394

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.5, MAY 2001

A Fast Algorithm for Multiplicative Inversion
in GF(2™) Using Normal Basis

Naofumi Takagi, Member, IEEE, Jun-ichi Yoshiki, and
Kazuyoshi Takagi, Member, IEEE Computer Society

Abstract—A fast algorithm for multiplicative inversion in GF(2™) using normal basis is proposed. It is an improvement on those
proposed by Itoh and Tsujii and by Chang et al., which are based on Fermat’'s Theorem and require O(logm) multiplications. The
number of multiplications is reduced by decomposing m — 1 into several factors and a small remainder.

Index Terms—TFinite field, finite field inversion, Fermat’s theorem, normal basis.

1 INTRODUCTION

FINITE or Galois field GF'(2™) is used in many applications
such as error-correcting codes and cryptography. In
these applications, it is crucial to carry out operations, such
as addition, multiplication, and multiplicative inversion, in
GF(2™) fast. It is known that multiplicative inversion is
much more time-consuming than addition and multiplica-
tion and several attempts have been made to carry out this
operation fast.

Several algorithms have been proposed for multiplica-
tive inversion in GF(2™). Some of them are based on
Fermat’s theorem and use normal basis [1], [2], [3], [4], [5],
[6], [7]. Fermat’s theorem implies that, for any nonzero
element 3 € GF(2™), 7' = 2" ? and, hence, multiplicative
inversion can be carried out by exponentiation by 2™ — 2.
Wang et al. proposed an algorithm in which the exponen-
tiation is carried out by iterative squarings and multi-
plications [1]. It requires m —1 squarings and m —2
multiplications. Since, in the normal basis representation,
squaring of an element in GF(2™) is carried out by a simple
cyclic shift and, hence, much faster than multiplication, then
it is important to reduce the number of multiplications. Itoh
and Tsujii reduced the number of required multiplications
to O(logm) [2], [3]. Feng proposed a similar algorithm,
which requires the same number of multiplications as Itoh
and Tsujii’s [4]. Chang et al. improved Itoh and Tsujii’s
algorithm and showed that the number of required multi-
plications can be further reduced for some ms by factorizing
m — 1 into two factors [5].

In this paper, we propose a new fast algorithm for
multiplicative inversion in GF'(2™) using normal basis. It is
an improvement on the algorithm proposed by Chang et al.
It further reduces the number of required multiplications

o N. Takagi and K. Takagi are with the Department of Information
Engineering, Nagoya University, Nagoya 464-8603, Japan.
E-mail: ntakagi@nuie.nagoya-u.ac.jp.

e J.-i. Yoshiki is with Oki Electric Industry Co., Ltd., 10-3 Shibaura 4-chome,
Minato-ku, Tokyo 108-8551, Japan.

Manuscript received 17 July 1999; revised 20 June 2000; accepted 17 Jan.
2001.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 110264.

for some ms by decomposing m — 1 into several factors and
a small remainder. It is applicable to some ms to which the
algorithm by Chang et al. is not applicable. It also reduces
the number of multiplications for some ms further than the
algorithm by Chang et al. For example, when m = 27 = 128,
it requires 10 multiplications, while the one by Itoh and
Tsujii requires 12 and the one by Chang et al. is not
applicable. When m = 2! =1,024, it requires 13 multi-
plications, while the one by Itoh and Tsujii requires 18 and
the one by Chang et al. requires 14.

In the next section, normal basis and multiplicative
inversion in GF(2") using normal basis are summarized.
We will propose a new fast algorithm in Section 3.

2 MULTIPLICATIVE INVERSION USING
NORMAL BAsIS
,a?"") is called a normal

For an a € GF(2™), (a?,a?,---
basis of GF(2™) over GF(2) if ¥, o2, ---, and o?" " are
linearly independent [8]. There exists at least one normal
basis for any m. Using a normal basis, any g € GF(2™) is
represented as a vector (by, b1, -, by,_1), where 3 = booz20 +
bio? +-- +by_102 " and b; € {0,1} for 0 <i < m — 1.
For any (and 7€ GF(2"), (3+7)° =3 ++* holds
because 203y = 0. From Fermat’s theorem, ie., 2" ~! =1,
3% = B3 holds. Therefore, when

B=bo’ +bi0” 4 by’

F =byo? +bo® + -+ 10

20 91 om-1
= bmfla + bOa + o+ bm72a .

Hence, in normal basis, when g= (bo,b1, - -,bm-1),
3% = (byn_1,b0," ", bm_2). In other words, squaring is carried
out by a simple cyclic right shift. Note that powering by 2
can be carried out by an (¢ mod m)-bit cyclic right shift.

Massey and Omura proposed an efficient algorithm for
multiplication in GF(2™) using normal basis [9]. In the
algorithm, the fact that squaring is carried out by a cyclic
shift is used. Although the algorithm is efficient, multi-
plication is more time-consuming than squaring.

0018-9340/01/$10.00 © 2001 IEEE

TAKAGI ET AL.: A FAST ALGORITHM FOR MULTIPLICATIVE INVERSION IN GF(2™) USING NORMAL BASIS

From Fermat’s theorem, for any nonzero element
B € GF(2™), ' =272 holds. Therefore, multiplicative
inversion can be carried out by computing 3°" >

Since 2™ —2 =21 4+ 22 4 ...y om~1

5 1 B? '—2 52 % 52 % ﬂZ""’].

Based on this fact, Wang et al. proposed an algorithm in
which the exponentiation is carried out by iterative
squarings and multiplications [1]. It requires m — 2 multi-
plications as well as m — 1 squarings.

As stated, using normal basis, squaring is carried out by
a simple cyclic shift and, hence, much faster than multi-
plication. Therefore, it is important to reduce the number of

multiplications for accelerating the exponentiation.

Itoh and Tsujii reduced the number of required
multiplications to O(logm) [2], [3]. The algorithm
proposed in [3] is based on the following fact: Let
m—1=21"14m, 9272 + ... 4 my2t + m2°.
m —1 is represented as a g-bit binary representation
Then,

Namely,

[1mq,2 te mlmob.

2m71 1 (22”’1 _)2[mq 2+ MYy + 2[mq 1mymgly 1
= (142271427

(1 + 22)(1 + 22)Q'rnq,zmmlmu]Q + 2[mq,2~vrnlrnu]2 _ 17

q—3

where 2[me-2mimoly meang 2ma-22"*++mi2+mo2” Byrthermore,

Q[HL,,,Q---rrleg]z 1= mq72(22‘1’2
+ 2[nzq,3»<»mlmu]2 -1

mg (14227 (1+27)(1 4 2%)
2[g3 M1y + 2[=5 TMoly 1.

_ 1)2[m,1,3---m1mg]2

Therefore,

2l = (1422)22 oy) (142) -

(14 22)(1 4 22)2mes-mumily 4 gbme-s-mmal, _ 1.

Iterative application of this reduction yields

q-2

2m—1 —1= (((. (((1 + 224*2)27%,22 + mq_Q)(l + 22473)
2" my_g)) (1+27)27 4 my)
(1+2%)2™% 4 my)(1+22)2™% + my.

Therefore,
ﬁ*l — ﬂ277172 _ (ﬂ27r1—171)2
202 20—2) 20-3 4203 ’
— (- (B2 gy (2RI gy gy
: ')<1+222)2")222 X ﬂmz)(1+221)2m121 x 677L1)(1+22”>2"’020 % ﬂrnu)Q.

Hereafter, we call the algorithm proposed in [3] Algor-
ithm[IT]. Algorithm[IT] requires I(m —1)+w(m —1) —2
multiplications and {(m — 1) +w(m — 1) — 1 (multiple-bit)
cyclic shifts, where I(m — 1) = ¢ is the number of bits of the
binary representation of m — 1 and w(m —
of 1s in the representation, i.e., the Hamming weight of the
representation.

1) is the number

395

Feng proposed a similar algorithm, which requires the
same number of multiplications and cyclic shifts as
Algorithm[IT] [4].

Chang et al. improved Algorithm[IT] and showed that
the number of required multiplications can be further
reduced for some ms [5]. The algorithm proposed in [5] is
based on the following fact: Let m —1 be factorized as
m —1=s xt. Then,

2m—2=202""1-1)= 2(2“ —1)
=22 - 1)(2) 7+ (2) 7+ (29 +(29))
= (2" - 2)((2) + (2)t72+-~-+(”’)1+(2‘*)°)
Therefore, 5! = (82" ~2)%) (@) e (20) 52 s+1_p

be calculated by Algorithm[IT] with replacmg m—1 by s.
Let t be represented by r-bit binary representation

[1n,—g - - - mingly. Then,
(23)t71 + (25)t72 N (29)1 + (23)0
(- (L4 222) (14 2 e
Fneg))1+ 2202 fong)(1 4 22)2m2 4opy)

(1+422)2m052 4 .

Therefore, letting 822 be +,

B = (- (M2 R ey (TR
X 'yuz)(1+2*"’l)?”“”21 x ’ym)(1+2"2“>2”“”2“ X M.

Hereafter, we call the algorithm proposed in [5]

Algorithm[Chang]. Algorithm[Chang] requires (I(s)+

w(s) —2) 4+ (I(t) + w(t) — 2) multiplications and (I(s) +

w(s) — 1) + (I(t) + w(t) — 2) (multiple-bit) cyclic shifts.

The number of multiplications is reduced for some ms
compared to Algorithm[IT]. For example, when
m =210 =1,024, m — 1 = 1,023 can be factorized as 31 x 33
and the number of required multiplications is 14, while
Algorithm[IT] requires 18. Note that the number of
required multiplications depends on the way of factoriza-
tion when m —1 contains more than two factors. For
example, when m =1,024, m —1=1,023 can also be
factorized as 11 x 93 and the number of required multi-
plications is 15 by this factorization. Note also that the
number of required multiplications is not always reduced,
even if m—1 can be factorized. For example, when
m =962, m — 1 = 961 can be factorized as 31 x 31 and the
number of required multiplications becomes 16, while
Algorithm[IT] requires 13.

3 NEwW ALGORITHM

The algorithm proposed by Chang et al. is efficient, but it is
not applicable to m such that m — 1 is prime. We propose a
new algorithm which is also applicable to such m.

Since

om _ 9 — 2m—1 + 2m—1 _9— 2m—1 + 2m—2 S 2m—h
+ 2771,711 —9
ﬂ 6277?_2 Bzm 1 ﬂmez » » 627”,4; » 627117};_2

396

We can calculate 52" by i-bit cyclic left shift. Therefore, we
can obtain f~! from 4" "~? by h multiplications. We can
calculate 32" "2 by Algorithm[IT] or Algorithm[Chang] by
replacing m by m — h.

By this method, we can reduce the number of required
multiplications for some ms. For example, when
m =27 =128, we can reduce the number of multiplica-
tions to 10 by decomposing m —1 =127 as 18 x7+1,
while Algorithm[IT] requires 12 multiplications and
Algorithm[Chang] is not applicable. When m = 254, we can
reduce the number of multiplications to 11 by decomposing
m —1 =253 as 84 x 3 + 1, while Algorithm[IT] requires 13
and Algorithm[Chang] requires 12 by factorization of
11 x 23.

Although it is not stated in [5], it is obvious that the
principle used in Algorithm[Chang] can be iteratively
applied when m — 1 contains more than two factors. We
can reduce the number of required multiplications for some
ms by factorizing m — 1 into more than two factors. For
example, when m = 28 = 256, we can reduce the number of
multiplications to 10 by factorizing m —1 =255 as
3 x 5 x 17. Note that Algorithm[IT] requires 14 multiplica-
tions and that Algorithm[Chang] requires 11 by factoriza-
tion of 15x 17 or 5x 51 or 3 x 85. We can adopt this
method when m — h — 1 can be factorized into more than
two factors.

Furthermore, the principle that decomposing m —1
into several factors and a small remainder h can be
recursively applied to one of the factors of m — h — 1. For
example, when m = 384, we can reduce the number of
multiplications to 13 by decomposing m —1 =383 as
(38 x5+4+1)x2+1. Note that Algorithm[IT] requires
15 multiplications and that Algorithm[Chang] is not
applicable.

Based on the consideration, we propose a new algorithm
as follows. In the following algorithm, function Func is
recursively called.

Algorithm[TYT]
function Func(8,t) /* calculating %' ~2 */
{
if we do not decompose ¢ then
/* Assume t = [Img_o - - - mimgly. */
{
V=05
fori:=q¢—2to0do
{ .
y=y %97
if m; =1 then v:=~* x 5;
}

v =%
return -y,
}
else

{
decompose t as t = Hle sj+h;
7 := Func(, s1);
s:=1;
for j:=2to k do _ -
/* Assume S; = [1mg)—2 ... mgj)mf]])]g- */

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.5, MAY 2001

{
=1
S:1=8 X Sj_1;
fori:=¢q;—2to0do
{ :
§:=06x6";
if m,gﬁ =1 then § := 8° x ¥

vi=6;
} v
fori:=1tohdod:=68xp3""";
return 6;
}
}
main
{
B71 == Func(8,m — 1);
}

When m — 1 is decomposed as m — 1 = H?:l sj+ h and
51 is not decomposed, the number of required multi-
plications is Zle(l(sj) + w(s;) — 2) + h. This is because the
number of required multiplications corresponding to factor
s;is I(s;) + w(s;) — 2. When the first factor s, is decomposed
further, we can calculate the number of required multi-
plications by using this formula iteratively.

The number of required multiplications depends on the
way of decomposition. There may exist several decomposi-
tions that minimize the number of multiplications. In such a
case, it seems better to adopt the simplest decomposition,
i.e., the one with the fewest components, in order to make
the control of 3! computation simpler. (We refer to the
factors and the remainder(s) as components.) We call the
decomposition that minimizes the number of required
multiplications and consists of the fewest components
“optimal decomposition.” There may exist more than one
optimal decomposition.

The following propositions are useful for finding the
optimal decomposition(s) of m — 1.

Proposition 1. When m — 1 = 2", the optimal decomposition is
m — 1 itself (nondecomposition) and the number of required
multiplications is n.

Proposition 2. When m — 1 = 2"s 4 h, where s is odd, the
smallest number of required multiplications by a decomposi-
tion of m — 1 as H?Zl s; + h (either s, is decomposed further
or not) is n' + h plus the number of required multiplications
by the optimal decomposition of s.

When s; = 2" s;, the number of required multiplications
corresponding to s; and that corresponding to 2" x s’ are
identical, i.e., I(s}) +w(s}) — 2+ n'. Therefore, the optimal
decomposition of m — 1 does not include a power of 2 as a
factor unless it is in the form Sx 2" +h and S is a
decomposition of s with a nonzero remainder, where
m—1=2"s+h.

When m—-1=2"4+¢ (0 <c¢<2"), the decomposition
of m—1 as 2"+ c¢ does not decrease the number of
required multiplications because the number of multi-
plications becomes n+c¢, that is, not less than

TAKAGI ET AL.: A FAST ALGORITHM FOR MULTIPLICATIVE INVERSION IN GF(2™) USING NORMAL BASIS

TABLE 1
Optimal Decomposition for m = 2" (4 < n < 16)
n|m=2"|m—1| optimal decomposition | #mul. | #mul. [IT]
4 16 15 Hx3 5 6
5 32 31 10x34+1 7 8
6 64 63 9x7 8 10
7 128 127 18 x 741 10 12
8 256 255 17x5x3 10 14
9 512 511 3xT7 12 16
10 1024 | 1023 (10 x3+4+1) %33 13 18
11 2048 | 2047 | (10x3+1)x66+1 15 20
12 4096 | 4095 65 x9x7 15 22
13 8192 | 8191 130x9x7+1 17 24
14 16384 | 16383 (18 x 74 1) x 129 18 26
15| 32768 | 32767 (320 x 9+ 1) x 7 19 28
16 | 65536 | 65535 257 x 17T x5 x 3 19 30

I(m—1)+w(m —1) — 2 =n + w(c). Therefore, it is obvious
that, in the optimal decomposition of m — 1, the remainder
h must be smaller than ¢ and, hence,

I(m—-—h-1)=Im-1)=n+1.

When m — 1 is decomposed as Hle s;+ h and s is not
decomposed further, the number of required multiplica-
tions is at least Z;‘f’:l I(sj)+h>1(m—1)+h because
w(s;) > 2. When the first factor s; is decomposed further,
the number of required multiplications corresponding to
the optimal decomposition of s, is at least I(s;) and, hence,

397

TABLE 2
Optimal Decomposition for m = 32k (k < 31)

m | m — 1 | optimal decomposition | #mul. | #mul. [IT]

32 31 10x3+1 7 8

64 63 9x7T 8 10

96 95 19x5 9 11
128 127 18x7T+1 10 12
160 159 53 x 3 10 12
192 191 38x5+1 11 13
224 223 T4x3+1 11 13
256 255 17x5x%x3 10 14
288 287 41 x 7 11 13
320 319 29 x 11 12 14
352 351 13 x9x3 11 14
384 383 (38x5+1)x2+1 13 15
416 415 83 x5 12 14
448 447 149 x 3 12 15
480 | 479 (BAxT+1)x2+1 13 15
512 511 3xT 12 16
544 543 (36x5+1)x3 12 14
576 575 115 x5 13 15
608 607 202 x 341 13 15
640 639 213 x 3 13 16
672 671 (20x3+1)x11 13 15
704 703 37 x 19 13 16
736 735 49 x5 x3 12 16
768 767 59 x 13 14 17
800 799 266 x 3+ 1 13 15
832 831 277 x 3 13 16
864 863 41 x 2142 15 16
896 895 179 x 5 14 17
928 927 (B34x3+1)x9 13 16
960 959 137 x 7 13 17
992 991 66 x5 x3+1 13 17

TABLE 3
Optimal Decomposition with More than Two Components for
m < 256

m | m —1 | optimal decomposition | #mul. | #mul. [IT]

32 31 10x3+1 7 8

62 61 20x3+1 8 9

63 62 (10X 341) x 2 8 9

80 79 26x3+1 9 10

94 93 (10x3+1)%x3 9 10
104 103 34 x3+1 9 10
110 109 36x3+1 9 10
122 121 40x3+1 9 10
123 122 (20x3+1) x2 9 10
125 124 (10x3+1) x4 9 10
128 127 18x7+1 10 12
136 135 9xH5x3 9 10
152 151 50x3+1 10 11
156 155 (10x3+1) x5 10 11
158 157 52x3+1 10 11
159 158 (26 x3+1)x2 10 11
182 181 36x5+1 10 11
184 183 (20x3+1)x3 10 12
187 186 (10x3+1)x6 10 11
192 191 38x5+1 11 13
200 199 66 x3+1 10 11
207 | 206 (34 x34+1) x 2 10 11
218 217 72x3+1 10 11
219 218 (36 x3+1) x2 10 11
224 223 TAx3+1 11 13
236 235 26 x 9+ 1 11 12
238 | 237 (26 x 3+1) %3 11 12
240 239 34xT7+1 11 13
242 241 80x3+1 10 11
243 242 (40x3+1)x2 10 11
245 244 (20x3+1) x4 10 11
249 248 (10x3+1)x38 10 11
252 251 50x5+1 11 13
254 253 84x3+1 11 13
255 254 (18 x 7T4+1) x2 11 13
256 255 17x5%3 10 14

the number of required multiplications by the optimal
decomposition of m — 1 is also at least I(m — 1) + h. There-
fore, we have the following propositions.

Proposition 3. In the optimal decomposition of m —1, the
remainder h must be smaller than w(m — 1) — 2.

Proposition 4. When m —1=2"+ 2% where n >/, ie.,
w(m — 1) = 2, the optimal decomposition is m — 1 itself and
the number of required multiplications is n + 1.

When m is given, we can find the optimal decomposi-
tion(s) of m —1 by an exhaustive search with efficient
pruning using the above propositions. Note that we can also
use the above propositions for finding the optimal decom-
position of the first factor s;. Although it is an interesting
problem, the problem of finding the optimal decomposition
is not crucial because we have to solve this problem only
once when we choose m.

In practical applications, m is frequently selected as
a power of 2. When m=2", m—-1=2"-1 and
I(m—1)=w(m—1) =n. If we do not decompose m — 1,
Algorithm[IT] requires 2n — 2 multiplications. When n is
even, 2" — 1 can be factorized as (2"/> + 1) x (2"/> — 1) and,
when n/2 is even again, 2"/? — 1 can be factorized further.

398

In such a case, we can greatly reduce the number of
multiplications. On the other hand, it is known that 2" — 1 is
prime for n =5,7,13,19,---. When 2" — 1 is prime, Algor-
ithm[Chang] is not applicable. In such a case, since n (> 2)
is odd, we can always decompose 2" — 1 as 2(2(*"1)/2 4+ 1) x
(2=D/2 —1) +1 and can reduce the number of multi-
plications by our algorithm. Table 1 shows one of the
optimal decompositions of m — 1 for m = 2" (4 < n < 16).

In digital systems, m is often selected as a multiple of
word size of the computer such as 32k, where £ is an
integer. Table 2 shows one of the optimal decompositions of
m — 1 for m = 32k (1 < k < 31).

Table 3 shows one of the optimal decompositions of
m—1 for every m (<256) such that the optimal
decomposition consists of more than two components.
For such m, our algorithm requires fewer multiplications
than Algorithm[IT] and than Algorithm[Chang].

4 CONCLUSION

We have proposed a new fast algorithm for multiplicative
inversion in GF(2™) using normal basis. It is based on
Fermat’s Theorem. The number of required multiplications
is reduced by decomposing m — 1 into several factors and a
small remainder. We have shown the effectiveness of the
proposed algorithm by showing optimal decompositions of
m — 1 for practical ms.

The proposed algorithm can be easily modified for
multiplicative inversion in GF((2")") or in GF(p™), where
p is an odd prime.

REFERENCES

[1] C.C.Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura, and
LS. Reed, “VLSI Architecture for Computing Multiplications and
Inverses in GF(2™),” IEEE Trans. Computers, vol. 34, no. 8, pp. 709-
716, Aug. 1985.

[2] T. Itoh and S. Tsujii, “A Fast Algorithm for Computing Multi-
plicative Inverses in GF'(2™) Using Normal Basis,” Information and
Computing, vol. 78, pp. 171-177, 1988.

[3] T. Itoh and S. Tsujii, “A Fast Algorithm for Computing Multi-
plicative Inverses in Finite Fields Using Normal Basis,” IEICE
Trans. (A)., vol. J70-A, no. 11, pp. 1637-1645, Nov. 1989 (in
Japanese).

[4] G.L. Feng, “A VLSI Architecture for Fast Inversion in GF(2™),”
IEEE Trans. Computers, vol. 38, no. 10, pp. 1383-1386. Oct. 1989.

[5] T.Chang, E.Lu, Y. Lee, Y. Leu, and H. Shyu, “Two Algorithms for
Computing Multiplicative Inverses in GF(2™) Using Normal
Basis,” accepted by Information Processing Letters.

[6] T.Itoh and S. Tsujii, “Effective Recursive Algorithm for Comput-
ing Multiplicative Inverses in GF(2™),” Electronics Letters, vol. 24,
no. 6, pp. 334-335, Mar. 1988.

[71 Y. Asano, T. Itoh, and S. Tsujii, “Generalized Fast Algorithm for
Computing Multiplicative Inverses in GF(2™),” Electronics Letters,
vol. 25, no. 10, pp. 664-665, May 1989.

[8] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting
Codes. New York: North-Holland, 1977.

[9] J.L. Massey and J.K. Omura, “Computational Method and
Apparatus for Finite Field Arithmetic,” US Patent Application,
submitted 1981.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.5, MAY 2001

Naofumi Takagi (S'82-M’84) received the BE,
ME, and PhD degrees in information science
from Kyoto University, Kyoto, Japan, in 1981,
1983, and 1988, respectively. He joined the
Department of Information Science, Kyoto
University, as an instructor in 1984 and was
promoted to an associate professor in 1991.
He moved to the Department of Information
Engineering, Nagoya University, Nagoya, Ja-

i pan, in 1994, where he has been a professor
1998. His current interests include computer arithmetic,
hardware algorithms, and logic design. He received the Japan
IBM Science Award and the Sakai Memorial Award of the
Information Processing Society of Japan in 1995. Dr. Takagi was
an associate editor of the IEEE Transactions on Computers from
1996 to 2000. He is a member of the IEEE.

since

Jun-ichi Yoshiki received the BE degree in
information engineering and ME degree in
computing science and engineering from Na-
goya University, Nagoya, Japan, in 1997 and
1999, respectively. While he was a student at
the university, he researched algorithms for
arithmetic operations in Galois fields. He is
now with Oki Electric Industry Co., Ltd., Tokyo,
Japan.

Kazuyoshi Takagi received the BE, ME, and
DrEng degrees in information science from
Kyoto University, Kyoto, Japan, in 1991, 1993,
" - and 1999, respectively. From 1995 to 1999, he
was a research associate at the Nara Institute of
Science and Technology. Since 1999, he has
been an assistant professor in the Department of
Information Engineering, Nagoya University,
E} a3 Nagoya, Japan. His current interests include

: circuit complexity theory, VLSI design, and VLSI
CAD algorithms. He is a member of the IEEE Computer Society.

—
el

> IEEE Computer Society publications cited in this article can be
found in our Digital Library at http://computer.org/publications/dlib.

