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Abstract 

If we consider the Brier Score (B) in the context of the signal detection theory and 

assume that it makes sense to consider the existence of B as a parameter for the 

population (let B  be this B), and if we assume that the calibration in the observer’s 

probability estimate is perfect, we find that there is a theoretical relationship between 

B  and the area under the binormal receiver operating characteristic (ROC) curve, . 

We have derived this theoretical functional relationship between B and , by using 

the parameter  and b  in the binormal ROC model and the prior probability of signal 

events (

AZ

A Z

a

α ); here, the two underlying normal distributions are N μs ,σ s( ) and N μn,σn( ); 

and, a = μs − μn( ) σ s  and b = σ n σ s . We empirically found that, if parameters  and b

α  are constant, B  values in relation to given  values monotonically decrease as 

 values increase, and these relationship curves have monotonically decreasing 

slopes. 
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A Z
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1. Introduction 

In several situations, physicians are required to express probabilistic judgments in 

numerical terms, and there is some evidence that such judgments have operational 

meaning to physicians [1]. Thus, it is very important to evaluate these judgments 

properly. Today, there are several quantitative methods to assess the quality of 

physicians’ probabilistic judgments [1]. Scoring rules are one of the methods for the 

assessment of such probabilistic judgments, and the Brier score (B) is one of these best-

known rules [1]. 

On the other hand, receiver operating characteristic (ROC) analysis is the most 

common and sophisticated method for evaluating the signal-detection capability of 

observers or imaging modalities [2]. ROC curve shows the ability of probability 

estimates to separate patients into groups ordered by the prevalence of disease [1], and 

the area under the ROC curve represents the probability that a randomly chosen 

diseased subject is correctly rated or ranked with greater suspicion than a randomly 

chosen nondiseased subject [3]. Various methods for estimating the ROC curve from 

test results have been developed. In particular, the methods for estimating the ROC 

curve based on normal (Gaussian) probability distributions [4] are well known; this 

ROC curve is called the binormal ROC curve, and the area under the binormal ROC 

curve is termed . Further, one can estimate a binormal ROC curve from 

continuously-distributed test results by using Metz LABROC4 algorithm [5]. 

AZ

So, one can now use at least two indexes, to evaluate probabiltistic judgments 

quantitatively: indexes B and . Then, under the conditions in which both B and  

can be calculated, which index of the two should be used to evaluate probabilistic 

judgments? For example, Gurney suggested that ROC analysis may not be the ideal 

A Z A Z
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method to judge predictive accuracy, and that a true test of predictive accuracy such as 

B should be used [2]. 

Therefore, we believe that it will be very important to study the relationship 

between B and , and we have investigated the theoretical relationship between them. 

Here, we must first realize that there is no general theoretical relationship between B 

and ; the reason is that ROC curves and A

AZ

A Z Z’s are invariant under order-preserving 

transformations [6], although B’s change by these order-preserving transformations. 

However, if we make several assumptions in the context of signal detection theory 

(SDT), we find a theoretical relationship between B and , and we then derive this 

functional relationship. One of these strong assumptions is that the calibration in the 

observer’s probability estimate is perfect. The purpose of the present study is to report 

this functional relationship and its application to the assessment of probabilistic 

judgments. 

AZ

 

2. Theoretical development 

ROC analysis is based on true-positive probability, P S | s( ), and false-positive 

probability, , in fundamental detection problems with only two events and two 

responses [4, 7, 8]. According to SDT, we have assumed that there are two probability 

distributions of the random variable 

P S | n( )

X , one associated with the signal event s  

[ ] and the other with the nonsignal event  [ f xf x | s( ) n | n( )] [8]; these probability (or 

density) distributions of a given observation x  are conditional upon the occurrence of 

s  and n [8]. In the medical context, the signal event corresponds to the abnormal 

(diseased) group, and the nonsignal event to the normal (nondiseased) group [3]. If the 

cutoff value is , corresponding to a particular likelihood ratio, the true- and false-c
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positive probabilities are given by the following expressions [8]: 

 P(S | s) = f (x | s)dx
c

∞

∫  (1) 

 P(S | n) = f (x | n)dx
c

∞

∫  (2) 

When we consider the conventional binormal model, the probability distributions 

associated with the signal event [ f x | s( )] and those associated with the nonsignal event 

[ ] are assumed to be represented by two overlapping normal distributions [4, 9]; 

that is, 

f x | n( )

 f x | s( ) =
1

2πσ s
exp −

x − μs( )2

2σs
2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 (3) 

 f x | n( ) =
1

2πσ n
exp −

x − μn( )2

2σn
2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 (4) 

We designate the normal-deviate values of the true-positive probability [ P S ] 

and the false-positive probability [

| s( )

P S | n( )] as z S | s( ) and z S | n( ), respectively [4, 9]. 

Thus, from equations (1), (2), (3), and (4), P S | s( ) and P S | n( ) can be described as 

 P S | s( ) = Φ
−c + μs

σs

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (5) 

and 

 P S | n( ) = Φ
−c + μn

σn

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (6) 

where, 

 Φ z( )=
1
2π

exp −
x 2

2
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

−∞

z

∫ dx  (7) 

and the relationship of  and z S | s( ) z S | n( ) is given by 

 z S | s( )= bz S | n( )+ a  (8) 
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where, a = μs − μn( ) σ s  and b = σ n σ s . These relations were shown by Green [7] and 

Simpson [9]. 

Now we consider a set of M  signal-detection tasks with αM  signal events and 

1−α( )M  nonsignal events (0 ≤ α ≤ 1), where the subscript  indexes the individual 

event, and we postulate that 

i

αM  and 1−α( )M  are natural numbers (therefore, α  

denotes the a priori probability of signal events). Let yi  indicate the true state of the 

event, such that yi = 0  if the event is nonsignal and yi = 1 if the event is signal [10]. 

Let  denote this observer’s (or the physician’s) probability estimate that the ith event 

will be the signal one [10]. The definition of B is thus as follows [10, 11]: 

pi

 B =
1
M

yi − pi( 2

i=1
)

M

∑  (9) 

In the following, we consider B in the context of SDT. We assume that the observer 

(or physician) makes a probability estimate upon the evidence of the decision variable 

x , and we denote x  for the ith event by xi . That is, we assume that  is estimated 

upon 

pi

x , and that  is a function of pi xi , p xi( ). In the above-mentioned conditions, 

when one knows xi  for the ith event, the probability of the signal event’s occurrence 

for this ith event, Pr s | xi( ), can be calculated from the Bayes theorem. Therefore, when 

the calibration in the observer’s probability estimate is perfect [that is, ], 

 in the equation 

pi = Pr s | xi( )

pi (9) will be given as 

 pi = p xi( )= Pr s | xi( )=
α f xi | s( )

1− α( ) f xi | n( )+ α f x i | s( )  (10) 

Now we consider  xi = pi ,yi( )  i = 1,2,K,M( ) as a random sample of size M  

extracted from the population, and assume that it makes sense to consider the existence 

of the Brier score as a parameter for the population. Further, we assume that the 
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convergence in probability of B given by the law of large numbers as M  tends to 

infinity is the Brier score as a parameter for the population, and make the assumption 

that the calibration in the observer’s probability estimate is perfect. Let B  denote this 

Brier score as a parameter for the population under the assumption that the calibration 

in the observer’s probability estimate is perfect. 

From Appendix 1, B  is given by 

 B = 1− α( )α

1 − α( )+ α dP S | s( )
dP S | n( )

0

1

∫ dP S | s( ) (11) 

or 

 B = 1− α( )α

α + 1 −α( )
dP S | n( )
dP S | s( )

0

1

∫ dP S | n( ) (12) 

Now, we can describe B  and A  as functions of , , and Z a b α .  is given by 

the following equation [9]: 

AZ

 AZ = Φ bΦ−1 x( ) + a[ ]dx
0

1

∫ = Φ
a

1+ b2

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟  (13) 

From the equation (11) or (12), B can be expressed as 

 B = 1− α( )αb

αb + 1− α( )exp
b2 − 1( )Φ−1 x( )[ ]2 + 2abΦ−1 x( )+ a2

2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

0

1

∫ dx , (14) 

because, 

 dP S | n( )
dP S | s( )

=
1
b

exp
b2 − 1( )Φ−1 x( )[ ]2 + 2abΦ−1 x( )+ a2

2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

, (15) 

etc. Therefore, the theoretical relationship between B  and A  can be described as 

these functions [equations 

Z

(13) and (14)] by using the three parameters , , and a b α . 

From the above discussions, B  can also be calculated in the following way:  A Z
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is estimated to continuously-distributed  by using the Metz LABROC4 algorithm 

[5], and, then, 

pi

B  is calculated from our derived theoretical relationship between B  

and . AZ

Here, we must also draw attention to the following: from Appendix 2, B  is equal 

to the expected B as given by Spiegelhalter [11]. 

 

3. Graph of functional relationship between B  and A  Z

In our derived functional relation, there are three parameters for the respective 

functions describing B  and A . Therefore, our derived functional relation is not one-

to-one. However, if we determine two of , , and 

Z

a b α , we can obtain the one-to-one 

functional relation between B  and A . Therefore, if  and Z a α  are fixed, we can 

obtain the one-to-one functional relation between B  and A  from the equations Z (13) 

and (14); if  and b α  are fixed, we can also obtain the one-to-one functional relation 

between B  and A ; and, if  and b  are fixed, A  is constant for a given Z a Z α  

value. Fig. 1 and Fig. 2 show the graphs of these one-to-one functions; Fig. 1 illustrates 

the graph of B  as a function of , where parameters  and AZ a α  are fixed 

(a , = 0.5,1.0,1.5,2.0,2.5,3.0,4.0,5.0 α = 0.5 ); and Fig. 2 illustrates the graph of B  as a 

function of , where parameters  and AZ b α  are fixed 

(b , = 0.5,1.0,1.5,2.0,2.5,3.0,4.0,5.0 α = 0.5 ). 

 

4. Functional relationship between B  and the area under the ROC curve for 

another distribution function 

In the above, we discussed the relationship between B  and the area under the 

ROC curve (AUC) for the conventional binormal model (that is, B  and A ). Now, for Z
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comparison, we have derived the functional relationship between B  and AUC for 

another distribution function. 

Egan [8] gave various ROCs based upon assumed probability distributions that have 

the same probability law for each member of a given pair of distributions. He also 

treated a theoretical ROC derived from normal probability distributions as a normal-

normal ROC (N-N ROC) and as a standard for comparison with the ROCs based upon 

other probability laws [8]. A power-law ROC is one such ROC; its mathematical 

treatment is easy, and this family of ROCs represents a useful contrast to N-N ROCs 

[8]. Thus, we have derived the functional relationship between B  and AUC for a 

power-law ROC. 

Again, according to Egan [8], for a power-law ROC, f x | s( ) and  in the 

equations 

f x | n( )

(1) and (2) are given by 

 f x | s( ) = Ks exp −Ks x( ) (16) 

 f x | n( ) = Kn exp −Knx( ) (17) 

with 0 ≤ x < ∞ , and with Kn ≥ Ks > 0 . Thus, dP S | n( ) dP S | s( ) in the equation (12) is 

given by 

 dP S | n( )
dP S | s( )

=
1
k

P S | n( )[ ]1−k  (18) 

where, k = Ks Kn . Therefore, from equation (12), B  is 

 B = 1− α( )α

α +
1 −α( )

k
P S | n( )[ ]1− k0

1

∫ dP S | n( ) (19) 

On the other hand, from P S | s( ) = P S | n( )[ ]k , AUC for this model can be expressed as 

 AUC = P S | s( )
0

1

∫ dP S | n( ) =
1

1 + k
 (20) 

Therefore, just as with the binormal model, the theoretical relationship between B  and 
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AUC can be described as these functions [the equations (19) and (20)] by using the 

two parameters k  and α . Further, if we determine α , we can obtain the one-to-one 

functional relation between B  and AUC. 

Fig. 3 illustrates the graph of B  as a function of AUC for Power-ROCs and the 

graph for N-N ROCs, where parameters  and b α  are fixed with b = 1 and 

α = 0.1 0.1( )0.5. From Fig. 3, one can see that the theoretical relationship between B  

and AUC for a power-law ROC was similar to that between B  and A with  for 

an N-N ROC. 

Z b = 1

 

5. Discussion 

Somoza [12] notes that most diagnostic tests are described by ROCs where 

; ROCs where  falls outside this range are “eccentric” and require some 

rethinking of the binormal model [13]. It is for this reason that we calculated 

0.2≤ b ≤ 5 b

B  values 

in relation to given  values with b  fixed for 0.A Z 2≤ b ≤ 5 . 

From these results, we empirically found that, if parameters  and b α  are 

constant, B  values in relation to given  values monotonically decreases as  

values increase, and that this relationship curve of 

AZ AZ

B  values in relation to given  

values approaches the point, 

AZ

B = 0  and A Z = 1; in addition, these curves have 

monotonically decreasing slopes (Fig. 2). Especially, for b = 1 and α = 0.5 , the 

relationship curve of B  values to given  values starts from the point, AZ B = 0.25 

and , corresponding to the values indicating valueless predictions for each 

index, and approaches the point, 

A Z = 0.5

B = 0  and A Z = 1, corresponding to the values 

indicating errorless predictions for each index; here, the B  values for 0.  are 

in rather good agreement with the ones for 

7≤ b ≤1.5

b = 1 (Fig. 2). 

- 10 - 



We think this empirically determined fact is very important for two reasons. 

First, when the calibration in the observer’s probability estimate is approximately 

perfect, in a comparison of binormal ROCs with similar slopes, there will be no 

inconsistencies in the relations between B  and A  as accuracy indices. Green has 

shown that the percentage correct in the two-alternative forced-choice situation is equal 

to AUC (Green's theorem) [7, 9]; yet from our derived relationship,  has another 

meaning. Further, practically, in the case in which slopes in binormal ROC models for 

comparing data sets are similar, and in which the calibration in the observer’s 

probability estimate is good, B could be used to replace  as an accuracy index. 

Because the use of  as an accuracy index is properly restricted to a comparison of 

binormal ROCs with slopes that are similar or not materially different [4], one cound 

use B reasonably in place of , when the calibration in the observer’s probability 

estimate could be considered to be good. 

Z

A Z

AZ

A Z

AZ

Secondly, when parameters  and b α  are constant, around A Z = 1,  value 

changes slowly relative to 

AZ

B , and vice versa around A Z = 0.5 . From this functional 

relationship, B calculated from large data sets with good calibration in the observer’s 

probability estimate may be more appropriate than  in comparative evaluations of 

highly accurate probabilistic judgments, for assessing their discriminating power. On 

the contrary, B, even if calculated from large data sets with very good calibration, may 

not be as appropriate as  for comparative evaluations of lower accurate probabilistic 

judgments.  

AZ

A Z

Although, in the derivation of the theoretical relationship of B  and A , we 

postulated that underlying distributions would be normal (that is, binormal), the 

definition of B does not require the assumption of underlying distributions, and the 

Z
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ROC curve and AUC in themselves are independent of the form of the underlying 

signal and nonsignal distributions [9]. Therefore, our theory is a restricted one in the 

sense that it holds only in parametric situations, although B and  in themselves are 

nonparametric. However, the relationship between 

AZ

B  and AUC for a power-law ROC 

with α = 0.5  was similar to the one between B  and A  with bZ = 1 and α = 0.5  for 

an N-N ROC. This fact suggests that the relationship between B  and AUC for 

“proper” ROCs would be similar; if this is true, this limitation of our theory would not 

be significant for “proper” ROCs. 

From our derived relationship between B  and A , if one compares ROCs with 

slopes that are materially different, the cases in which there are inconsistencies in the 

relations between B and  do exist. Now, we make the reasons for these 

inconsistencies clear. 

Z

A Z

Before we present this fuller discussion, however, we must mention once again, that 

the relationship between B and , derived in this study, is valid only under the 

various above-mentioned assumptions. Especially, the assumption of perfect calibration 

in the observer’s probability estimate is strong. Here, what is important is that, if the 

assumptions that we have made for deriving the relation between B and  do not 

hold, a theoretical relationship between B and A

AZ

A Z

Z does not exit.  

Let us now return to the previous discussion. If the calibration in the observer’s 

probability estimate is perfect or can be considered to be approximately perfect, our 

derived relationship between B  and A  will account for the relations between B and 

, and the inconsistency in the relation between B and  is only superficial. Here, 

the extent to which the observer’s probability estimate coincides with the true 

probability of the signal event’s occurrence can be measured by the Sanders 

Z

A Z A Z
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decomposition of B into the calibration (or reliability) component and the 

discrimination (or resolution) component [14-16], or by our derived relationship 

between B  and A ; that is, if Z B  calculated from the corresponding  value by 

using our derived theoretical relationship is close to B directly calculated from the 

observer’s probability estimates, the calibration in the observer’s probability estimate 

will be good. 

AZ

On the other hand, if the calibration in the observer’s probability estimate is not 

good, the inconsistency in the relation between B and  is both due to the imperfect 

calibration in the observer’s probability estimate and due to the theoretical relationship 

between 

A Z

B  and A . Therefore, in that case, one must consider very carefully which 

index of B and  should be used to evaluate probabilistic judgments. 

Z

A Z

ROC curves are invariant under order-preserving transformations [6]. Thus, any 

monotonic transformation of the decision variable changes the form of the decision-

variable distributions but does not change the ROC. Therefore, the ROC analysis and its 

index  are independent of the accuracy of calibration in probabilistic judgments [1], 

and the ROC analysis is ineffective in the evaluation of the calibration problem of 

physicians’ probabilistic judgments, which is the problem of evaluating the degree to 

which an appraiser’s probabilities correspond to the actual frequencies of outcome [1]. 

However, the calibration is usually considered to be important in “external 

correspondence” [14]. Therefore, to evaluate probabilistic judgments completely, not 

only should ROC analysis be performed, but also B, especially the calibration 

component of B, should be evaluated. 

AZ

Further, if the calibration in the observer’s probability estimate is perfect, the 

observer’s judgments can be said to be perfectly “internally consistent” [14]. In that 
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case, the estimated ROC parameters for the observer’s judgments can be expected to be 

accurate from the standpoint of the “internal sampling error.” Thus, when ROC analysis 

is performed to evaluate probabilistic judgments, it will be important to evaluate the 

calibration component of B in combination with the ROC analysis. 

 

6. Conclusions 

If we consider B in the context of SDT and assume that it makes sense to consider 

the existence of B as a parameter for the population (that is, B ), and if we assume that 

the calibration in the observer’s probability estimate is perfect, we have found that there 

is a theoretical relationship between B  and A . Here, we empirically found that, if 

parameters  and 

Z

b α  are constant, B  values in relation to given  values 

monotonically decrease as  values increase, and that this relationship curve of 

AZ

AZ B  

values to given  values approaches the point, A Z B = 0  and A Z = 1; in addition, these 

curves have monotonically decreasing slopes. Thus, in the case in which the slopes in 

binormal ROC models for comparing data sets are similar, and where the calibration in 

the observer’s probability estimate is good, B could be used in place of  as an 

accuracy index. 

AZ
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Appendix 1 

As mentioned in the text, let us consider a set of M  signal-detection tasks with 

only two events (s  and n ), using the same notations and assumptions as in the text. 

Now we consider the expected value of yi − pi( )2  in the equation (9), when the 

calibration in the observer’s probability estimate is perfect. Since, in that case,  in 

the equation 

pi

(9) is given by the equation (10) from the Bayes theorem, the expected 

value of , yi − pi( )2 E yi −( pi )2[ ], is given by 

 

E yi − pi( )2[ ]= 1− p x( )[ ]2αf x | s( )dx
−∞

∞

∫ + p2 x( ) 1 − α( )f x | n( )dx
−∞

∞

∫

= 1 −
αf x | s( )

1 −α( ) f x | n( ) +αf x | s( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2

αf x | s( )dx
−∞

∞

∫

+
αf x | s( )

1− α( ) f x | n( )+ αf x | s( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2

1 − α( )f x | n( )dx
−∞

∞

∫

=
1 − α( )αf x | n( ) f x | s( )

1 − α( )f x | n( )+ αf x | s( )
dx

−∞

∞

∫

 (A1) 

From the law of large numbers, the convergence in probability of B as M  tends to 

infinity is given by 1 −α( )αf x | n( )f x | s( )
1 −α( ) f x | n( ) +αf x | s( )

dx
−∞

∞

∫ . Therefore, when the Brier score as a 

parameter for the population under the assumption that the calibration in the observer’s 

probability estimate is perfect, B  can be given by 

 

B = 1 −α( )αf x | n( )f x | s( )
1 −α( )f x | n( )+ αf x | s( )

dx
−∞

∞

∫

=
1 −α( )αf x | s( )

1 −α( )+α f x | s( )
f x | n( )

dx
−∞

∞

∫

=
1 −α( )αf x | n( )

α + 1− α( )
f x | n( )
f x | s( )

dx
−∞

∞

∫

 (A2) 

Thus, B  is given by 
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 B = 1− α( )α

1 − α( )+ α dP S | s( )
dP S | n( )

0

1

∫ dP S | s( ), (A3) 

or, 

 B = 1− α( )α

α + 1 −α( )
dP S | n( )
dP S | s( )

0

1

∫ dP S | n( ). (A4) 

 

Appendix 2 

Spiegelhalter has shown that the expected B ( EBrier) is given as 

 EBrier =
1
M

pi 1 − pi(
i =1

)
M

∑ , (A5) 

under the null hypothesis of perfect calibration [11]. Here, when the calibration in the 

observer’s probability estimate is perfect, and  is given by the equation pi (10), the 

expected value of , pi 1− pi( ) E pi 1 − pi( )[ ], is expressed as, 

 

E pi 1 − pi( )[ ]= p x( ) 1− p x( )[ ]
−∞

∞

∫ αf x | s( )dx

+ p x( ) 1 − p x( )[ ]
−∞

∞

∫ 1 −α( ) f x | n( )dx

=
1− α( )αf x | n( ) f x | s( )

1− α( ) f x | n( )+ αf x | s( )
dx

−∞

∞

∫

. (A6) 

Thus, from the law of large numbers, the convergence in probability of EBrier  as M  

tends to infinity is given by 1 −α( )αf x | n( )f x | s( )
1 −α( ) f x | n( ) +αf x | s( )

dx
−∞

∞

∫ . That is, EBrier  is equal to 

B . 
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Figure Legends 

 

Fig. 1. 

Our derived theoretical curve of B  as a function of , where parameters  and AZ a α  

are fixed with  and a = 0.5,1.0,1.5,2.0,2.5,3.0,4.0,5.0 α = 0.5 . B  = the Brier score as a 

parameter for the population under the assumption that the calibration in the observer’s 

probability estimate is perfect;  = the area under the receiver operating 

characteristic (ROC) curve for the binormal model;  = the parameter in the binormal 

ROC model; 

AZ

a

α  = the prior probability of signal events. 

 

Fig. 2. 

Our derived theoretical curve of B  as a function of , where parameters  and A Z b α  

are fixed with  and b = 0.5,1.0,1.5,2.0,2.5,3.0,4.0,5.0 α = 0.5 . B  = the Brier score as a 

parameter for the population under the assumption that the calibration in the observer’s 

probability estimate is perfect;  = the area under the receiver operating 

characteristic (ROC) curve for the binormal model;  = the parameter in the binormal 

ROC model; 

A Z

b

α  = the prior probability of signal events. 

 

Fig. 3. 

Our derived theoretical curve of B  as a function of AUC, where parameters  and b α  

are fixed with  and b = 1.0 α = 0.1 0.1( )0.5. (A) the one for the Power-ROC model. (B) 

the one for the binormal ROC model. B  = the Brier score as a parameter for the 

population under the assumption that the calibration in the observer’s probability 

estimate is perfect; AUC = the area under the receiver operating characteristic (ROC) 
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curve;  = the parameter in the binormal ROC model; b α  = the prior probability of 

signal events. 
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Fig. 2.
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Fig. 3 (A).
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Fig. 3 (B).
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