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Abstract—A mixed radix-4/2 algorithm for modular multiplication/division suitable for VLSI implementation is proposed. The algorithm

is based on Montgomery method for modular multiplication and on the extended Binary GCD algorithm for modular division. Both

algorithms are modified and combined into the proposed algorithm so that almost all the hardware components are shared. The new

algorithm carries out both calculations using simple operations such as shifts, additions, and subtractions. The radix-2 signed-digit

representation is used to avoid carry propagation in all additions and subtractions. A modular multiplier/divider based on the algorithm

performs an n-bit modular multiplication/division in OðnÞ clock cycles where the length of the clock cycle is constant and independent

of n. The modular multiplier/divider has a linear array structure with a bit-slice feature and can be implemented with much smaller

hardware than that necessary to implement both multiplier and divider separately.

Index Terms—Computer arithmetic, hardware algorithm, modular multiplication, modular division, redundant representation,

cryptography.
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1 INTRODUCTION

THE increasing importance of security in computers and
communications systems introduced the need for

managing several public-key cryptosystems in PCs and
mobile devices such as PDAs. Processing these cryptosys-
tems requires a huge amount of computation and there is,
therefore, a great demand for developing dedicated hard-
ware to speed up the computations. Modular multiplication
and modular division with large modulus are the basic
operations in processing many public-key cryptosystems.
For example, they are used in the deciphering operation of
RSA [21] and ElGamal [6] cryptosystems, in the Diffie-
Hellman key exchange protocol [5], and in the DSA digital
signature scheme [1]. They can also be used to accelerate the
exponentiation operation using addition-subtraction chains
[10] and to compute point operations in ECC with curves
defined over GF ðpÞ [11].

In this paper, we are investigating modular multi-
plication/division hardware algorithms for a large modulus
suitable to be implemented in compact hardware. Much
effort has been devoted to developing specialized hardware
for computing fast modular multiplication and modular
inversion separately. Many algorithms have been proposed
in the literature for computing modular multiplication.
Most of them use redundant number systems and perform
a high-radix modular multiplication [17], [15], [24], [14], [25]
or use Residue Number System (RNS) [20], [2], [9], [7]. For
modular inversion, we can cite the works of [19] and [3]. For
modular division, however, there are only a few algorithms
and these are based on the Euclidean algorithm for
computing GCD [22]. None of these works has concentrated

on reducing the hardware requirements of modular multi-
plier and divider by combining them into the same
architecture. Enabling the reduction of hardware is im-
portant because it allows for the miniaturization of portable
devices and reduces fabrication costs.

In this paper, we propose a mixed radix-4/2 algorithm
for modular multiplication/division for a large modulus
suitable for VLSI implementation. The calculation of
modular multiplication is based on the Montgomery multi-
plication algorithm [16] and the modular division on the
extended Binary GCD algorithm [22] because both of these
algorithms have similar structures and use similar opera-
tions to perform the calculations. We exploit these simila-
rities to modify the algorithms in order to share almost all
hardware components for both operations. Other combina-
tions were attempted, but all were found to have inherent
differences making them unsuitable for combining.

We have accelerated Montgomery multiplication algo-
rithmas amixed radix-4/2 algorithm,whichprocesses,when
possible, the multiplier in radix-4 per iteration. We have also
accelerated the extended Binary GCD algorithm as a mixed
radix-4/2 algorithm by transforming a two-step operation
into a one-step operation. Thus, when possible, the operands
are processed by two digits at each iteration. Redundant
representation isused in all additions andsubtractions so that
they may be carried out without carry propagation.

A modular multiplier/divider based on the proposed
algorithm has a linear array structure with a bit-slice feature
and is suitable for VLSI implementation. The amount of
hardware of an n-bit modular multiplier/divider is propor-
tional to n. It performs an n-bit modular multiplication in a
maximumof b23 ðnþ 2Þc þ 3 clock cycles and ann-bitmodular
division in nomore than 2nþ 5 clock cycles,where the length
of clock cycle is constant, independent of n.

This paper is an extension of [8]. The algorithm for
modular multiplication/division has been improved and
the reduction of hardware has been determined through
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simulation. For the latter, we have designed a modular
multiplier based on the Montgomery algorithm with the
modification we introduced to accelerate it, a modular
divider based on the extended Binary GCD algorithm also
with the modification we introduced, and a modular
multiplier/divider based on the proposed algorithm. The
estimated total circuit area of the modular multiplier/
divider resulted much smaller than the total sum of circuit
areas when the multiplier and the divider are implemented
separately, with critical path delays remaining practically to
the same value.

In the next section, we will explain the extended Binary
GCD algorithm, the Montgomery multiplication algorithm,
and the redundant number representation system we use.
Section 3 proposes a hardware algorithm for modular
multiplication/division. Section 4 explains the hardware
implementation and design. Section 5 considers possible
applications to modular exponentiation and cryptography.
Section 6 contains our concluding remarks.

2 PRELIMINARIES

2.1 Extended Binary GCD Algorithm for Modular
Division

TheextendedBinaryGCDalgorithm[10] is anefficientwayof
calculatingmodular division. Consider the residue class field
of integers with an odd primemodulusM. LetX and Y ð6¼ 0Þ
be elements of the field. The algorithm calculates Zð< MÞ
where Z � X=Y ðmod MÞ (the algorithm also works withM
not prime and Y relatively prime toM). It performsmodular
division by intertwining the procedure for finding the
modular quotient with that for calculating gcdðY ;MÞ.

The algorithm requires four variables, A, B, U , and V .
A and B are used for the calculation of gcdðY ;MÞ and
variables U and V for the calculation of modular quotient.
Variables A and B are initialized to Y and M, respec-
tively, and the following properties are applied iteratively
to calculate gcdðY ;MÞ: If A is even and B is odd, then
gcdðA;BÞ ¼ gcdðA=2; BÞ; if A and B are both odd, then
either AþB or A�B is divisible by 4; in this case, if
AþB is divisible by 4, then gcdðA;BÞ ¼ gcdððAþ
BÞ=4; BÞ and jðAþBÞ=4j � maxðjA=2j; jB=2jÞ; otherwise,
A�B is divisible by 4, gcdðA;BÞ ¼ gcdððA�BÞ=4; BÞ,
and jðA�BÞ=4j � maxðjA=2j; jB=2jÞ. In order to determine
the modular quotient, U and V are initialized to the values
of X and 0, respectively; then, the same operations that are
performed to A and B are applied to U and V in modulo M.

We show the algorithm below. Note that A and B are
integers and are allowed to be negative. � represents �� �,
where � and � are values such that 2� and 2� indicate the
upper bounds of jAj and jBj, respectively. � is introduced to
represent minð�; �Þ and the condition � ¼ 0 assures that
A ¼ 0.

Algorithm 1 (Algorithm for Modular Division)
Inputs: M: 2n�1 < M < 2n, gcdðM; 2Þ ¼ 1, and prime

X;Y : 0 � X < M, 0 < Y < M

Output: Z ¼ X=Y modM

Algorithm:

A :¼ Y ; B :¼ M; U :¼ X; V :¼ 0; � :¼ n; � :¼ 0;

while � 6¼ 0 do

while Amod 2 ¼ 0 do

A :¼ A=2; U :¼ U=2 modM;

� :¼ �� 1; � :¼ � � 1;

endwhile

if � < 0 then

T :¼ A; A :¼ B; B :¼ T ;

T :¼ U ; U :¼ V ; V :¼ T ;

� :¼ ��;

endif

if ðAþBÞmod 4 ¼ 0 then q :¼ 1 else q :¼ �1;

A :¼ ðAþ qBÞ=4; U :¼ ðU þ qV Þ=4 modM;

� :¼ �� 1; � :¼ � � 1;

endwhile

if B ¼ 1 then Z :¼ V else /* B ¼ �1*/ Z :¼ M � V ;

It can easily be shown that the equivalences V � Y �
B�X ðmod MÞ and U � Y � A�X ðmod MÞ always hold.
Since gcdðY ;MÞ ¼ 1, when A ¼ 0, B is 1 or �1. Hence, in

the final step of the algorithm, Z � Y � X ðmod MÞ holds
and Z is the quotient of X=Y modulo M.

2.2 Montgomery Modular Multiplication

Montgomery proposed an efficient algorithm for calculating
modular multiplication [16]. Consider the residue class ring

of integers with an oddmodulusM. LetX and Y be elements
of the ring. The Montgomery modular multiplication algo-
rithm calculates Zð< MÞ where Z � XYR�1 ðmod MÞ. R is

an arbitrary constant relatively prime to M and it usually
takes the value of 2n when the calculations are performed in

radix-2 with an n-bit modulus M.
Montgomery multiplication algorithm in radix-2 is

described below. We use the same notation as in the

extended Binary GCD algorithm to emphasize the simila-
rities of these algorithms.

Algorithm 2 (Algorithm for Montgomery Modular

Multiplication)

Inputs: M : 2n�1 < M < 2n and gcdðM; 2Þ ¼ 1

X;Y : 0 � X;Y < M

Output: Z ¼ XY 2�n modM

Algorithm:

A :¼ Y ; U :¼ 0; V :¼ X; � ¼ n;
while � 6¼ 0 do

if Amod 2 ¼ 0 then q :¼ 0 else q :¼ 1;

A :¼ ðA� qÞ=2; U :¼ ðU þ qV Þ=2 modM;

� :¼ �� 1;

endwhile

if U � M then Z :¼ U �M else Z :¼ U ;

The loop finishes after n iterations. Note that U is always

bounded by 2M throughout the execution of the loop.
Therefore, the last correction step assures that the output is
correctly expressed in the range ½0;M � 1�.

2.3 Use of a Redundant Representation

In order to perform additions and subtractions without

carry propagation, we represent the internal variables A, B,
U , and V as n-digit radix-2 signed digit (SD2) numbers.

The SD2 representation uses the digit set f�11; 0; 1g, where
�11 denotes �1. An n-digit SD2 integer A ¼ ½an�1; an�2; � � � ; a0�
ðai 2 f�11; 0; 1gÞ has the value

Pn�1
i¼0 ai � 2i. The addition of two
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SD2 numbers can be performed without carry propagation.
The addition of two SD2 numbers, A and B, is accom-
plished by first calculating the interim sum hi and the carry
digit ci and then performing the final sum si ¼ hi þ ci�1 for
each i without carry propagation. To calculate si, we need
to check the digits ai, bi, and their preceding ones, ai�1, bi�1,
ai�2, and bi�2. We use the addition rules for SD2 numbers
shown in Table 1. All the digits of the result can be
computed in parallel. The additive inverse of an SD2
number can be obtained by simply changing the signs of all
nonzero digits in it. Subtraction can be achieved by finding
the additive inverse and performing addition. We require a
carry-propagate addition to convert an SD2 number to the
ordinary nonredundant representation.

In applications such as exponentiation, chained multi-
plications are required. To remove time-consuming SD2 to
binary conversion in eachmultiplication, the input operands
X and Y as well as the output resultZ are expressedwith the
sameSD2 representation in the range ½�M þ 1;M � 1�. In this
way, the output can be directly fed into the inputs. Note that,
in the SD2 system, operands X and Y can still be given in
ordinary binary representation.

3 A HARDWARE ALGORITHM FOR MODULAR

MULTIPLICATION/DIVISION

We propose a hardware algorithm that performs Mon-
tgomery modular multiplication and modular division,
which is efficient in execution time and hardware require-
ments. We first present our accelerated modular division
algorithm, then our accelerated Montgomery modular
multiplication algorithm, and, finally, the combined mixed
radix-4/2 modular multiplication/division algorithm.

3.1 Hardware Algorithm for Modular Division

A hardware algorithm based on the extended Binary GCD
algorithm presented in the previous section was proposed
in [22]. We modified and accelerated it. We explain first the
implementation in [22] and then the modification we
introduced.

The algorithm described in [22] performs all basic
operations in constant time, independent of n, by a combina-
tional circuit. InternalvariablesA,B,U , andV are represented
as n-digit radix-2 SD2 numbers. The “while” loop of the
algorithm is implemented by introducing variable P , which
represents a binary number of nþ 2 bits and indicates the

minimumof the upper bounds of jAj and jBj, i.e.,minð2�; 2�Þ.
Note that P has only one bit of value 1 and the rest of them
have the value of 0. In this way, the termination condition of
� ¼ 0, which requires an investigation of all the bits of �, is
replaced by a check of P ¼ 1, which can be carried out by
testing the least significant bit of P , i.e., p0. � is implemented
with abinarynumberDanda flag s (2 f0; 1g).Dhasnþ 2bits
of length and has the value D ¼ 2ð�1Þs ��. The variable D also
has only one bit of value 1 and the rest of them have the value
of 0. In thisway, the decrement � :¼ � � 1, whichmay require
a borrow propagation, is replaced by a one-bit shift ofD. The
value of � ¼ 0 is represented with the values of D ¼ 1 and
s ¼ 1.

In the case when A is divisible by 2, the algorithm
performs A :¼ A=2 with the operation U :¼ U=2 modM.

F o r t he c a s e t ha t ðAþBÞ � 0 ðmod 4Þ ( o r
ðA�BÞ � 0 ðmod 4Þ), the calculations of A :¼ ðAþBÞ=4
and U :¼ ðU þ V Þ=4 mod M (o r A :¼ ðA�BÞ=4 and
U :¼ ðU � V Þ=4 mod M) are performed. When s ¼ 1 and
D > 1, i.e., � < 0, these calculations are combined with their
next swap of A and B and that of U and V . The test
condition ðAþBÞmod 4 ¼ 0 is carried out by checking if
ð½a1a0� þ ½b1b0�Þmod 4 ¼ 0, thus, only the least significant
two digits of A and B need to be checked.

The calculation of U=2 modulo M is implemented by the
operation MHLV ðU;MÞ. It is carried out by performing
U=2 or ðU þMÞ=2 accordingly as U is even or odd. Note
that only the least significant digit of U needs to be checked
to determine whether it is even or odd.

The calculation ofW=4moduloM is implemented by the
operation MQRTRðW;MÞ. It is carried out by performing
the following calculations: IfM � 1 ðmod 4Þ, it performsW=4
or ðW �MÞ=4 or ðW þ 2MÞ=4 or ðW þMÞ=4, accordingly as
W mod 4 is 0, 1, 2, or 3. IfM � 3 ðmod 4Þ, it performsW=4 or
ðW þMÞ=4 or ðW þ 2MÞ=4 or ðW �MÞ=4, accordingly as
W mod 4 is 0, 1, 2, or 3. SinceM is an ordinary binary number,
addition ofM or�M or 2M inMQRTR and addition ofM in
MHLV are simpler than the ordinary SD2 addition. For the
details of the simpler SD2 addition, see, e.g., [23]. Sincewe are
assuming thatM is odd, only the second least significant bit
of M, i.e., m1, has to be checked to determine the value of
M mod 4. Operation ðU þ V Þ=4 mod M and ðU � V Þ=4 mod
M are then implemented with MQRTRðU þ V ;MÞ and
MQRTRðU � V ;MÞ, respectively. Note that only the least
significant two digits of U and V have to be checked to
determine the value of ðU þ V Þmod 4 and ðU � V Þmod 4. All
results of these basic operations are always in the range from
�M to M and no over-flow occurs.

In order to accelerate the calculation, we modify the
algorithm and introduce a new testing condition. That is, in
the case when A is divisible by 4, instead of performing A=2
and U=2 modulo M in two different steps, we group two of
each operation into the calculations of A=4 and U=4 modulo
M. For the latter, we use operation MQRTRðU;MÞ. Only
the least significant two digits of U need to be checked to
determine the value of U mod 4.

Now, we present the accelerated division algorithm. In
the algorithm, fC1; C2g means that two calculations, C1
and C2, are performed in parallel. F >> l means a logical
shift of F by l positions to the right. Analogously, F << l
means a logical shift of F by l positions to the left.
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Algorithm 3 (Hardware Algorithm for Modular Division)

Inputs: M : 2n�1 < M < 2n, gcdðM; 2Þ ¼ 1 and prime

X;Y : �M < X;Y < M ðY 6¼ 0Þ
Output: Z ¼ X=Y modM ð�M < Z < MÞ
Algorithm:

Step 1: A :¼ Y ; B :¼ M; U :¼ X; V :¼ 0; M :¼ M;

P :¼ 2nþ1; D :¼ 1; s :¼ 1;

Step 2: while p0 6¼ 1 do

if ½a1a0� ¼ 0 then /* A � 0 ðmod 4Þ */
A :¼ A >> 2; U :¼ MQRTRðU;MÞ;
if s ¼ 0 then

if d2 ¼ 1 then s :¼ 1;

if d1 ¼ 0 then D :¼ D >> 2;

else P :¼ P >> 1; s :¼ 1; endif

else /* s ¼ 1 */

D :¼ D << 2;

if p1 ¼ 0 then P :¼ P >> 2

else P :¼ P >> 1;

endif

elseif a0 ¼ 0 then /* A � 2 ðmod 4Þ */
A :¼ A >> 1; U :¼ MHLV ðU;MÞ;
if s ¼ 0 then

if d1 ¼ 1 then s :¼ 1;

D :¼ D >> 1;

else /* s ¼ 1 */ D :¼ D << 1;

P :¼ P >> 1; endif

else /* A � 1 (mod 4) or A � 3 (mod 4) */

if ð½a1a0� þ ½b1b0�Þmod 4 ¼ 0 then q :¼ 1

else q :¼ �1;

if s ¼ 0 or d0 ¼ 1 then

A :¼ ðAþ qBÞ >> 2;

U :¼ MQRTRðU þ qV ;MÞ;
if s ¼ 1 then

P :¼ P >> 1; D :¼ D << 1;

else /* s ¼ 0 */

if d1 ¼ 1 then s :¼ 1;

D :¼ D >> 1;

endif

else /* s ¼ 1 and D > 1 */

fA :¼ ðAþ qBÞ >> 2; B :¼ Ag;

fU :¼ MQRTRðU þ qV ;MÞ; V :¼ Ug;
if d1 ¼ 0 then s :¼ 0;

D :¼ D >> 1;

endif

endif

endwhile

Step 3: if ð½b1b0� ¼ 3 or ½b1b0� ¼ �1Þ then V :¼ �V ;

Step 4: Z :¼ V ;

The core of the algorithm is described in Step 2. It is

divided into three parts corresponding to the cases that

A � 0 ðmod 4Þ, A � 2 ðmod 4Þ, and A � 1 or 3 ðmod 4Þ,
respectively.

For the case A � 0 ðmod 4Þ, A :¼ A >> 2 and U :¼
MQRTRðU;MÞ are performed.

Wh e n A � 2 ðmod 4Þ, A :¼ A >> 1 a n d U :¼
MHLV ðU;MÞ are performed.

For the case A � 1 or 3 ðmod 4Þ, and s ¼ 0 or d0 ¼ 1, i.e.,

� � 0, A :¼ ðAþBÞ >> 2 and U :¼ MQRTRðU þ V ;MÞ or

A :¼ ðA�BÞ >> 2 and U :¼ MQRTRðU � V ;MÞ are per-

formed. P is shifted by one position to the right, meaning

that the upper bound between jAj and jBj is reduced by one

digit. In the other case, when A � 1 or 3 ðmod 4Þ, and s ¼ 1

and D > 1, i.e., � < 0, swap between the values of A and B

and, between U and V , are also performed at the same time.
If P ¼ 2 and a0 ¼ 0, although only one-digit operation

is required, the algorithm processes two digits, i.e., A :¼
A >> 2 and U :¼ MQRTRðU;MÞ, to make the control

simple. These operations only update the values of A and

U and do not affect the final result nor do they increase the

number of iterations needed. No special consideration is

required for the termination condition.
In Step 3, B ends with value 1 when, at initialization

time, B � 1 ðmod 4Þ. Otherwise, it ends with value �1. This

happens when ½b1b0� ¼ 11 or ½b1b0� ¼ �111 or ½b1b0� ¼ 0�11 and V

is negated in the SD2 system.
In Step 4, V is selected as the output.
Fig. 1 shows an example of a modular division,

�115=249 mod 251 ¼ �68 mod 251 ¼ 183, where n ¼ 8 by

Algorithm 3. The leftmost column shows which calculations

have been carried out. For example, “ðA�BÞ=4; A” means
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that fA :¼ ðA�BÞ=4; B :¼ Ag and fU :¼ MQRTRðU �
V ;MÞ; V :¼ Ug have been carried out.

3.2 Hardware Algorithm for Montgomery Modular
Multiplication

In order to enable the sharing of the hardware originally
used for division and accelerate the calculation process, we
modified Montgomery algorithm by introducing SD2
representation in operands, internal calculations, and the
output result, and examine the least significant two digits of
A, i.e., ½a1a0�, to process them at each iteration when
possible. The algorithm follows the same structure of the
division algorithm and uses the same test conditions.

For the case ½a1a0� ¼ 0, we perform U=4 modulo M and
shift down A two digit positions. The calculation of U=4
modulo M is performed with MQRTRðU;MÞ. See Fig. 2a.

If ½a1a0� ¼ ½10� or ½�110�, we perform U=2 modulo M and
shift down A by one position, leaving the digit 1 or �11 that
takes place in the least significant digit position to be
processed in the next iteration. U=2 modulo M is calculated
by using MHLV ðU;MÞ. See Fig. 2b.

For the remaining cases, we need to determine whether
the value of ½a1a0�, i.e., a0 þ 2 � a1, is 1 or �1 or 3 or �3.

In the division algorithm (Algorithm 3), the test condi-
tion ð½a1a0� þ ½b1b0�Þmod 4 is used to determine whether
ðAþBÞ or ðA�BÞ is divisible by 4. In order to enable the
sharing of the hardware, we employ the same variable B as

the one used in the division algorithm and use the same test

condition to determine the different values of ½a1a0�. We will

show that the same operations that are used in the division

algorithm can be reused by initializing the variable B with

its least significant digit with the value of �11, i.e., b0 ¼ �11, and

the rest of the digits with the value of 0.
Each case is described next. For the case ½a1a0� ¼ ½01� or

½1�11�, which means that the value of ½a1a0� is equal to 1,

ð½a1a0� þ ½b1b0�Þ ¼ 0 mod 4, so, as in the division algorithm,

U :¼ MQRTRðU þ V ;MÞ and A :¼ ðAþBÞ >> 2 are per-

formed. See Fig. 2c and Fig. 2d.
For the case ½a1a0� ¼ ½0�11� or ½�111�, which means that the

value of ½a1a0� is equal to �1, the condition ð½a1a0� þ ½b1b0�Þ ¼
0 mod 4 does not hold. Therefore, U :¼ MQRTRðU � V ;MÞ
and A :¼ ðA�BÞ >> 2 are performed. See Fig. 2f and

Fig. 2g.
When ½a1a0� ¼ ½�11�11�, which means that the value of ½a1a0�

is equal to �3, the condition ð½a1a0� þ ½b1b0�Þ ¼ 0 mod 4

holds, so U :¼ MQRTRðU þ V ;MÞ and A :¼ ðAþBÞ >> 2

are performed as in the case where the value of ½a1a0� is
equal to 1. During the operation of ðAþBÞ, a carry digit c1
is generated with the value of �11, which can be interpreted as

an addition of �4 to A. So, this process can be seen as a

transformation in the representation of the least significant

two digits ½a1a0� from �3 into �4þ 1. See Fig. 2e.
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In the sameway, when ½a1a0� ¼ ½11�, whichmeans that the

value of ½a1a0� ¼ 3, the condition ½a1a0� þ ½b1b0� ¼ 0 mod 4

does not hold. Hence, operationsA :¼ ðA�BÞ >> 2 and U :

¼ MQRTRðU � V ;MÞ are performed. During the subtrac-

tion, the carry digit c1 with the value of 1 is generated. This

represents an addition of 4 to A. Then, this process can be

interpreted as a transformation of the representation of

½a1a0� from 3 into þ4� 1. See Fig. 2h.
As a consequence, all calculations can be performed with

the same operations used for the division case, i.e., shifts,

MHLV and MQRTR operations. All results are always

bounded in absolute value by M.
During the calculations, due to operations ðAþBÞ or

ðA�BÞ, expansion of maximum two digit positions of A

may occur because of addition rules in SD2. For this reason,

the algorithm always process nþ 2 digit positions of A and

Montgomery constant R is, therefore, equal to 2ðnþ2Þ.
The “while” loop is implemented with the same variable

P as the one used in the division case. It is initialized to the

same value, i.e., 2nþ1. It indicates the upper bound of A and

it is shifted to the right until the final condition of P ¼ 1.
We present the accelerated Montgomery multiplication

algorithm.

Algorithm 4 (Hardware Algorithm for Montgomery Mod-

ular Multiplication)

Inputs: M : 2n�1 < M < 2n and gcdðM; 2Þ ¼ 1

X;Y : �M < X;Y < M

Output: Z ¼ XY 2�ðnþ2Þ modM ð�M < Z < MÞ
Algorithm:

Step 1: A :¼ Y ; B :¼ 1; U :¼ 0; V :¼ X; M :¼ M;

P :¼ 2nþ1; D :¼ 1; s :¼ 1;

Step 2: while p0 6¼ 1 do

if ½a1a0� ¼ 0 then /* A � 0 ðmod 4Þ*/
A :¼ A >> 2; U :¼ MQRTRðU;MÞ;
if p1 ¼ 0 then P :¼ P >> 2;

else P :¼ P >> 1; s :¼ 0; endif

elseif a0 ¼ 0 then /* A � 2 ðmod 4Þ */
A :¼ A >> 1; U :¼ MHLV ðU;MÞ;
P :¼ P >> 1;

else /* A � 1 (mod 4) or A � 3 (mod 4) */

if ð½a1a0� þ ½b1b0�Þmod 4 ¼ 0 then q :¼ 1

else q :¼ �1;

A :¼ ðAþ qBÞ >> 2;

U :¼ MQRTRðU þ qV ;MÞ;
if p1 ¼ 0 then P :¼ P >> 2;
else P :¼ P >> 1; s :¼ 0; endif

endif

endwhile

Step 3: if s ¼ 1 then U :¼ MHLV ðU;MÞ;
Step 4: Z :¼ U ;

In the algorithm, s is initialized to the value of 1. Since

the algorithm processes the multiplier by one or two digits,

a variable s is used to indicate whether the “while” loop

finishes after processing nþ 2 digits or nþ 1 digits of A. In

the former case, s is set to the value of 0. In the latter case, s

retains the same value of 1 indicating that an additional

operation is required. It is shown below that, in this case,

the unprocessed digit of A always has the value of 0 and
MHLV ðU;MÞ is needed to be performed in Step 3.

Proposition 1. In Algorithm 4, if Step 2 finishes after processing
nþ 1 digits of A, the remaining unprocessed digit of A will
always have the value of 0.

Proof. During the iteration, the operations A :¼ ðAþBÞ >>
2 or A :¼ ðA�BÞ >> 2 may be performed. If the most
significant digit of A at initialization time has the value of
1, this digit can be expanded into ½1�11� or ½10� due to the
addition rules of SD2 numbers described in Table 1. For
the former case, further expansion does not occur
because, after updating the value of A, the most
significant digit is followed by �11. For the latter case, the
digits ½10� can in turn be transformed into ½1�110� and
further expansion does not occur (because, again, the
most significant digit of the updated value of A is
followed by �11). If the most significant digit of A at
initialization time has the value of �11, this digit can be
transformed into ½�111� and no further expansion occurs.
Therefore, when A is positive, expansion of a maximum
of two digits may occur and, when A is negative,
expansion of only one digit may occur.

Let us assume that n� 1 digits of A have been
processed and only the remaining three digits are left to
be processed. We call these three digits ½a02a01a00�, which
corresponds to the digits ½anþ1anan�1� of A at initializa-
tion time. If A is positive, only the cases that might leave
the digit a02 unprocessed with the value different to 0 are
when a02 is 0 and the digits ½a01a00� are processed together
generating a carry digit c1 6¼ 0 or a02 is 1 and ½a01a00� are
processed together without generating any carry digit.
We will show that these cases never happen. In the
former case, if a02 has the value of 0, the only case where
the digits ½a01a00� might be processed together generating a
carry digit is when ½a01a00� ¼ ½11�. But, this can never occur
because the initial value of A is bounded in absolute
value by M. In the latter case, if a02 is 1, then ½a01a00� can
rather be ½�110� or ½�11�11�. No other possibilities are left
because, again, the initial value of A is bounded in
absolute value byM. When ½a01a00� ¼ ½�110�, then the digit a00
is processed alone, leaving the digit a01 to be processed
together with a02. When ½a01a00� ¼ ½�11�11�, they are processed
together, generating a carry digit c1 of value �11 that is
added to the left digit a02 of value 1, leaving this
unprocessed digit with the value of 0. Now, let us
assume the case when A is negative. Expansion of a
maximum of only one digit may occur. So, the digits
½a02a01a00� can only have the values of ½0�111� or ½00�11�. None of
these cases leaves the digit a02 unprocessed with the value
different from 0. tu

Fig. 3 shows an example of a Montgomery multi-
plication, �115� 249� 2�10 mod 251 ¼ 137, where n ¼ 8
by Algorithm 4. The leftmost column shows the calculations
which have been carried out. For example, “A >> 1” means
that the operations A :¼ A >> 1 and U :¼ MHLV ðU;MÞ
have been carried out and “ðAþBÞ >> 2” means that A :
¼ ðAþBÞ >> 2 and U :¼ MQRTRðU þ V ;MÞ have been
carried out. In this example, Step 2 terminates with s ¼ 0, so
no extra calculations are needed.
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3.3 The Combined Hardware Algorithm

The hardware algorithm for modular multiplication/divi-

sion is presented here. It consists of four steps. Initialization

of variables takes place in Step 1. The core of the algorithm

is described in Step 2. Final calculations are performed in

Step 3 and, in Step 4, the output result is selected. The input

mode is used to select the mode of operation.

Algorithm 5 (Hardware Algorithm for Modular Multi-
plication/Division)

Inputs: mode 2 f0; 1g
M : 2n�1 < M < 2n and gcdðM; 2Þ ¼ 1 (prime when

mode ¼ 1)

X;Y : �M < X;Y < M (Y 6¼ 0 when mode ¼ 1)

Output: mode ¼ 0 : Z ¼ XY 2�ðnþ2Þ modM ð�M < Z < MÞ
mode ¼ 1 : Z ¼ X=Y modM ð�M < Z < MÞ

Algorithm:

Step 1: A :¼ Y ; M :¼ M; P :¼ 2nþ1; D :¼ 1; s :¼ 1;

if mode ¼ 0 then B :¼ 1; U :¼ 0; V :¼ X;

else B :¼ M; U :¼ X; V :¼ 0; endif

Step 2: while p0 6¼ 1 do

if ½a1a0� ¼ 0 then /* A � 0 ðmod 4Þ */
A :¼ A >> 2; U :¼ MQRTRðU;MÞ;
if s ¼ 0 then

if d2 ¼ 1 then s :¼ 1;
if d1 ¼ 0 then D :¼ D >> 2;

else P :¼ P >> 1; s :¼ 1; endif

else /* s ¼ 1 */

D :¼ D << 2;

if p1 ¼ 0 then P :¼ P >> 2;

else P :¼ P >> 1; s :¼ 0; endif

endif

elseif a0 ¼ 0 then /* A � 2 ðmod 4Þ */
A :¼ A >> 1; U :¼ MHLV ðU;MÞ;
if s ¼ 0 then

if d1 ¼ 1 then s :¼ 1;

D :¼ D >> 1;

else /* s ¼ 1 */ D :¼ D << 1; P :¼ P >> 1;

endif

else /* A � 1 (mod 4) or A � 3 (mod 4) */

if ð½a1a0� þ ½b1b0�Þmod 4 ¼ 0 then q :¼ 1

else q :¼ �1;

if mode ¼ 0 or s ¼ 0 or d0 ¼ 1 then

A :¼ ðAþ qBÞ >> 2;

U :¼ MQRTRðU þ qV ;MÞ;
if s ¼ 1 then

if mode ¼ 0 and p1 ¼ 0

then P :¼ P >> 2;

else

if p1 ¼ 1 then s :¼ 0;

P :¼ P >> 1;

endif

D :¼ D << 1;

else /* s ¼ 0 */
if d1 ¼ 1 then s :¼ 1;

D :¼ D >> 1;

endif

else /* mode ¼ 1 and s ¼ 1 and D > 1 */

fA :¼ ðAþ qBÞ >> 2; B :¼ Ag;
fU :¼ MQRTRðU þ qV ;MÞ; V :¼ Ug;
if d1 ¼ 0 then s :¼ 0;

D :¼ D >> 1;
endif

endif

endwhile

Step 3: if mode ¼ 0 and s ¼ 1 then U :¼ MHLV ðU;MÞ;
elseif mode ¼ 1 and ð½b1b0� ¼ 3 or ½b1b0� ¼ �1Þ
then V :¼ �V ;

Step 4: if mode ¼ 0 then Z :¼ U ;

else Z :¼ V ;

In Step 1, variables A,M, P ,D, and s are initialized to the
values Y , M, 2nþ1, 1, and 1, respectively. Only the variables
B, U , and V are initialized differently accordingly to the
mode of operation. In multiplication mode, i.e., mode = 0,
they are initialized to values �11, 0, and X, respectively. In
division mode, i.e., mode = 1, they are initialized to values
M, X, and 0.

The flag s is used in division mode to indicate the sign of
�, whereas, in multiplication mode, it is used to indicate if
an extra operation of MHLV ðU;MÞ is required in Step 3.

During Step 2, the least significant two digits of A and
B are checked to determine the different cases
A � 0 ðmod 4Þ, A � 2 ðmod 4Þ, or ðAþBÞ � 0 ðmod 4Þ or
ðA�BÞ � 0 ðmod 4Þ. The operations A >> 2, A >> 1,
ðAþBÞ >> 2, and ðA�BÞ >> 2, and the corre-
sponding operations MQRTRðU;MÞ, MHLV ðU;MÞ,
MQRTRðU þ V ;MÞ, and MQRTRðU � V ;MÞ, and the
logic that selects the different cases are completely shared for
bothmodes of operation. The logic that controls the operation
of P is also shared for the cases that A � 0 ðmod 4Þ and
A � 2 ðmod 4Þ. It differs onlywhenA � 1or 3 ðmod 4Þ, where
P is shifted two positions in multiplication mode, whereas,
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in division mode, it is shifted by only one position.

Division mode also requires the swapping operations and

the logic to control the register D.
In Step 3, additional corrections are performed for both

operations.
In Step 4, the output is selected between the values of U

and V according to the mode of operation.
In division mode, for the cases ð½a1a0�Þmod 4 ¼ 0, the

algorithm processes two digits of the operand. Otherwise,

the algorithm processes only one digit. In multiplication

mode, for the cases ð½a1a0�Þmod 4 ¼ 0 or 1 or 3, the

algorithm processes two digits of the multiplier. For the

remaining case ½a1a0�mod 4 ¼ 2, the algorithm processes

only one digit of the multiplier. That is, the proposed

algorithm behaves as a radix-4 algorithm when possible.

Otherwise, it behaves as a radix-2 algorithm. We call the

proposed algorithm as mixed radix-4/2 algorithm.

4 HARDWARE IMPLEMENTATION AND DESIGN

4.1 Hardware Implementation

We implement each iterationof the “while” loop inStep 2, i.e.,

one row in Fig. 1/Fig. 3, to be performed in one clock cycle.
A modular multiplier/divider based on Algorithm 5

consists of seven registers for storing A, B, P , D, U , M, and

V , selectors, a small control circuit, and three SD2 adders,

one of which is simpler. Fig. 4 shows a block diagram of the

multiplier/divider.
The controller is a combinational circuit. It takes as

inputs the least significant two digits of A, B, U , and V , the

bit m1, the least significant three digits of P , as well as the

bits d2 and d1, the flag s, the two bits of the register state

that stores the number of the step, and one bit of mode. The

outputs of the controller are signals to all the selectors and

the inputs to the flag s and the register state.
As an example, we describe the behavior of the circuit

components of the expanded diagram of Fig. 4 during an

iteration of Step 2. If ½a1a0�mod 4 ¼ 0, the controller sends a

signal to SEL1 to select A >> 2. If ½a1a0�mod 4 ¼ 2, then

SEL1 selects A >> 1. Otherwise, SEL1 selects the output of

RBA1. Additionally, if ð½a1a0� þ ½b1b0�Þmod 4 ¼ 0, then

SEL3 selects B so that A :¼ ðAþBÞ >> 2 is performed. If

not, �B is selected to perform A :¼ ðA�BÞ >> 2. Also, if

mode ¼ 1 and s ¼ 1 and d0 ¼ 0, SEL2 selects A so that B :¼
A is performed. Otherwise, it selectsB, leaving the content of

this register unaltered.
The redundant binary adder consists of a combinational

circuit whose addition rule is shown in Table 1. To generate

the ith digit of ðAþBÞ and ci, the cell adder takes as inputs

ai, bi, ai�1, bi�1, and ci�1. RBA2 is much simpler than RBA1

and RBA3 because M is a binary number.
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In multiplication mode,D is not used. Also, the algorithm
can be implemented in a way that the most significant
n� 2 digits of B and the logic concerned with those digits in
the adder are not used. Therefore, these parts can be
disconnected during this mode to reduce power consump-
tion. The circuit has a linear array structure with a bit-slice
feature. The amount of hardware of the modular multiplier/
divider is proportional to n. An n-bit modular multiplication
is performed in at most b23 ðnþ 2Þc þ 3 clock cycles and an n-
bit modular division in at most 2nþ 5 clock cycles. Since the
depth of the combinational circuit part is constant, the length
of clock cycle is a constant independent of n.

4.2 Hardware Design and Evaluation

We described a modular multiplier/divider, as well as a
modular multiplier and a modular divider separately in
Verilog-HDL and synthesized them with Synopsys design
Compiler using 0.35�m CMOS 3-metal technology pro-
vided by VLSI Design and Education Center (VDEC), the
University of Tokyo, with the collaboration of Rohm
Corporation. Table 2 shows the number of cells, critical
path delay, the total maximum computational time (critical
path delay � maximum number of clock cycles), and the
area of the described circuits for n ¼ 128, 256, and 512. The
implemented modular multiplier is based on the Mon-
tgomery algorithm with the acceleration we introduced for
processing two digits in SD2 system when possible. The
modular divider is based on the extended Binary GCD
algorithm with the acceleration we introduced for proces-
sing two digits of A when it is divisible by 4. As shown in
the table, the total circuit area of the multiplier/divider is
much smaller than the total sum of circuit areas of the
modular multiplier and the modular divider with the
critical path delays remaining practically to the same value.

5 CONSIDERATIONS

5.1 Applications to Modular Exponentiation

In applications where chained multiplications are required,
such as modular exponentiation, calculations can be
performed in Montgomery representation to accelerate the
computations. Since the result Z of the modular multi-
plication always satisfies the condition jZj < M, this can be
used as input operands of the succeeding modular multi-
plication. Only one carry propagate addition is required at

the end of the exponentiation to convert the result from the
SD2 representation into the binary representation. If the
result after conversion is negative, M is added to transform
it into the range ½0;M � 1�.

Further acceleration can be obtained by the use of
modular division. Consider the operation Xe mod M. The
exponent e can be expressed in SD2 representation and it
can be recoded to reduce the Hamming weight and,
consequently, the number of operations. Modular expo-
nentiation can be calculated by examining each digit of this
exponent from the topmost significant position and
performing a modular squaring when the digit has the
value 0, a modular squaring and modular multiplication
when the digit has the value 1, and a modular squaring and
a modular division when the digit has the value �11. Since the
output of modular division also satisfies the condition of
jZj < M, the output can be directly fed into the inputs of the
succeeding operation. All the calculations can be performed
in Montgomery representation without any special con-
sideration. The result of the exponentiation can be con-
verted into the binary representation in the same way as
described above.

5.2 Applications to Cryptography

The proposed algorithm is efficient in sharing hardware
resources and computational speed. However, in crypto-
graphic applications, data dependent timing variation may
provide information leakage. Timing and power attacks
were initially introduced by Kocher et al. [12], [13] and
various countermeasures have been proposed. They are
based on the randomization of the private exponent [4], [18]
and, on blinding the operands with a secret random
number and unblinding it after exponentiation [12]. These
countermeasures can be used to increase security of the
system. The analysis of the security strength of the
proposed algorithm with the different countermeasures is
left as future work.

In the case where modular multiplication is required to
be computed in constant time, at most b23 ðnþ 2Þc � bnþ2

2 c
dummy operations have to be inserted. This is approxi-
mately n=6 clock cycles. Even including these operations,
the proposed algorithm performs multiplication in b23nþ 2c
clock cycles, which is faster than performing the multi-
plication with the conventional radix-2 Montgomery
algorithm. In the case where modular division needs to
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be calculated in constant time, the testing condition of
½a1a0� ¼ 00 and the corresponding operations can be omitted.
After the termination condition of P ¼ 1,D can be shifted to
the right until it reaches the end. By doing so, modular
division always finishes in exactly 2nþ 5 clock cycles.

In cryptographic applications, the fact that both calcula-
tions are carried out in the same hardware and not in
separate places is advantageous in the sense that the
electromagnetic power radiation emanates from only one
source; therefore, no positional information is provided for
the different operations.

6 CONCLUDING REMARKS

We have proposed a hardware algorithm for modular
multiplication/division. It is based on the extended Binary
GCD algorithm and on Montgomery modular multiplica-
tion, both of which have been modified and combined. The
estimated total circuit area and critical path delay of the
modular multiplier/divider based on the proposed algo-
rithm show that it can be implemented in much smaller
hardware than that necessary to implement multiplier and
divider separately. We conclude that, among the various
algorithms proposed in literature for calculating modular
multiplication and division, the extended Binary GCD
algorithm and the Montgomery modular multiplication
algorithm seem to be the suitable ones to be combined. Not
only the registers that store the operands and the combina-
tional logic involved in the operations can be completely
shared. Also, the combinational logic that controls the
different operations is able to be shared.
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