remains constant at all heights. If we confine
ourselves to such cases, the reduction procedure will become much simpler.

First of all, the observed values from the actual engine test at the ground level
must be reduced to the standard atmospheric conditions. The following notations
are used to distinguish the reduced values from the observed ones.

|

Running condition Ot‘iﬁﬁgd ; R:S?lgesd
Atmos. press. mm Hg i 760
Atmos. temp. °K ' ho = 288
Specific weight, kg/m?* 710' yio = 1,2249
Heat dissipation, kcal/h Q' Q
Temp. efficiency 70’ 70
Temp. rise factor & &
Cylinder temp. factor 7o' 70
Cooling air inlet vel,, m/s 230" w0«
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In many cases, it will be required to reduce the observed data obtained from the
actual engine test at any given atmospheric conditions to the corresponding values
at the standard atmospheric conditions. In such a case, it will be quite natural to
assume @//@, = 1 and 2, /1w = 1. With these assumptions, we have from Eq. (4).

Tl 8 =1, Sl _
710 S —1 o )

On the other hand, the characteristic equation for the perfect gas, will give the
following relation:

nl . Od _
T Yo 760 °

Put this relation into Eq. (a), then we obtain ‘
S —1_ 760 B
=1 | (b)
which gives the value of & at the standard atmospheric condition.
Combining Eq. (4) with (5), we get

B, 288 _r(1—3m) + (U0 4+ D & =1) 12_.97}°-16 (1 - 5;}"6
760 g T VA A D& =1 Ju o

1/ — §

which gives the unknown quantity of 7.

Diagram E enables us to determine the value of .7, by graphical solution. Take,
for example, the case of an engine tested under the atmospheric conditions of 790
mm Hg and 35°C. As the results of the test, we have, say, & = 1.120 and 7, = 0.25.
What would be the corresponding values &, and 7, under the conditions 760 mm Hg
and 15°C?

To solve this problem, we proceed as follows: TFind the points A and B on the
horizontal axis corresponding to 760 mm and 790 mm Hg, respectively. On the ver-
tical axis lies a fixed point P. The length OP is equal to OA. Connect the points
P and A and also P and B.

Next, take the length OP to be equal to (& — 1). Draw two straight lines passing
through p: one parallel to PA and the other parallel to PB. The two points of in-
tersection of these two straight lines with the horizontal axis being a and b, respec-
tively, we see that the length oa is equal to (&7 — 1) and ob to (& —1). Thisis no
more than the graphical solution of Eq. (b). The result of the solution is & = 1.125.
in our case. }

Next, take the logarithms of the both sides of Eq. (12), then we get

log 7(M, &) = log /(%5 , &7 ) — log(R/760) — (1 +0.16) 1og(288/d«"), -+~ (12')
where . f(Mf0) = {(1 = 37%) + (37 + ) (o + &0 — 1)} (1/% = 5™,
and S5, &) = {1 = 3720) + @/2 + 3) (% + & — D)0 (/1 — )™

The curve corresponding to a certain constant value of 7, indicates the value of
f (%, %)) which varies with 7, and &.  Thus, the point ¢ indicates 7/ = 0.25 and &’
= 1,120, which is the intersection of the curve 7, = 0.25 = constant and the
vertical line & = 1.120 = constant. '
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The two curves on the upper part of Diagram E represent the terms log (R/760)
and (1 -+ 0.16) log (288/:9,), respectively. The lengths cd and de correspond to the
amounts of correction for the atmospheric pressure of 790 mm Hg and temperature
39°C.

Starting from the point ¢ above plotted, take the length +cd on the elongation
of the vertical bc. Next, take the length de downwards. Passing through the point
e, thus plotted, draw a straight line ef parallel to the horizontal axis, intersecting at
f with the vertical passing through the point a, which represents 2, = 1.125.

From the position of the point f on the diagram, we can find the value 7, = 0.244
corresponding to the point f, which may be determined by interpolation.

Finally, the value of 7, is determined by the relation:

To(rn —1) =&, —1,
which gives 7, = 1.512, whereas 7] = 1.480. The mean cylinder temperature is given
by
by = 288 7y — 273 = 162.5°C. at 760 mm Hg and 15°C,
and by = (273 + 39) 72/ — 278 = 188.8°C at 790 mm Hg and 39°C.

6. Construction of Diagrams and their Applications

In order to avoid complicated calculations, some diagrams have been prepared for
graphical solutions. Practical designers will find much facilities in computing the
problems concerning to the air-cooling of the aero-engines at higher altitudes. All
curves in full lines correspond to Tokyo Standard Atmosphere and those in dotted
lines correspond to the stratosphere, the temperature of which being constant at
— 56.5°C.

The procedure of the construction of these diagrams is to be here explained.
1) Engine test at ground level
In order to find the cooling characteristics of an engine under question at higher
altitudes, it must be, first of all, tested in a wind-tunnel under the atmospheric con-
ditions at the ground level. The atmospheric conditions need not be the same as
those of the Standard Atmosphere. In such cases, the observed values can be re-
duced to those under the Standard Atmosphere.
At any rate, the items to be observed are as follows:
a) Inlet temperature of the cooling air = ¢,/°K,
b) Outlet ” vz 4 7 = 94 °K,
Temperature rise of the cooling air = ' — 9/ = 4y,
Temperature rise factor = &, = %/ [,

¢) Mean surface temperature of the cylinder = T,/ °K,
Cylinder temperature factor = 70 = Tud /91,
Temperature efficiency = 7 = (' — ')/ (Tond =),

d) Mass flow of the cooling air = G{ kg/s,

Volume of the cooling air at the inlet = V, = vy’+Gy m?/s,
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where v,/ = specific volume of the cooling air at the entry.
Heat dissipation = @, =3,600G (/+Cp+ 44/ kcal/h,
where Cp = 0.240 kcal/kg °C.
e) Pressure drop at the bafile plates = 4P/ mm Aq or kg/m®.
The inlet velocity of the cooling air ui, can be determined by substituting the
values of 7/, 7/ and 4P/ or %/, &' and 4F/ above obtained in Eq. (7).
The cooling resistance horse power = H¢
= —715‘(1 - 37 + %"?o'?’o')vl'u'co' .
2) Cooling characteristics reduced to the Standard Atmosphere
It is most probable in actual case to assume @, = @/ and wuyp = /. Starting with
these assumptions, we can determine the valves of 7, 7, and &, under the Standard
Atmosphere by the graphical methods explained before. Then the cooling charac-
teristics reduced to the Standard Atmosphere can be obtained as follows:
a) Mass flow of the cooling air = Gy kg/s

We have :
F = 288°K, Fop = 288 &q, 499 = P — Py = 288 (& — 1),

Qo = Qi = 3,600 Go+Cp+ 4y keal/h,
which gives the value of Go.
b) Pressure drop = 4P, mm Aq or kg/m?®
Eq. (8) will give the following relation which enables us to determine the value of

4P, 4P, Tw . (&0 DElog (1/(1 =) +2 (5 = 1)

TP T 1 1+ DEloge (1/(L =) +2E =17
where 7, and T, are the specific weights of the atmospheric air corresponding to the
specifiic volume v,/ and v, respectively.
¢) Power required for air-cooling = e
The relation given by Eq. (11) enables us to determine the value of H? as fol-

lows:
f_Pco — Eﬂ"" 1 APn

P~ & +1 4P
3) Cooling characteristics at higher levels

~ The cooling characteristics, viz., 7, and &, at B
higher altitudes can be determined graphically by \\

A
the principle of interpolation as shown in Fig. 4. l PR
The outlet temperature of the cooling air, the : ‘l \
mean cylinder temperature etc. will be then ob- 03 '\ T ‘A
tained by the following relations: _PN |
Paz = Ez”l?lz, To - ‘\\:
Tz = Vzothz OF = the + -AW& . 025 \;
z ' > Abttde
Other items will be found directly from the dia- Fig. 4.

grams, the construction of which is explained in
the following article.
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4) Construction of the diagrams

All diagrams given at the end of this paper have been constructed on the condi-
tion Q./@Q, = 1. .

a) When the outlet temperaure of the cooling air remains constant at all heights,
ie., P = Fy.

In this case, the value of 2. = ../, = ¥ /th: can be determined, first of all.

Substitute the relation ©./@, = 1 in Eq. (4). and we obtain

GoEI) T e @

The combination of Eq. (a) and Eq. (5) gives

(1= 37) + (1)1 + ) (7 + & — 1) | 1)}!_4_}0-16. 1/772__,}'-6. 2 —1 I -1

(I =37+ (I + 3) (1 + &, =1 1) o 1/, So—=1
...... (b)
which enable us to find the value of 7%, at any given heihgt for the condition ..
= constant and Q. = constant at all heights. The results of calculatoins are

shown in Diagram A1l
The cylinder temperature is given by

tmz = Tmz - 273 = (191’ - 278 -+ - j 77 79’2)

z
which is shown in Diagram A 2.

Diagram A 3 shows the variation of the mass flow of the cooling air G./G, which
can be worked out by Eg. (a). Eq. (10) gives the value Vi./Vy = a2/t as shown
in Diagram A 4. ‘

Further, Eq. (8) and (11) will give the values 4P./4P, and FP../H’. which are
shown in Diagram A5 and A 6, respectively.

b) When the mean cylinder temperature is to be kept constant at all heights, i.e..
Tz = Tmn. In this case, the value of cylinder temperature factor 7, at a given
height of z m can be calculated by the following relation:

PO Tonz - Tmn
7z =
?912 2910

Next, Eq. (1b) becomes
G: _ M =1 9y

: T r=1 e e (c)
if @:/@, = 1. Substituting this relation in Eq. (2), we get
1-37)+ (1 + $72)7z 7912}0'6 (L7 - 7}” Mz 12— 1 e 1 -+ (d)
(1 =3%) +(1+$%)7 the 1/77;) 3 Ty 15—1 U
The last equation (d) gives the value of 7. as shown in Diagram B 1.
The value of G./G, can be determined by Eq. (c). The results of calculations are
shown in Diagram B 2.

£ Ve e AP g o

VI; B Uy AP co
way as cxplained above. They are shown in Diagram B3, B4 and B35, respectively.
Lastly, the value of §; =1+ 7:(7: — 1) can be determined, which gives the outlet

The values o

have been worked out just in the same
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‘temperature of the cooling air by the following relation:
) ’1922 = 52'191:-
The variations of @, are shwon in Diagram B6.
¢) When"the pressure drop at the baffle plates remains constant at all heights, i.e.,
AP, = 4P,. This condition seems most likely to take place in actual cases. To solve
this problem, éombine, firstly, Eq. (8) and (10). Then we get the following general

relation:
APz=( z)" (Gz) 3(5z+1)K10gm(1/(1—ﬂz))+2( - 1) S (13)
APo T Gy (& + D)Klogi (1/(1 — 7)) + 2 (50 = )

Conbine Eq. (13) and (4) on the condition %5;5 =1 and %—z—« =1, then the follow-
0 0

ing relation will be derived.

Tz, (Ez - 1)"' . (1912 )2 1(5: + DK logy (1/ (1 —7)) +2(E—1) . (e)
710 Eo—1 o T(& + I)Klogw (I/(1 = 7)) + 2 (&0 — 1)°

The two simultaneous equations (e) and (b) involving two unknowns 7: and &z

will give these values. The procedure of the computation is as follows:
Put

A, = D=, (ﬂi)s 1(& + DK logp (1/(1 =7)) +2 (S = 1)

=7 U & - D"
A, is the function of the height z only. Then Eq. () can be written in the fol-

lowing form of quadratic equation in &

g2 —2bpels+c, =0, e (f)
K 1 1
where by=1+ iAT iogia i~ + AL
_q1_ K 1,2
;=1 AL logi —77:+?1z .
The solution of Eq. (f) is
&, =b:+ “/IZZ—Cz>1‘ ........ (g)

Starting the values 7, and 7, obtained from the ground level tests, we proceed as
follows:
i) Determine the value & = 1 + 7y(7 — 1)
ii) By making use of the values %, and &o thus obtained, calculate the values Az
for all heights.
iii) Work out several groups of 7; and &z satisfying Eq. (g).  This will be done
by trials for appropriate values of 7. )
iv) Substitute the values of 7. and & in every group successively, then you will
find the final combination of 7; and &, which satisfy Eq. (e) and (b), simultaneously.
Once the values of 7, and &, are determined, all the cooling characteristics can be
estimated in the same way as before. Thus we get
Diagram C1 for 7, Diagram C2 for £m:°C,
Diagram C3 for G./G,, Diagram C4 for Viz/ Vi = tiz/t%0,
Diagram C5 for FP/FP«, Diagram C6 for d.
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7. Comparison of Cooling Characteristics between the Three Cases.
viz., J:; = constant, T}, = constant and 4P. = constant

In order to compare the results thus obtained, another set of diagrams has been
prepared. They are applicable to the case that the mean cylinder temperature at
the ground level is taken as #,, = 190°C and the temperature efficiency at the ground
level as 7, = 0.25, 0.35 and 0.45.

Diagram D1 for 7., Diagram D2 for Tm: = 273 + tmz,
Diagram D3 for G./G,, Diagram D4 for Vi./Vig = w52/,
Diagram D5 for 4P,/4P,, Diagram D6 for FPe./IP,

- Diagram D7 for ...

These diagrams give a good comparison of the general tendency of the cooling
characteristics at higher altitudes. Let us enumerate the results of computations:

a) The temperature efficiency 7. increases with altitudes. In the case 4P, = con-
stant, the tendency of increase of %, is most remarkable.

b) The mean cylinder temperature #,. rises most rapidly in the case 4P, = con-
stant. It is advisable to increase 4P. by opening the flaps at the rear end of the
engine cowling, so as to keep the cylinder temperature in desirable limits at higher
altitudes.

¢) The smaller the value of 7, at the ground level, the better cooling characteristics
at higher altitudes. ]

d) Better cooling characteristics can be expected at higher altitudes, if we keep
the cylinder temperature #,, at the ground level as low as possible.

e) There are intimate relations between the mass flow G, and other cooling cha-
racteristics. For example, the pressure drop 4P, at higher altitudes must be in-
creased definitely, if we expect to keep the cylinder temperature not to rise over a
certain reasonable limit.

f) The horse power required for air cooling A, increases with altitudes. In the
case AP, = constant, however, this horse power remains practically constant as high
as 7,000 m. This result coincides with our experience in the case of aero-engines
with 7, = 0.25 and lower value of #.

g) The temperature rise 49 of the cooling air is very close to the cooling charac-
teristics, as seen clearly in Diagram D7. In the case 4P — constant, the mass flow
of cooling air decreases so much at higher altitudes, resulting in rapid rise of the
cylinder temperature. On the contrary, if the cylinder temperature is to be kept
constant, so much quantity of cooling air must be passed at higher altitudes, result-
ing in little change in the outlet terhperature of the cooling air.

8. Comparison between the Caleulated Results and the Experimental Data

There are two procedures of experimental researches to ascertain the validity of
the theories here treated. The one is to undertake wind-tunnel tests with the same
atmospheric conditions as those at higher altitudes. Some fragmental rerults,
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though valuable, indicates the adoptability of my theories above given.

The other is to observe the cooling characteristics on the flying aircraft at higher
altitudes. One of such experiments was carefully and deliberately conducted by Mi-
tsubishi Aero-Engine Research Institute at Nagoya. The followings are the results
reported by Mr. Aso, one of the research member of that institute. Fig. 5 shows
the temperature of the rear plug seat at the heights 1,2, - - -, 10, 11 km as ordi-
nate and the pressure drop 4P, as abscissa. At all heights, the decrease in 4P; re-
sults in the diminution of the mass flow of the cooling air, and, consequently, the
temperature rise of the cylinder. On the basis of these results obtained from this
experiment, we get a good comparison between the theory and practice. In Fig. 6,

‘ the curve in full line is the cylinder temperature curve for 7, = 0.25 and tm = 170°C
selected from Diagram C2. The plotted dots correspond to the values read from
Fig. 5, as the intersection of the curves '

with the vertical showing 4P = 186 1[ ! ! ! 1 ! ! ! ! !
mm Aq = constant at all heights. As T Caleated Temp. (o= 2554)
. . . Tpter e Observed Tomp.
far as this experiment is concerned,
we find a good accord of the theory /
with the facts.
: /
) >
: Mac. allowable temp.
A NN E /
220 &
3 N \\ R _g /
- g ~ .
H] %\ \\\\~ 3 b |
=2 < \ = Allowable tems. for 30 mim. running
RS S N N N N [/
3 NN N
S RN F~ <
3 N NS N <) '%N{“ Allowable temp. for continuous runnin
< \\Q % ~ \ ¥ = -
21 et
E‘ b \\.\ 6 Tﬂ f
g N
) : 5 3
S 3
2
130
100 200 S/ Rl
Pressure Drop 4Pmam Aq du to Cylindor Cooling ! ° 3 o ” “

— Altitude 2 km
Fig. 5. Observed cyl. temp. at - .
g various al{itudesp Fig. 6. Variations of cylinder temperature

with altitudes when the pressure
drop AP is kept constant

9. Résumé

The cooling characteristics may be the function of the following factors:

@ = heat dissipation, T: = mean cylinder temperature, 9, = inlet temperature of
cooling air, . = outlet temperature of cooling air, G = mass flow of cooling air,
= inlet velocity of cooling air, 4P = pressure drop, P, = power required for air cool-
ing, etc. _

The foregoing theories will make clear the relations between them. Any two of
them can be the independent variables, e.g., @ and T. @ and 4P, and the like.

The followings are the general conclusions of this study:
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1) The temperatures are expressed as functions of the atmospheric air, namely:

7 = temperature efficiency = (3. — ) /(T —H) = (£ = 1)/(r = 1)

& = temperature rise factor = 3./

= cylinder temperature factor = Ton/?,

Out of these three, we can take any two of them 'as the independent variables.
In this way, we can avoid the confusion of the temperature scale, viz.,, °C or °F.
~ All the variables above mentioned are expressed in the form of ratio, such as,
Q./Q,, AP.]4P,, 2] etc. Thus, we need not be worried about the units and di-
mensions, as experienced in the emperical formulae. )

2) Eq. (2) or (5) gives the direct relation between the mass flow and the cooling
characteristics.
~ 3) The complicated relations between the heat dissipation and the pressure loss
can be expressed in such a simple formula as Eq. (7).

4) The Tokyo Standard Atmosphere has been newly introduced.

5) Some diagrams have been prepared in order to give facilities to the practical
designers in computing the problems of this kind.
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Notes to the Annexed Diagrams

PL. A1, PL. A2, PL. A3, PL. A4, PL.A5 and PL. A6:
Heat Dissipation = @ = Constant, Exit Temperature of Cooling Air = ;J» = Constant.

PL. B1, PL. B2, PL. B3, PL. B4 and PL. B5:

Heat Dissipation = @ = Constant, Mean Outside Temperature of Cylinder Wall = ¢,,
= Constant.

PL.C1,PL.C2 PL.C3, PL. C4, PL. C5 and PL, C6: .
Heat Dissipation = @ = Constant, Pressure Drop = AP = Constant.

PL. D1, PL D2, PL. D3, PL. D4, PL. D5, PL. D6 and PL. D7:

Heat Dissipation = @ = Constant, Mean Outside Temperature of Cylinder Wall at
Ground Level = Zmo = 190°C.

PL. E. Correction Chart for Ground Level Test:
Heat Dissipation = @ = Constant, Inlet Velocity of Cooling Air = #; = Constant.

PL. F. Tokyo Standard Atmosphere.
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D {OA = 760 mm Hg
OB =k =790 mm Hg

2) 0P =¢&"-1
T 8) pa|| PA, pb || PB
2 ” oa = &' —1°, &' = 1.120
¢ 1, P {ob =& —1° & = 1125
* " 5) ¢ corresponds for ' = 0.25
L4 \\ » 6) ¢d = Correction for atm. temp. 35°C
T e - 7) de = Correction for bar. h't 790 mm Hg
u% - 25
P 1, 8) ef |l ab
@ 9) £ corresponds for the temp. eff. nl = 0.244) at
N “ N o the ground level for Standard Atmosphere
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