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Powering by a Table Look-Up and
a Multiplication with Operand Modification

Naofumi Takagi, Member, IEEE

Abstract—An efficient method for generating a power of an operand, i.e., X
p
 for an operand X and a given p, is proposed. It is

applicable to ps in the form of ±2
k
, where k is any integer and of ±2 1k

 ± −2 2k
, where k1 is any integer and k2 is any nonnegative

integer. The reciprocal, the square root, the reciprocal square root, the reciprocal square, the reciprocal cube, and so forth are
included. The method is a modification of the piecewise linear approximation. A power of an operand is generated through a table
look-up and a multiplication with operand modification. The same accuracy is achieved as the piecewise linear approximation. The
multiplication and an addition required for the piecewise linear approximation are replaced by only one double-sized multiplication
with a slight modification of the operand and, hence, one clock cycle may be reduced. The required table size is reduced because
only one coefficient instead of two has to be stored.

Index Terms—Computer arithmetic, powering, division, square rooting, multiplier.
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1 INTRODUCTION

ITH the increasing availability of fast ROMs (read
only memories) and high-speed multipliers, genera-

tion of functions by table look-up and multiplication has
become attractive. In this paper, we propose a new method

for generating a power of an operand, i.e., Xp for an oper-

and X and a given p, by table look-up and multiplication.1

It is applicable to ps in the form of ±2k, where k is any inte-

ger and of ± ± −2 21 2k k , where k1 is any integer and k2 is any

nonnegative integer. The reciprocal X−20
, the square root

X2 1−
, the reciprocal square root X− −2 1

, the reciprocal square

X−21
, the reciprocal cube X− +2 22 0

, the cube X2 21 0+ , the

fourth power X22
, and so forth are included.

The piecewise linear approximation [2], [3] is an efficient
method for generating a power of an operand by table look-
up and multiplication. The two coefficients of the linear
function are read out of a look-up table. A multiplication
and an addition are required besides a table look-up. When
the m most significant bits of an operand are used as the
index of the look-up table, about 2m-bit accuracy is ob-
tained. The required table size is about 2m � (m + 2m)-bits.
The size of multiplication is about m-bits by m-bits, and the
size of addition is about 2m-bits.

The method to be proposed in this paper is a modification
of the piecewise linear approximation. The same accuracy is
achieved. The multiplication and an addition required for

the piecewise linear approximation are replaced by only
one multiplication with a slight modification of the oper-
and. The modification of the operand is a bitwise inversion,
a shift and/or a redundant binary Booth recoding [4], [5],
[6], [7], and is implemented by a very simple circuit with
small delay. One clock cycle may be saved because the ad-
dition is removed. The required table size is reduced to
about 2m � 2m-bits, because only one coefficient instead of
two has to be stored. The size of multiplication is doubled,
i.e., about 2m-bits by 2m-bits.

As the piecewise linear approximation, the proposed
method can be applied to powering with rather low preci-
sion, i.e., up to about 24-bit accuracy. It is efficient for gen-
erating powers which require a lot of computation, e.g.,

X
− 5

8 . Note that − = − −− −5
8

1 32 2 . Another important appli-
cation of it is generation of initial approximations to the
reciprocal and the reciprocal square root, which are re-
quired for multiplicative division and square rooting, re-
spectively, as shown in [8]. This paper gives a theoretical
foundation to the methods proposed in [8].

The next section is an introductory section, where we
explain the piecewise linear approximation based on the
first-order Taylor expansion and the redundant binary
Booth recoding. We propose the new method in Section 3,
and compare it with conventional methods in Section 4. In
Section 5, we show several practical applications of the
method.

2 PRELIMINARIES

2.1 Piecewise Linear Approximation Based on Taylor
Expansion

We assume that the operand X is an n + 1-bit binary num-
ber in the range 1 � X < 2. Namely, X is represented as

[1.x1x2 L xn] (xi ¶ {0, 1}). We split X into two parts, the

0018-9340/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� The author is with the Department of Information Engineering, Nagoya
University, Nagoya 464-8603, Japan.
�E-mail: ntakagi@nuie.nagoya-u.ac.jp.

Manuscript received 16 Jan 1998.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 106167.

W

1. This paper is a revision of [1]. Some applications are added to and
some are omitted from [1].



TAKAGI:  POWERING BY A TABLE LOOK-UP AND A MULTIPLICATION WITH OPERAND MODIFICATION 1217

upper part X1 and the lower part X2, where X1 = [1.x1x2 L xm]

and X2 = [.xm+1xm+2 L xn] � 2-m.

Xp of X in the range X1 � X < X1 + 2-m can be approxi-
mated as follows by the first-order Taylor expansion at the

mid point, X1 + 2-m-1, of the range:

(X1 + 2-m-1)p + p ¿ (X1 + 2-m-1)p-1 ¿ (X2 - 2-m-1).       (1)

The piecewise linear approximation based on the first-order
Taylor expansion adopts a linear function C1 � X2 + C0, where

C1 = p ¿ (X1 + 2-m-1)p-1 and C0 = (X1 + 2-m-1)p - 2-m-1 ¿ p ¿ (X1 +

2-m-1)p-1. The two coefficients C1 and C0 are read through table

look-up addressed by X1 (without the leading 1). The look-up

table keeps the coefficients for 2m intervals of X. One multipli-
cation and one addition are required besides a table look-up.

The error is about 2-1 ¿ p ¿ (p - 1) ¿ (X1 + 2-m-1)p-2 ¿ (X2 - 2-m-1)2.

Therefore, about (2m + 3 - log2 |p| - log2|p - 1| - max{0, p

- 2})-bit accuracy is obtained. Note that (X1 + 2-m-1)p-2 is

bounded by 1 when p - 2 < 0 and by 2p-2 otherwise. We can

obtain 1-bit better accuracy by adjusting C0 for each interval.

The required table size is about 2m � (m + 2m)-bits. The size of
multiplication is about m-bits by m-bits, and the size of addi-
tion is about 2m-bits.

2.2 Redundant Binary Booth Recoding
In the method to be proposed, in some cases, the redundant
binary Booth recoding [4], [5], [6], [7] is used for the modifi-
cation of the operand. It converts a binary number in the
carry save form into a radix-4 signed-digit (SD4) number
with the digit set {-2, -1, 0, 1, 2}. Namely, it calculates the
sum of two binary numbers in the SD4 representation.

Let us consider conversion of two binary numbers A (=

[.a1 a2 L an]2) and B (= [.b1 b2 L bn]2) into an SD4 number S

(= [s0.s1 s2 L sÑn/2á]SD4), where S = A + B. The conversion
process consists of two steps. In the first step, at each posi-

tion of S, we determine tj-1 (¶ {0, 1, 2}) and uj (¶ {-3, -2, -1,

0, 1}), satisfying 4tj-1 + uj = (2a2j-1 + a2j) + (2b2j-1 + b2j). In the

second step, at each position of S, we calculate sj by adding

uj and tj. In the first step, we determine tj-1 and uj by ex-

amining a2j+1 and b2j+1 so that sj satisfies -2 � sj � 2 in the
second step. Table 1 shows a computation rule for the re-
dundant binary Booth recoding.

The redundant binary Booth recoding is an extension of 2-
bit Booth recoding. By the computation rule in Table 1, when
B is 0, S is simply the 2-bit Booth recoded representation of A.

Since the computation can be performed in parallel at
each position, the depth of a redundant binary Booth re-
coder is a small constant independent of n.

3 A NEW METHOD FOR POWERING

Now, we propose a new method for generating Xp. We can
rewrite (1) as follows:

(X1 + 2-m-1)p-1 � (X1 + 2-m-1 + p ¿ (X2 - 2-m-1)). (2)

Therefore, C � X� produces the same value as C1 � X2 + C0,

where C = (X1 + 2-m-1)p-1 and

X� = X1 + 2-m-1 + p ¿ (X2 - 2-m-1).   (3)

C can be read through table look-up addressed by X1 (with-
out the leading 1). For special ps, X� can be obtained by modi-

fying X as explained later. The look-up table keeps C for 2m

intervals of X. The required table size is about 2m � 2m-bits.
Only a multiplication with modification of the operand is
required besides a table look-up. The size of multiplication
is about 2m-bits by 2m-bits.

The error of C � X� is as follows:

C X X X C X X

X X X X

X p X

X X p X p p

X

X p X X p p X X

X

p p

m p p

m m

p m p

m p

p p p
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�
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1
3

2
1 2

1
1
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− − −

− − − −

⋅ − − ⋅

+ ⋅ − − ⋅ − �
�
�
��

− ′ × − − ⋅ ⋅ −�
�

�
�

1 64 94
1 64 9

1 6 4 9

L

~ .

TABLE 1
A COMPUTATION RULE FOR THE REDUNDANT BINARY

BOOTH RECODING

Step 1
tj-1, uj

b2j-1b2j

a2j-1a2j 00 01 10 11

00 0, 0 *1, -3/0, 1 1, -2 1, -1
01 *1, -3/0, 1 1, -2 1, -1 1, 0
10 1, -2 1, -1 1, 0 *2, -3/1, 1
11 1, -1 1, 0 *2, -3/1, 1 2, -2

   * : Both a2j+1 and b2j+1 are 1. / Otherwise.

Step 2
sj

tj
uj 0 1 2

-3 � -2 -1
-2 -2 -1 0
-1 -1 0 1
0 0 1 2
1 1 2 �

        � : Never occur
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Therefore, we can obtain 1-bit better accuracy by adjusting
C to C� as follows:

′ − + − ⋅ ⋅ ⋅

= + + − ⋅ ⋅

− + − ⋅ ⋅ + − − ⋅ ⋅

− − − −

− − − − − −

− − − − − − −

C C p p X

X p p X

X p X p p X

p m

m p m p

p m p m p

~

~ .

1 2 2

2 1 2

1 2 1 3 4 2

1
1

3 2 3

1
1 1 2 4

1
3

1
1 1

1
2 2 4

1
3

1 6
4 9 1 6

1 6 1 61 6
Note that the error of C� � X� is about

′ × − ⋅ ⋅ ⋅ − −�
�

�
�

− − − − − −X p p X Xp m m1 2 2 21
1

3 2 3
2

1 21 6 4 9 .

The same accuracy is obtained as the piecewise linear ap-
proximation with the adjusted coefficients.

Now, we show how we can produce X� by modifying X.

3.1 Case (1): p = 2-k (k: Nonnegative Integer)

The square root, X2 1−
, belongs to this case [8].

Substituting p = 2-k to (3), we get

′ = + + ⋅ −

= + − + ⋅

− − − − −

− − − − − −

X X X

X X

m k m

m m k k

1
1

2
1

1
1 1

2

2 2 2

2 2 2

4 9
.

Therefore,

′ = + + + + +X x x x x x x x x xm m m m m m n[ . ]1 1 2 1 1 1 2 3L L L ,

where xm+1 is the complement of xm+1. There are k xm+1s

between xm+1 and xm+2. We can form X� by only inserting k

xm+1s between xm+1 and xm+2. We may throw the lower
about n + k - 2m bits away.

Fig. 1 illustrates an implementation of the method for
this case. The required hardware is a ROM of size about
2m � 2m-bits and an operand modifier which consists of
only an inverter. The k-bit shift may be implemented by
wiring. No other dedicated hardware is required when we
use an existing multiplier. The multiplier must be about
2m-bits by 2m-bits or larger.

3.2 Case (2): p = -2-k (k: Nonnegative Integer)

The reciprocal, X−20
, and the reciprocal square root, X− −2 1

,
belong to this case [8].

Substituting p = -2-k to (3), we get

′ = + − ⋅ −

= + + − ⋅

− − − − −

− − − − − −

X X X

X X

m k m

m m k k

1
1

2
1

1
1 1

2

2 2 2

2 2 2

4 9
.

Therefore,

′ = ++ + + + +
− −X x x x x x x x x xm m m m m m n

n k[ . ]1 21 2 1 1 1 2 3L L L .

There are k xm+1s between xm+1 and xm+2 . We can form X� by

only complementing X2 bitwise and inserting k xm+1s be-

tween xm+1 and xm+2 . We may ignore the last term +2-n-k

and throw the lower about n + k - 2m bits away.
An implementation of the method for this case is the

same as that for Case (1), except that the operand modifier
consists of about m - k inverters.

3.3 Case (3): p = 2k (k: Positive Integer)

The fourth power, X22
, belongs to this case.

Substituting p = 2k to (3), we get

X� = X1 + 2-m-1 + 2k ¿ (X2 - 2-m-1).

Namely, X� is the sum of X1+2-m-1, i.e., [1.x1x2Lxm1] and the

k-bit left shifted X2 - 2-m-1, i.e., 2 1 2 3
− +

+ + +⋅m k
m m m nx x x x[. ~ ]L ,

where ~xm+1 is -1 or 0 accordingly as xm+1 is 0 or 1. They
overlap each other in k + 1 bit positions, as shown in Fig. 2.
We can form X� in SD4 representation by the redundant
binary Booth recoding. Since the most significant digit of
the latter, i.e., ~xm+1, may be -1, we modify the calculation
rule of Step 1 for the corresponding position as shown in
Table 2. We may throw the lower about n - k - 2m bits of
the latter away.

Fig. 3 illustrates an implementation of the method for
this case. When we use a multiplier with a Booth recoder,
we just modify a part (k + 1 bit positions) of the Booth re-
coder. (The part indicated by a shadowed rectangle labeled
“RB” in the figure.) The k-bit shift may be implemented by
wiring.

3.4 Case (4): p = -2k (k: Positive Integer)

The reciprocal square, X−21
, belongs to this case.

Substituting p = -2k to (3), we get

X� = X1 + 2-m-1 - 2k ¿ (X2 - 2-m-1).

Namely, X� is the sum of X1 + 2-m-1, i.e., [1.x1x2Lxm1], the

bitwise complemented and k-bit left shifted X2 - 2-m-1, i.e.,

2 1 2 3
− +

+ + +
m k

m m m nx x x x. [~ ]L , where ~xm+1 is 0 or -1 accordingly

as xm+1 is 0 or 1, and 2-n+k. The former two overlap each

Fig. 1. An implementation for Case (1).
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other in k + 1 bit positions. We can form X� in SD4 repre-
sentation by the redundant binary Booth recoding, as in
Case (3).

An implementation of the method for this case is similar
to that for Case (3). Inverters are required for complement-
ing X2 bitwise.

3.5 Case (5): p k k= ± ± −2 21 2  (k1: Integer,
k2: Nonnegative Integer)

The reciprocal cube, X− +2 22 0
, and the cube, X2 21 0+ , belong

to this case.
Substituting p k k= ± ± −2 21 2  to (3), we get

′ = + + ± ± ⋅ −

= + ± ⋅ − ± ⋅ −

− − − − −

− − − − − − −

X X x

X X X

m k k m

m k m k m

1
1

2
1

1
1

2
1

2
1

2 2 2 2

2 2 2 2 2

1 2

2 1

4 9 4 9
4 94 9 4 9.

Since k2 is a nonnegative integer,

X Xm k m
1

1
2

12 2 22+ ± ⋅ −− − − − −( )

can be obtained by the way for Case (1) or (2). We can add
± ⋅ − − −2 21

2
1k mX( )  to this by a redundant binary Booth

recoding.
An implementation of the method for this case is a com-

bination of that for Case (1) or (2) and that for Case (3) or (4).

4 COMPARISON

The proposed method generates a power in the same accu-
racy as the conventional piecewise linear approximation

based on the first order Taylor expansion when the same
part of the operand is used as the table index. When we use
the upper m bits (without the leading 1) of the operand as
the table index, both methods generate a power in about
2m-bit accuracy.

The proposed method requires a look-up table of size

about 2m � 2m bits, while the conventional method requires

one of size about 2m � 3m bits. Namely, the look-up table of
the proposed method is about the two thirds of that of the
conventional method in size.

The proposed method does not require an addition, but
requires an operand modification which is carried out by a
bitwise inversion, a shift, and/or a redundant binary Booth
recoding. The operand modifier consists of inverters
and/or a redundant binary Booth recoder, which is a modi-
fication of an ordinary Booth recoder. It is simple and small
and has a very small constant delay independent of m and
n. Each powering requires different operand modification
logic.

The size of multiplication of the proposed method is
about 2m-bits by 2m-bits, while that of the conventional
method is about m-bits by m-bits. Therefore, when we pre-
pare a dedicated multiplier, the proposed method requires a
larger multiplier. The proposed method is more attractive
when we may use an existing multiplier.

DasSarma and Matula proposed the faithful interpola-
tion method, which reduces the table size required for the
piecewise linear approximation [9]. In the method, only the
function values at end points of intervals are stored. The
coefficient of the first-order term of each interval is calcu-

1. x1 L xm-k xm-k+1 xm-k+2 L xm 1

+
~
xm +1 xm+2 L xm+k xm+k+1 xm+k+2 L xn

Fig. 2. X� for Case (3).

TABLE 2
A MODIFIED COMPUTATION RULE FOR STEP 1 OF THE RE-

DUNDANT BOOTH RECODING

(A) m - k IS EVEN (k � 3)

tj-1, uj
~
x xm m+ +1 2

xm-k+1xm-k+2 00 01 -10 -11

00 0, 0 *1, -3/0, 1 0, -2 0, -1
01 *1, -3/0, 1 1,  -2 0, -1 0, 0
10 1, -2 1, -1 0, 0 *1, -3/0, 1
11 1, -1 1, 0 *1, -3/0, 1 1, -2

* : Both xm-k+3 and xm+3 are 1. / Otherwise.

(B) m - k IS ODD (k � 2)

tj-1, uj
~
xm+1

xm-kxm-k+1 0 -1

00 0, 0 0, -1
01 *1, -3/0, 1 0, 0
10 1, -2 *1, -3/0, 1
11 1, -1 1, -2

* : Both xm-k+2 and xm+2 are 1. / Otherwise. Fig. 3. An implementation for Case (3).
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lated from the function values of the both end points of the
interval by the redundant binary Booth recoding (subtrac-
tion). The required table is of size about 2m � 2m bits. Two
consecutive contents of the table have to be read out at
once. A multiplication of size about m-bits by m-bits and an
addition of size about 2m-bits are required as the conven-
tional method.

Compared with the direct approximation, i.e., directly
reading the approximation through table look-up, the pro-
posed method additionally requires a multiplication with
operand modification. It requires a much smaller table.
When we want to obtain 2m-bit accuracy by the direct ap-
proximation, we have to use the upper about 2m bits (with-
out the leading 1) of the operand as the index to a table of
size about 22m � 2m bits.

DasSarma and Matula also reduced the table size of di-
rect approximation by bipartite tables and a redundant bi-
nary Booth recoding (subtraction) [10]. To obtain 2m-bit
accuracy, this method requires two tables of size about

2 2
4
3 m

m×  bits and of size 2
4
3 2

3
m

m×  bits.
Table 3 shows the comparison of powering by table look-

up for obtaining 2m-bit accuracy.

5 APPLICATIONS

5.1 Reciprocal

The calculation of the reciprocal of an operand, i.e., X−20
, is

important, not only as it is but also as initial approximation
for multiplicative division through Newton method or
Goldschmidt’s algorithm. It belongs to Case (2) of Section 3.

The coefficient C� should be about

X X Xm m
1

2
1

3 2 3
1

42 7 2− − − − − −− ⋅ + ⋅ ⋅ .

2 12− < ′ <C  holds. The modified operand X� is

X X x x x x x xm
m m m n

n
1 2 1 2 1 22 1 2+ − = +−

+ +
−. L L .

We can form X� by only complementing X2 bitwise. (We
ignore the last term +2-n.)

When we use an m-bit-in t-bit-out table, the maximum
absolute error is bounded by 2 22 3

1
3 1

1
− − − − −⋅ + ⋅m tX X  except

the error caused by the truncation of the result of the multi-
plication. We can truncate X� at the tth position (and add
(concatenate) 1 at the (t + 1)th position). (When n � t + 1, we

have to take the error caused by the ignored term +2-n into

account. Note that, in such case, we can add +2-n into X�, if
the multiplier is with a Booth recoder.) The table is of size

2m � t bits. The operand modifier consists of t - m inverters.
The multiplication is of size t-bits by t + 2-bits.

When we calculate the reciprocal with 2-24 accuracy, m
and t should be 11 and 25, respectively, and the table is of
size 211 � 25 = 50K bits. When we generate the initial ap-
proximation to the reciprocal for double precision division
through Newton method, the table is of size 23 � 8 = 64 bits

or 26 � 14 = 896 bits or 213 � 28 = 224K bits, accordingly as
followed by three or two or one Newton iterations [8].

5.2 Square Root

The square root, i.e., X2 1−
, belongs to Case (1).

The coefficient C� should be about

X X Xm m
1

2
1

2 6
1

1
2

3
2

5
22 5 2

− − − − − − −− ⋅ + ⋅ ⋅ .

2 1
1
2− < ′ <C  holds and, therefore, the bit at the first binary

position of C� is always 1. The modified operand X� is

X X x x x x x x xm
m m m m n1

2 1
2 1 2 1 1 22 2 1+ + ⋅ =− − −

+ + +. L L .

We can form X� by only inserting the complement of xm+1
between xm+1 and xm+2.

When we use an m-bit-in t-bit-out table, the maximum

absolute error is bounded by 2 22 6
1

2
1

3
2− − − − −⋅ + ⋅m tX X . We

can truncate X� at the (t + 1)th position. The operand modi-
fier consists of only one inverter.

When we calculate the square root with 2-24 accuracy, m
and t should be 10 and 24, respectively, and the table is of
size 210 � 24 = 24K bits.

5.3 Reciprocal Square Root
The calculation of the reciprocal square root of an operand,

i.e., X− −2 1
, is important as initial approximation for multi-

plicative square rooting through Newton method or Gold-
schmidt’s algorithm. It belongs to Case (2).

The coefficient C� should be about

X X Xm m
1

2
1

2 6
1

3
2

5
2

7
23 2 33 2

− − − − − − −− ⋅ ⋅ + ⋅ ⋅ .

2 1
3
2− < ′ <C  holds. The modified operand X� is

TABLE 3
COMPARISON OF POWERING BY TABLE LOOK-UP FOR OBTAINING 2m-BIT ACCURACY

Method Table size (bits) Multiplier (bits) Adder (bits) Others

Proposed 2
m

 � 2m 2m � 2m – (RB Booth)

Linear 2
m

 � (m + 2m) m � m 2m

Faithful [9] 2
m

 � 2m* m � m 2m RB Booth

Direct 2
2m

 � 2m – –

Bipartite [10] 2 2 2
4
3

4
3 2

3

m m
m m× + ×�

�
�
�
�
�

�
� – – RB Booth

  *: Reading two consecutive contents at once.
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X X

x x x x x x x

m m

m m m m n
n

1
1 2 1

2

1 2 1 1 2
1

2 2 2

1 2

+ + − ⋅ =

+

− − − − −

+ + +
− −. .L L

We can form X� by complementing X2 bitwise and inserting

xm+1 between xm+1 and xm+2 . (We ignore the last term

+2-n-1.)
When we use an m-bit-in t-bit-out table, the maximum

absolute error is bounded by 3 2 22 6
1

1
1

5
2⋅ ⋅ + ⋅− − − − −m tX X . We

can truncate X� at the tth position. The operand modifier
consists of t - m inverters.

When we calculate the reciprocal square root with 2-24

accuracy, m and t should be 11 and 25, respectively, and the
table is of size 211 � 25 = 50K bits. When we generate the
initial approximation to the reciprocal square root for dou-
ble precision square rooting through Newton method, the
table is of size 26 � 14 = 896 bits or 213 � 28 = 224K bits, ac-
cordingly, as followed by two or one Newton iterations [8].

5.4 Reciprocal Square

The reciprocal square, i.e., X−21
, belongs to Case (4).

The coefficient C� should be about

X X Xm m
1

3 1
1

4 2 3
1

53 2 15 2− − − − − − −− ⋅ ⋅ + ⋅ ⋅ .

2 13− < ′ <C  holds. The modified operand X� is

X X

x x x x x x x

m m

m
m

m m m n
n

1
1

2
1

1 2
1

1 2 3
1

2 2 2

1 1 2 2

+ − ⋅ − =

+ ⋅ +

− − − −

− +
+ + +

− +

4 9
. . ~ .L L

We can form X� in SD4 representation by complementing
bitwise and 1-bit left shifting X2 and adding it to X1 by
means of the redundant binary Booth recoding. Note that
we can use the ordinary 2-bit Booth recoding except the
overlapping two bit positions.

When we use an m-bit-in t-bit-out table, the maximum
absolute error is bounded by 3 2 22 3

1
4 1

1⋅ ⋅ + ⋅− − − − −m tX X . We
can truncate X� at the tth position.

When we calculate the reciprocal square with 2-24 accu-
racy, m and t should be 12 and 25, respectively, and the ta-
ble is of size 212 � 25 = 100K bits.

5.5 Reciprocal Cube

The reciprocal cube, i.e., X− +2 22 0
, belongs to Case (5).

The coefficient C� should be about

X X Xm m
1

4 1
1

5 2 2
1

62 13 2− − + − − − −− ⋅ + ⋅ ⋅ .

2 14− < ′ <C  holds. The modified operand X� is

X X X

x x x x x x x

m

n
m

m m m n
n

1 2
2

2
1

1 2
2

1 2 3
2

2 2

1 2 2

+ − ⋅ − =

+ ⋅ +

− −

− +
+ + +

− +

4 9
. . ~ .L L

We can form X� in SD4 representation by complementing
bitwise and 2-bit left shifting X2 and adding it to X by
means of the redundant binary Booth recoding.

When we use an m-bit-in t-bit-out table, the maximum
absolute error is bounded by 3 2 22 2

1
5 1

1⋅ ⋅ + ⋅− − − − −m tX X . We
can truncate X� at the tth position.

When we calculate the reciprocal cube with 2-24 accu-
racy, m and t should be 13 and 25, respectively, and the ta-
ble is of size 213 � 25 = 200K bits.

5.6 Others

The cube, i.e., X2 21 0+ , the fourth power, i.e., X22
, the fifth

power, i.e., X2 22 0+ , the seventh power, i.e., X2 23 0− , the

eighth power, i.e., X23
, and so forth can be generated by the

proposed method. They belong to Case (3) or (5). However,
generating these powers by the proposed method is not so
attractive because they can be generated easily through a
couple of multiplications. Generation of the reciprocals of
these powers by the proposed method is attractive. They
belong to Case (4) or (5) and are generated in similar ways
to those shown in the previous two subsections.

The fourth root, i.e., X2 2−
, the eighth root, i.e., X2 3−

, and
so forth, and reciprocals of them can also be generated by
the proposed method efficiently. They belong to Case (1) or
(2), and are generated in similar ways to those shown in
Sections 5.2 and 5.3.

The proposed method is relatively more efficient for
generating powers which require a lot of computation in-

cluding division and square rooting, e.g., X
− 5

8  which re-
quires two square rootings, a multiplication, and a division.

X X
− − −=

− −5
8

1 32 2  and belongs to Case (5).

6 CONCLUDING REMARKS

We have proposed a new method for powering by a table
look-up and a multiplication. It produces powers with the
same accuracy as the conventional piecewise linear ap-
proximation based on the first-order Taylor expansion. The
proposed method requires only one multiplication with a
slight modification of the operand besides a table look-up,
while the conventional piecewise linear approximation re-
quires one multiplication and one addition. One clock cycle
may be saved because the addition is removed. The re-
quired ROM size is also reduced, because only one coeffi-
cient instead of two is stored for each interval.

The proposed method is applicable to the generation of
the reciprocal, the square root, the reciprocal square root,
the reciprocal square, the reciprocal cube, the cube, the
fourth power, and so forth. It is efficient for the direct gen-
eration of these powers in single precision (24-bit accuracy)
or less accuracy. It is relatively more efficient for the gen-
eration of powers which require a lot of computation in-

cluding division and square rooting, e.g., X
− 5

8 . It is also
efficient for the generation of initial approximations to the
reciprocal and the reciprocal square root for multiplicative
division and square rooting, respectively.
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