
A Fast Algorithm for Multiplicative Inversion
in GF �2m� Using Normal Basis

Naofumi Takagi, Member, IEEE, Jun-ichi Yoshiki, and

Kazuyoshi Takagi, Member, IEEE Computer Society

AbstractÐA fast algorithm for multiplicative inversion in GF �2m� using normal basis is proposed. It is an improvement on those

proposed by Itoh and Tsujii and by Chang et al., which are based on Fermat's Theorem and require O�logm� multiplications. The

number of multiplications is reduced by decomposing mÿ 1 into several factors and a small remainder.

Index TermsÐFinite field, finite field inversion, Fermat's theorem, normal basis.

æ

1 INTRODUCTION

FINITE or Galois field GF �2m� is used in many applications
such as error-correcting codes and cryptography. In

these applications, it is crucial to carry out operations, such
as addition, multiplication, and multiplicative inversion, in
GF �2m� fast. It is known that multiplicative inversion is
much more time-consuming than addition and multiplica-
tion and several attempts have been made to carry out this
operation fast.

Several algorithms have been proposed for multiplica-
tive inversion in GF �2m�. Some of them are based on
Fermat's theorem and use normal basis [1], [2], [3], [4], [5],
[6], [7]. Fermat's theorem implies that, for any nonzero
element � 2 GF �2m�, �ÿ1 � �2mÿ2 and, hence, multiplicative
inversion can be carried out by exponentiation by 2m ÿ 2.
Wang et al. proposed an algorithm in which the exponen-
tiation is carried out by iterative squarings and multi-
plications [1]. It requires mÿ 1 squarings and mÿ 2

multiplications. Since, in the normal basis representation,
squaring of an element in GF �2m� is carried out by a simple
cyclic shift and, hence, much faster than multiplication, then
it is important to reduce the number of multiplications. Itoh
and Tsujii reduced the number of required multiplications
to O�logm� [2], [3]. Feng proposed a similar algorithm,
which requires the same number of multiplications as Itoh
and Tsujii's [4]. Chang et al. improved Itoh and Tsujii's
algorithm and showed that the number of required multi-
plications can be further reduced for some ms by factorizing
mÿ 1 into two factors [5].

In this paper, we propose a new fast algorithm for
multiplicative inversion in GF �2m� using normal basis. It is
an improvement on the algorithm proposed by Chang et al.
It further reduces the number of required multiplications

for some ms by decomposing mÿ 1 into several factors and

a small remainder. It is applicable to some ms to which the

algorithm by Chang et al. is not applicable. It also reduces

the number of multiplications for some ms further than the

algorithm by Chang et al. For example, when m � 27 � 128,

it requires 10 multiplications, while the one by Itoh and

Tsujii requires 12 and the one by Chang et al. is not

applicable. When m � 210 � 1; 024, it requires 13 multi-

plications, while the one by Itoh and Tsujii requires 18 and

the one by Chang et al. requires 14.
In the next section, normal basis and multiplicative

inversion in GF �2m� using normal basis are summarized.

We will propose a new fast algorithm in Section 3.

2 MULTIPLICATIVE INVERSION USING

NORMAL BASIS

For an � 2 GF �2m�, ��20
; �21

; � � � ; �2mÿ1� is called a normal

basis of GF �2m� over GF �2� if �20
, �21

, � � � , and �2mÿ1
are

linearly independent [8]. There exists at least one normal

basis for any m. Using a normal basis, any � 2 GF �2m� is

represented as a vector �b0; b1; � � � ; bmÿ1�, where � � b0�
20 �

b1�
21 � � � � � bmÿ1�

2mÿ1
and bi 2 f0; 1g for 0 � i � mÿ 1.

For any � and
 2 GF �2m�, �� �
�2 � �2 �
2 holds

because 2�
 � 0. From Fermat's theorem, i.e., �2mÿ1 � 1,

�2m � � holds. Therefore, when

� � b0�
20 � b1�

21 � � � � � bmÿ1�
2mÿ1

;

�2 � b0�
21 � b1�

22 � � � � � bmÿ1�
2m

� bmÿ1�
20 � b0�

21 � � � � � bmÿ2�
2mÿ1

:

Hence, in normal basis, when � � �b0; b1; � � � ; bmÿ1�,
�2 � �bmÿ1; b0; � � � ; bmÿ2�. In other words, squaring is carried

out by a simple cyclic right shift. Note that powering by 2i

can be carried out by an �imodm�-bit cyclic right shift.
Massey and Omura proposed an efficient algorithm for

multiplication in GF �2m� using normal basis [9]. In the

algorithm, the fact that squaring is carried out by a cyclic

shift is used. Although the algorithm is efficient, multi-

plication is more time-consuming than squaring.

394 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 5, MAY 2001

. N. Takagi and K. Takagi are with the Department of Information
Engineering, Nagoya University, Nagoya 464-8603, Japan.
E-mail: ntakagi@nuie.nagoya-u.ac.jp.

. J.-i. Yoshiki is with Oki Electric Industry Co., Ltd., 10-3 Shibaura 4-chome,
Minato-ku, Tokyo 108-8551, Japan.

Manuscript received 17 July 1999; revised 20 June 2000; accepted 17 Jan.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 110264.

0018-9340/01/$10.00 ß 2001 IEEE

From Fermat's theorem, for any nonzero element

� 2 GF �2m�, �ÿ1 � �2mÿ2 holds. Therefore, multiplicative

inversion can be carried out by computing �2mÿ2.
Since 2m ÿ 2 � 21 � 22 � � � � � 2mÿ1,

�ÿ1 � �2mÿ2 � �21 � �22 � � � � � �2mÿ1

:

Based on this fact, Wang et al. proposed an algorithm in

which the exponentiation is carried out by iterative

squarings and multiplications [1]. It requires mÿ 2 multi-

plications as well as mÿ 1 squarings.
As stated, using normal basis, squaring is carried out by

a simple cyclic shift and, hence, much faster than multi-

plication. Therefore, it is important to reduce the number of

multiplications for accelerating the exponentiation.
Itoh and Tsujii reduced the number of required

multiplications to O�logm� [2], [3]. The algorithm

proposed in [3] is based on the following fact: Let

mÿ 1 � 2qÿ1 �mqÿ22qÿ2 � � � � �m121 �m020. N a m e l y ,

mÿ 1 is represented as a q-bit binary representation

�1mqÿ2 � � �m1m0�2. Then,

2mÿ1 ÿ 1 � �22qÿ1 ÿ 1�2�mqÿ2���m1m0�2 � 2�mqÿ1���m1m0�2 ÿ 1

� �1� 22qÿ2��1� 22qÿ3� � � �
�1� 221��1� 220�2�mqÿ2���m1m0�2 � 2�mqÿ2���m1m0�2 ÿ 1;

where 2�mqÿ2���m1m0�2 means 2mqÿ22qÿ2�����m121�m020
. Furthermore,

2�mqÿ2���m1m0�2 ÿ 1 � mqÿ2�22qÿ2 ÿ 1�2�mqÿ3���m1m0�2

� 2�mqÿ3���m1m0�2 ÿ 1

� mqÿ2�1� 22qÿ3� � � � �1� 221��1� 220�
2�mqÿ3���m1m0�2 � 2�mqÿ3���m1m0�2 ÿ 1:

Therefore,

2mÿ1 ÿ 1 � ��1� 22qÿ2�2mqÿ22qÿ2 �mqÿ2��1� 22qÿ3� � � �
�1� 221��1� 220�2�mqÿ3���m1m0�2 � 2�mqÿ3���m1m0�2 ÿ 1:

Iterative application of this reduction yields

2mÿ1 ÿ 1 � ���� � � ���1� 22qÿ2�2mqÿ22qÿ2 �mqÿ2��1� 22qÿ3�
2mqÿ32qÿ3 �mqÿ3� � � ���1� 222�2m222 �m2�
�1� 221�2m121 �m1��1� 220�2m020 �m0:

Therefore,

�ÿ1 � �2mÿ2 � ��2mÿ1ÿ1�2

� ����� � � ����1�22qÿ2 �2mqÿ22qÿ2

� �mqÿ2��1�22qÿ3 �2mqÿ32qÿ3

� �mqÿ3�
� � ���1�222 �2m222

� �m2��1�221 �2m121

� �m1��1�220 �2m020

� �m0�2:
Hereafter, we call the algorithm proposed in [3] Algor-

ithm[IT]. Algorithm[IT] requires l�mÿ 1� � w�mÿ 1� ÿ 2

multiplications and l�mÿ 1� � w�mÿ 1� ÿ 1 (multiple-bit)

cyclic shifts, where l�mÿ 1� � q is the number of bits of the

binary representation of mÿ 1 and w�mÿ 1� is the number

of 1s in the representation, i.e., the Hamming weight of the

representation.

Feng proposed a similar algorithm, which requires the
same number of multiplications and cyclic shifts as
Algorithm[IT] [4].

Chang et al. improved Algorithm[IT] and showed that
the number of required multiplications can be further
reduced for some ms [5]. The algorithm proposed in [5] is
based on the following fact: Let mÿ 1 be factorized as
mÿ 1 � s� t. Then,

2m ÿ 2 � 2�2mÿ1 ÿ 1� � 2�2st ÿ 1�
� 2�2s ÿ 1���2s�tÿ1 � �2s�tÿ2 � � � � � �2s�1 � �2s�0�
� �2s�1 ÿ 2���2s�tÿ1 � �2s�tÿ2 � � � � � �2s�1 � �2s�0�:

Therefore, �ÿ1 � ��2s�1ÿ2��2s�tÿ1��2s�tÿ2������2s�1��2s�0 . �2s�1ÿ2 can
be calculated by Algorithm[IT] with replacing mÿ 1 by s.
Let t be represented by r-bit binary representation
�1nrÿ2 � � �n1n0�2. Then,

�2s�tÿ1 � �2s�tÿ2 � � � � � �2s�1 � �2s�0

� ���� � � ���1� 2s2
rÿ2�2nrÿ2s2

rÿ2 � nrÿ2��1� 2s2
rÿ3�2nrÿ3s2

rÿ3

� nrÿ3� � � ���1� 2s2
2�2n2s2

2 � n2��1� 2s2
1�2n1s2

1 � n1�
�1� 2s2

0�2n0s2
0 � n0:

Therefore, letting �2s�1ÿ2 be
,

�ÿ1 � ��� � � ��
�1�2s2
rÿ2 �2nrÿ2s2

rÿ2 �
nrÿ2��1�2s2
rÿ3 �2nrÿ3s2

rÿ3

�
nrÿ3�
� � � �
n2��1�2s2

1 �2n1s2
1

�
n1��1�2s2
0 �2n0s2

0

�
n0 :

Hereafter, we call the algorithm proposed in [5]
Algorithm[Chang]. Algorithm[Chang] requires �l�s� �
w�s� ÿ 2� � �l�t� � w�t� ÿ 2� multiplications and �l�s� �
w�s� ÿ 1� � �l�t� � w�t� ÿ 2� (multiple-bit) cyclic shifts.
The number of multiplications is reduced for some ms
compared to Algorithm[IT]. For example, when
m � 210 � 1; 024, mÿ 1 � 1; 023 can be factorized as 31� 33
and the number of required multiplications is 14, while
Algorithm[IT] requires 18. Note that the number of
required multiplications depends on the way of factoriza-
tion when mÿ 1 contains more than two factors. For
example, when m � 1; 024, mÿ 1 � 1; 023 can also be
factorized as 11� 93 and the number of required multi-
plications is 15 by this factorization. Note also that the
number of required multiplications is not always reduced,
even if mÿ 1 can be factorized. For example, when
m � 962, mÿ 1 � 961 can be factorized as 31� 31 and the
number of required multiplications becomes 16, while
Algorithm[IT] requires 13.

3 NEW ALGORITHM

The algorithm proposed by Chang et al. is efficient, but it is
not applicable to m such that mÿ 1 is prime. We propose a
new algorithm which is also applicable to such m.

Since

2m ÿ 2 � 2mÿ1 � 2mÿ1 ÿ 2 � 2mÿ1 � 2mÿ2 � � � � � 2mÿh

� 2mÿh ÿ 2;

�ÿ1 � �2mÿ2 � �2mÿ1 � �2mÿ2 � � � � � �2mÿh � �2mÿhÿ2:

TAKAGI ET AL.: A FAST ALGORITHM FOR MULTIPLICATIVE INVERSION IN GF �2m� USING NORMAL BASIS 395

We can calculate �2mÿi by i-bit cyclic left shift. Therefore, we
can obtain �ÿ1 from �2mÿhÿ2 by h multiplications. We can
calculate �2mÿhÿ2 by Algorithm[IT] or Algorithm[Chang] by
replacing m by mÿ h.

By this method, we can reduce the number of required
multiplications for some ms. For example, when
m � 27 � 128, we can reduce the number of multiplica-
tions to 10 by decomposing mÿ 1 � 127 as 18� 7� 1,
while Algorithm[IT] requires 12 multiplications and
Algorithm[Chang] is not applicable. When m � 254, we can
reduce the number of multiplications to 11 by decomposing
mÿ 1 � 253 as 84� 3� 1, while Algorithm[IT] requires 13
and Algorithm[Chang] requires 12 by factorization of
11� 23.

Although it is not stated in [5], it is obvious that the
principle used in Algorithm[Chang] can be iteratively
applied when mÿ 1 contains more than two factors. We
can reduce the number of required multiplications for some
ms by factorizing mÿ 1 into more than two factors. For
example, when m � 28 � 256, we can reduce the number of
multiplications to 10 by factorizing mÿ 1 � 255 as
3� 5� 17. Note that Algorithm[IT] requires 14 multiplica-
tions and that Algorithm[Chang] requires 11 by factoriza-
tion of 15� 17 or 5� 51 or 3� 85. We can adopt this
method when mÿ hÿ 1 can be factorized into more than
two factors.

Furthermore, the principle that decomposing mÿ 1
into several factors and a small remainder h can be
recursively applied to one of the factors of mÿ hÿ 1. For
example, when m � 384, we can reduce the number of
multiplications to 13 by decomposing mÿ 1 � 383 as
�38� 5� 1� � 2� 1. Note that Algorithm[IT] requires
15 multiplications and that Algorithm[Chang] is not
applicable.

Based on the consideration, we propose a new algorithm
as follows. In the following algorithm, function Func is
recursively called.

Algorithm[TYT]
function Func��; t� /* calculating �2t�1ÿ2 */
{

if we do not decompose t then
/* Assume t � �1mqÿ2 � � �m1m0�2. */

{

 :� �;
for i :� q ÿ 2 to 0 do
{

 :�
 �
22i

;
if mi � 1 then
 :�
22i � �;

}

 :�
2;
return
;

}
else
{

decompose t as t �Qk
j�1 sj � h;

 :� Func��; s1�;
s :� 1;
for j :� 2 to k do

/* Assume sj � �1m�j�qjÿ2 � � �m�j�1 m
�j�
0 �2. */

{
� :�
;
s :� s� sjÿ1;
for i :� qj ÿ 2 to 0 do
{
� :� � � �2s2

i

;
if m

�j�
i � 1 then � :� �2s2

i �
;
}

 :� �;

}
for i :� 1 to h do � :� � � �2t�1ÿi

;
return �;

}
}
main
{
�ÿ1 :� Func��;mÿ 1�;

}

When mÿ 1 is decomposed as mÿ 1 �Qk
j�1 sj � h and

s1 is not decomposed, the number of required multi-

plications is
Pk

j�1�l�sj� � w�sj� ÿ 2� � h. This is because the

number of required multiplications corresponding to factor

sj is l�sj� � w�sj� ÿ 2. When the first factor s1 is decomposed

further, we can calculate the number of required multi-

plications by using this formula iteratively.
The number of required multiplications depends on the

way of decomposition. There may exist several decomposi-
tions that minimize the number of multiplications. In such a
case, it seems better to adopt the simplest decomposition,
i.e., the one with the fewest components, in order to make
the control of �ÿ1 computation simpler. (We refer to the
factors and the remainder(s) as components.) We call the
decomposition that minimizes the number of required
multiplications and consists of the fewest components
ªoptimal decomposition.º There may exist more than one
optimal decomposition.

The following propositions are useful for finding the
optimal decomposition(s) of mÿ 1.

Proposition 1. When mÿ 1 � 2n, the optimal decomposition is
mÿ 1 itself (nondecomposition) and the number of required
multiplications is n.

Proposition 2. When mÿ 1 � 2n
0
s� h, where s is odd, the

smallest number of required multiplications by a decomposi-

tion of mÿ 1 as
Qk

j�1 sj � h (either s1 is decomposed further

or not) is n0 � h plus the number of required multiplications

by the optimal decomposition of s.

When sj � 2n
0
j s0j, the number of required multiplications

corresponding to sj and that corresponding to 2n
0
j � s0j are

identical, i.e., l�s0j� � w�s0j� ÿ 2� n0. Therefore, the optimal
decomposition of mÿ 1 does not include a power of 2 as a
factor unless it is in the form S � 2n

0 � h and S is a
decomposition of s with a nonzero remainder, where
mÿ 1 � 2n

0
s� h.

When mÿ 1 � 2n � c (0 < c < 2n), the decomposition
of mÿ 1 as 2n � c does not decrease the number of
required multiplications because the number of multi-
plications becomes n� c, that is, not less than

396 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 5, MAY 2001

l�mÿ 1� � w�mÿ 1� ÿ 2 � n� w�c�. Therefore, it is obvious

that, in the optimal decomposition of mÿ 1, the remainder

h must be smaller than c and, hence,

l�mÿ hÿ 1� � l�mÿ 1� � n� 1:

When mÿ 1 is decomposed as
Qk

j�1 sj � h and s1 is not

decomposed further, the number of required multiplica-

tions is at least
Pk

j�1 l�sj� � h � l�mÿ 1� � h because

w�sj� � 2. When the first factor s1 is decomposed further,

the number of required multiplications corresponding to

the optimal decomposition of s1 is at least l�s1� and, hence,

the number of required multiplications by the optimal

decomposition of mÿ 1 is also at least l�mÿ 1� � h. There-

fore, we have the following propositions.

Proposition 3. In the optimal decomposition of mÿ 1, the
remainder h must be smaller than w�mÿ 1� ÿ 2.

Proposition 4. When mÿ 1 � 2n � 2n
0
, where n > n0, i.e.,

w�mÿ 1� � 2, the optimal decomposition is mÿ 1 itself and
the number of required multiplications is n� 1.

When m is given, we can find the optimal decomposi-
tion(s) of mÿ 1 by an exhaustive search with efficient
pruning using the above propositions. Note that we can also
use the above propositions for finding the optimal decom-
position of the first factor s1. Although it is an interesting
problem, the problem of finding the optimal decomposition
is not crucial because we have to solve this problem only
once when we choose m.

In practical applications, m is frequently selected as
a power of 2. When m � 2n, mÿ 1 � 2n ÿ 1 and
l�mÿ 1� � w�mÿ 1� � n. If we do not decompose mÿ 1,
Algorithm[IT] requires 2nÿ 2 multiplications. When n is
even, 2n ÿ 1 can be factorized as �2n=2 � 1� � �2n=2 ÿ 1� and,
when n=2 is even again, 2n=2 ÿ 1 can be factorized further.

TAKAGI ET AL.: A FAST ALGORITHM FOR MULTIPLICATIVE INVERSION IN GF �2m� USING NORMAL BASIS 397

TABLE 1
Optimal Decomposition for m � 2n (4 � n � 16)

TABLE 2
Optimal Decomposition for m � 32k (k � 31)

TABLE 3
Optimal Decomposition with More than Two Components for

m � 256

In such a case, we can greatly reduce the number of
multiplications. On the other hand, it is known that 2n ÿ 1 is
prime for n � 5; 7; 13; 19; � � � . When 2n ÿ 1 is prime, Algor-
ithm[Chang] is not applicable. In such a case, since n (> 2)
is odd, we can always decompose 2n ÿ 1 as 2�2�nÿ1�=2 � 1� �
�2�nÿ1�=2 ÿ 1� � 1 and can reduce the number of multi-
plications by our algorithm. Table 1 shows one of the
optimal decompositions of mÿ 1 for m � 2n (4 � n � 16).

In digital systems, m is often selected as a multiple of
word size of the computer such as 32k, where k is an
integer. Table 2 shows one of the optimal decompositions of
mÿ 1 for m � 32k (1 � k � 31).

Table 3 shows one of the optimal decompositions of
mÿ 1 for every m (� 256) such that the optimal
decomposition consists of more than two components.
For such m, our algorithm requires fewer multiplications
than Algorithm[IT] and than Algorithm[Chang].

4 CONCLUSION

We have proposed a new fast algorithm for multiplicative
inversion in GF �2m� using normal basis. It is based on
Fermat's Theorem. The number of required multiplications
is reduced by decomposing mÿ 1 into several factors and a
small remainder. We have shown the effectiveness of the
proposed algorithm by showing optimal decompositions of
mÿ 1 for practical ms.

The proposed algorithm can be easily modified for
multiplicative inversion in GF ��2n�m� or in GF �pm�, where
p is an odd prime.

REFERENCES

[1] C.C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura, and
I.S. Reed, ªVLSI Architecture for Computing Multiplications and
Inverses in GF(2m),º IEEE Trans. Computers, vol. 34, no. 8, pp. 709-
716, Aug. 1985.

[2] T. Itoh and S. Tsujii, ªA Fast Algorithm for Computing Multi-
plicative Inverses in GF �2m� Using Normal Basis,º Information and
Computing, vol. 78, pp. 171-177, 1988.

[3] T. Itoh and S. Tsujii, ªA Fast Algorithm for Computing Multi-
plicative Inverses in Finite Fields Using Normal Basis,º IEICE
Trans. (A)., vol. J70-A, no. 11, pp. 1637-1645, Nov. 1989 (in
Japanese).

[4] G.L. Feng, ªA VLSI Architecture for Fast Inversion in GF �2m�,º
IEEE Trans. Computers, vol. 38, no. 10, pp. 1383-1386. Oct. 1989.

[5] T. Chang, E. Lu, Y. Lee, Y. Leu, and H. Shyu, ªTwo Algorithms for
Computing Multiplicative Inverses in GF �2m� Using Normal
Basis,º accepted by Information Processing Letters.

[6] T. Itoh and S. Tsujii, ªEffective Recursive Algorithm for Comput-
ing Multiplicative Inverses in GF �2m�,º Electronics Letters, vol. 24,
no. 6, pp. 334-335, Mar. 1988.

[7] Y. Asano, T. Itoh, and S. Tsujii, ªGeneralized Fast Algorithm for
Computing Multiplicative Inverses in GF �2m�,º Electronics Letters,
vol. 25, no. 10, pp. 664-665, May 1989.

[8] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting
Codes. New York: North-Holland, 1977.

[9] J.L. Massey and J.K. Omura, ªComputational Method and
Apparatus for Finite Field Arithmetic,º US Patent Application,
submitted 1981.

Naofumi Takagi (S'82-M'84) received the BE,
ME, and PhD degrees in information science
from Kyoto University, Kyoto, Japan, in 1981,
1983, and 1988, respectively. He joined the
Department of Information Science, Kyoto
University, as an instructor in 1984 and was
promoted to an associate professor in 1991.
He moved to the Department of Information
Engineering, Nagoya University, Nagoya, Ja-
pan, in 1994, where he has been a professor

since 1998. His current interests include computer arithmetic,
hardware algorithms, and logic design. He received the Japan
IBM Science Award and the Sakai Memorial Award of the
Information Processing Society of Japan in 1995. Dr. Takagi was
an associate editor of the IEEE Transactions on Computers from
1996 to 2000. He is a member of the IEEE.

Jun-ichi Yoshiki received the BE degree in
information engineering and ME degree in
computing science and engineering from Na-
goya University, Nagoya, Japan, in 1997 and
1999, respectively. While he was a student at
the university, he researched algorithms for
arithmetic operations in Galois fields. He is
now with Oki Electric Industry Co., Ltd., Tokyo,
Japan.

Kazuyoshi Takagi received the BE, ME, and
DrEng degrees in information science from
Kyoto University, Kyoto, Japan, in 1991, 1993,
and 1999, respectively. From 1995 to 1999, he
was a research associate at the Nara Institute of
Science and Technology. Since 1999, he has
been an assistant professor in the Department of
Information Engineering, Nagoya University,
Nagoya, Japan. His current interests include
circuit complexity theory, VLSI design, and VLSI

CAD algorithms. He is a member of the IEEE Computer Society.

. IEEE Computer Society publications cited in this article can be
found in our Digital Library at http://computer.org/publications/dlib.

398 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 5, MAY 2001

