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Abstract

We investigate loop corrections to the successful tree level predictions of
the hidden local symmetry in the SU(2); xSU(2)x nonlinear sigma model:
The KSRF I relation as a “low energy theorem” as well as the p-coupling
universality, the KSRF II relation and the vector meson dominance of the
electromagnetic form factor of the pion. We show that these predictions are
preserved in the low energy limit, even if we include the loop corrections of
the hidden local gauge boson. Most amazingly, the vector meson dominance
holds at any momentum, if and only if we take the parameter choice ¢ = 2.
We further calculate the 8 functions for the parameters a and the gauge
coupling g, and show that the “vector limit” (a = 1, g = 0) corresponds to
an ultraviolet fixed point of the 4 functions.

*This paper is based on the work done in collaboration with K. Yamawaki[1].



1 Introduction

If we set the masses of u and d quarks equal to zero in QCD, the Lagrangian is
invariant under the SU(2);, x SU(2)g chiral symmetry. The vacuum of the theory
spontaneously breaks this symmetry into its subgroup SU(2)y (for a review of
the chiral symmetry breaking, see, for example, Ref.[2]). This broken symmetry
leads to the three massless Nambu-Goldstone (NG) bosons coupled to the broken
axial-vector currents (Nambu-Goldstone theorem), and determines the low energy
interactions among such NG bosons (low energy theorems of chiral symmetry) in
terms of the decay constant (the strength of the coupling of NG bosons to the
broken currents).

In the real world, since the masses of u and d quarks are tiny in comparing
with the scale of the theory (for a review of quark masses, see Ref.[3]), the QCD
Lagrangian has an approximate SU(2);, x SU(2)r chiral symmetry. The pions
are identified with the pseudo-NG bosons, and the low energy theorems should be
approximately valid. Then, by using the current algebra, the matrix elements for
the soft-pion interactions can be determined from the symmetry structure only.
We can more easily calculate the same matrix elements from an SU(2);, x SU(2)g
invariant effective Lagrangian. The non-linear sigma model, which includes the
pions only, well describes the low energy pion dynamics.

Recently, the systematic method to consider the pion loop contributions is
studied in the non-linear chiral Lagrangian (“Chiral Perturbation Theory”[4, 5, 6]
(for a recent review, see Ref.[7])). In the chiral perturbation theory, the pion
loop yields predictions beyond that of the low energy theorem, which successfully
reproduce the results in the energy region slightly away from the low energy limit.
But it has many unknown parameters (finite parts of the counter terms), whose
values are not determined from the symmetry structure. Moreover, we cannot use
this model in the higher energy region, because of the p meson. As pointed out
in Refs.[8, 9, 10], the tree-level effects of the p meson saturate the above unknown

parameters. So we can expect that the effective Lagrangian including the pion and

1



the p meson can describe the results in a wider energy region. Actually as shown

0

in Refs.[9, 11, 12], the loop effects of vector mesons are crucial to the 7+ — 7% mass

difference[13].

Now that, the p mesons as well as the pions play an important role in the
low energy hadron dynamics, so that we introduce the p mesons and the pions
to an effective theory in a systematic way. Among such approach, a model based
on the hidden local symmetry has well succeeded in describing the system which
includes the pion and the p meson. In this model, the p meson is identified with
the dynamical gauge boson of the hidden local symmetry, [SU(2)y]ioca; (for a re-
view, see Ref.[2]). The Lagrangian is invariant under the [SU(2) xSU(2)r]goba1 ¥
[SU(2)v]iocal symmetry. This symmetry is spontaneously broken into its subgroup
SU(2)v. Then, the hidden gauge boson (p meson) has its own mass through the
Higgs mechanism. In the hidden local symmetry, we have only three parameters

in the low energy;
1) fr: the pion decay constant,

2) f,: the decay constant of the would-be NG boson absorbed into the hidden

gauge boson (p meson),
3) g: the hidden gauge coupling constant.

In the low energy experiments for the p mesons and the pions, it is important
that we investigate the pm7 coupling constant ¢, and the p--y transition strength
go as well as the p-meson mass m,, which are determined from the above tree
parameters. (See sect. 3.) For the parameter choice a = 2 (a is defined by
f2 = af?[14, 15]) in the hidden local symmetry Lagrangian, we can reproduce the
following phenomenological facts[16];

1) the p-coupling universality, g .~ = g[17],

2) the KSRF relation (II), m2 = 2242, [18],



3) the p meson dominance of the electromagnetic form factor of the pion[17].

Furthermore this model predicts the successful KSRF relation (I)[18],

9p = 29pnr Sz,
as a “low energy theorem” of hidden local symmetry[19].

We can introduce the p mesons as antisymmetric tensor fields into the chiral
Lagrangian[5, 9]. In such a model, the p mesons transforms as the ordinary
matter content under the SU(2);, x SU(2)g chiral symmetry. Since there exists
no more than the chiral symmetry, the parameters g, and g,~» mentioned above
(corresponding to Fy and Gy in the notation used in Refs.[5, 9]) are independent.
Then the KSRF relation (I), g, = 2f2g,rr, is just an input relation from the
experiments.

Recently, there are many field theoretical approach to the possible vector res-
onances in the strongly coupled Higgs sector or the technicolor model. Although
it is unlikely[20] that the p-like (techni-p) resonance exists in the strongly coupled
Higgs sector, we do expect such a resonance in the technicolor model. The vec-
tor resonances play an essential role to constrain the technicolor model from the
experiments[21]. Thus it is important to consider an effective theory including
the vector resonances for the technicolor model. Actually, the above hidden local
symmetry Lagrangian has been applied to this kind of model (“BESS” model)[22].
For instance, the one doublet technicolor model has the SU(2);, x SU(2)g chiral
symmetry with SU(2), x U(1)y gauging. The NG bosons, which appear as a
consequence of the spontaneous symmetry breaking, are absorbed into W bosons.
Then the longitudinal components of W bosons (W) correspond to the pions and
the vector resonances correspond to the gauge bosons of the [SU(2)y]ioca hidden
local symmetry. Further, the loop contributions of the vector resonances to the
vertices among the W boson and fermions have been studied[23].

Now, we think the effective theory as an “effective field theory” and calculate
the loop corrections. At that time, we need the many counter terms to renor-

malize the divergence. Thus we get the renormalization-group equations for the
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parameters (finite parts of the counter terms), which are fixed by the underlying
dynamics. Through these renormalization-group equations, we can get the param-
eters in the higher energy region, for example, near the cutoff scale, in which the
effective theory breaks down. If we determine the parameters from the underlying
dynamics in such a high energy region, we can directly relate the low energy pa-
rameters to the underlying dynamics. For instance, the dynamics of QCD should
have determined the value of the parameter a, which is important to the above
successful predictions of hidden local symmetry.

In the QCD case, however, there exist many heavy particles in the higher
energy region. So we cannot directly relate the above hidden local symmetry to
QCD. In such region, we consider the theory including the heavy particles, for
example, the a; mesons. (In the generalized hidden local symmetry Lagrangian,
we can also include the a; mesons as well as p mesons[14, 24].) In the low energy
effective theory, the contributions from the heavy particles are included in the
counter terms. Actually, Gasser and Luetwyler presented[6] that the loop effects
of K and 1 mesons are included in the counter terms in the SU(2)y, x SU(2)g chiral
Lagrangian. (As is mentioned above, the p meson contribution almost saturate
these counter terms, so that contributions of K and 7 are negligibly small [9].)

In this paper we take the hidden local symmetry Lagrangian as the effective
Lagrangian, and consider the loop effects of its gauge boson (p meson). We investi-
gate whether or not the above successful tree predictions of hidden local symmetry
survive the loop corrections. In particular, it is important to study the loop effects
to the above “low energy theorem”, g, = 2g,.rf2, so that we calculate the loop
corrections in the low energy limit as a first step of such an investigation. The
“low energy theorem” is a consequence of the hidden local symmetry, hence it is
important to use the full gauge degrees of freedom (would-be Nambu-Goldstone
boson, Faddeev-Popov (FP) ghost as well as p meson itself). In the chiral pertur-
bation theory, the pion loop yields no correction in the low energy limit, as proved

with the naive power counting in Ref.[4]. In the hidden local symmetry, however,



p-meson loops give the corrections even in the low energy limit. Thus, the loop
corrections may change the tree level relations in the low energy limit.

We show that such corrections can be absorbed into the suitable counter terms,
and hence the tree level relations mentioned above hold at one loop level in the
low energy limit. This strongly suggests that the KSRF relation (1), g, = 2f2g,xx,
may become a true low energy theorem of hidden local symmetry. (Recently, this
relation has been proved to all orders based on the BRS symmetry[25].) As far
as p meson dominance is concerned, we calculate the momentum dependence of
the yrm vertex function, and show that no direct ym7 interaction is induced for
the finite photon momentum not restricted to the low energy limit, if and only if
we take the parameter choice a = 2. This implies that the p meson dominance
of the electromagnetic form factor of the pion remains valid at one loop order.
Further, we get the renormalization group equations for the parameters a and g,
and show that in the “idealized” high energy limit this hidden local symmetry
model becomes asymptotically the theory which has a higher symmetry (“vector
limit”[26]).

In sect. 2, we briefly review the non-linear realization of the chiral symmetry.
In sect. 3, we review the hidden local symmetry and summarize its tree-level
predictions. The saturation of the low energy parameters are discussed in sect. 4.
We study the tree-level p-meson contributions to the low energy parameters in the
hidden local symmetry. Sect. 5 is a main part of this paper. There, we calculate the
one-loop effects of the hidden gauge boson (p meson), and investigate corrections
to the successful tree-level predictions. Further, we discuss the renormalization-
group equations for the parameters a and g, and the relation between the hidden

local symmetry and the “vector limit”[26] in sect. 6.

2 Non-Linear Realization of Chiral Symmetry

In this section we discuss the non-linear realization of the chiral symmetry accord-

ing to Ref.[2].



First we consider the general case where the symmetry group G is sponta-
neously broken to its subgroup H[24]. In this case we can divide a set of genera-
tors T4 € G of G into two parts, the unbroken generators S* € H and the broken
generators X* € G — H:

{T*eG}={S*eH,X* €G- H}. (2.1)
We choose these generators to satisfy
(T%ﬂ):%#ﬁ (5*X*) = 0. (2.2)

We note that the symbol (A) denotes the trace of a matrix A hereafter. The second
equation of Eq.(2.2) implies that the element [S*, X*] always lies in G — H;

H,G-H]CG—-H. (2.3)
The coset space G/H is a symmetric space when the condition
G —H,G6—HCH (2.4)

is satisfied. In this case we can define a parity-like transformation 7 such that

T:G—G,
(Y) = +Y, forY e H, (2.5)
Y) = =Y, faYegG-H. '

Now there exist Nambu-Goldstone (NG) bosons, whose number is equal to the
dimension of the coset space G/H, dimG — dimH, and we can identify NG fields
as the coordinate of the coset space G/H. Let £(n) be the “representative” of the
coset space G/H, which is parameterized in terms of the NG bosons 7(z) as

f(r) = e™@r a(z)= Y w(2)X", (2.6)
XeeG-H

where f. denotes a scale parameter (the “decay constant”)!.

tWe assume that the coset space G/H is irreducible for simplicity, so that we have only one
decay constant.



Under the symmetry group G, this transforms as

g(m) — €(x) = h(r, 9)E(m)gT, g€G, (2.7)

where h(m,g) € H is uniquely determined depending on 7(z) as well as on g.

A fundamental object is the Maurer-Cartan 1-form;

ou(r) = 20,6(m) - €1 (). (2.8)

This 1-form is a Lie-algebra-valued quantity, so that we can expand this in terms
of the generators {T4 € G} = {S* € H, X® € G — H}. We can divide this 1-form
into o (7) € H and a,,(7) € G — H:

au(m) = 2($%u(m)- 5%,
a,(m) = 2(X%au(m)) - X°. (2.9)

These transform as

a(r) = aly(m) = him, (W (x,6) + <0uh(r,9) - b (r,g),

w

a,u(m) — o1 (7) = h(m, gy (m)hl (m,g). (2.10)

Only the perpendicular part a,, (7) transforms homogeneously, so that the most

general Lagrangian with the lowest derivatives is given by

L=f <(a,u_(7r))2> . (2.11)

Now we consider the case where the chiral symmetry G = SU(N), x SU(N)g
is spontaneously broken to its subgroup H =SU(N)y. In this case we can take
the quantity (EJ[(W), £(m)) as a “representative” of the coset space G/H, which is

parameterized in terms of the NG bosons 7(z) as

E(r) =@l x(z) =) (x)T", (2.12)



where T denotes the generator of SU(N) group and f, denotes the decay constant!.
Under the group G, this transforms as

(). &(m) — (¢h(m), €'(m)

= (h(ﬂ, gL, QR)gT(W)QL h(m, gL, QR)g(“)g}Lz) . (2.13)
The parallel and perpendicular components of the Maurer-Cartan 1-form are
given by
_ 9€1(m) - €&(m) + 2,8(m) - € (m)
t(r) - &(x) — et
ops(r) = 210160~ 08(r) ) 21
These transform as
(™) = h(m, g0, ) (MR (r, g1, 98)
+ Z'-lh‘(ﬂ'ﬁ gL, gR)auht(W$ gL, gR) )
oy (m) — h(m gL, QR)OZML(W)M(W,QL;QR) . (2.15)
The Lagrangian with the lowest derivatives is given by
L= f? <(oz‘u_(7r))2> . (2.16)

Here we define the quantity, U = (£(r))?, which transforms linearly under the
chiral group G;
U — gUgh . (2.17)

Using this quantity, the Lagrangian now reads

L= fz’% (a.v0nUT). (2.18)

tIn this case, the coset space G/H is irreducible.



3 Hidden Local Symmetry

In this section we briefly review the “hidden local symmetry”. Let us start with
the [SU(2)L xSU(2)r]gtobat X[SU(2)v ]iocar “linear” model[16]. We introduce two

SU(2)-matrix valued variables, £1(z) and £g(z), which transform as

£1.2(z) = €0 a(z) = h(x)ELr(2)g) 2 (3.1)

where h(z) € [SU(2)y],,.,; and gz,r € [SU(2), 4]

eterized as

tobal’ These variables are param-
g

£1(z) = E(0)ET (),
£r(2) = E(0)E(),
£(0) = &@le, [o(z) = 0%(z)7°/2],
E(r) = @l [n(z) = 7%(2)7°/2], (3.2)

where 7 and ¢ are the pion and the “compensator” (would-be Nambu-Goldstone
field) to be “absorbed” into the hidden gauge boson (the p meson), respectively,
and fr and f, are the corresponding decay constants in the chiral symmetric limit.

The covariant derivatives are defined by

D,‘fL(ZlI) = 6#511(37) - Z'QVM(’73)'{511(37) + sz(m)[’u(x)a
D,&r(z) = 0,8r(z) — igV,u(2)Er(2) + 1€R(2) Ru(2), (3.3)

where g is the gauge coupling constant of the hidden local symmetry, V, (= V:Iz:)
the hidden gauge boson field (the p meson), and £, and R, denote the gauge fields
when we gauge the [SU(2) xSU(2)g]gobar symmetry. In this paper we gauge the
U(1)em part only, so that we take

L,=R,= eBMTZ—S, (3.4)
where B, denotes the photon field and e denotes the electromagnetic coupling

constant.



The covariantized Maurer-Cartan 1-forms[24] are given by

Dyula) - £}(a) = Dyalz) - EL(z)

MOE - , (3.5)
(o = DuEale) - EL(2) * Dubale). hiz) 65.6)
which transform as
& (2) = &y (2) = h(2)ap(2)hT(2) (3.7)

We can construct the following two invariants with the lowest derivative’;
2 ~ 2
‘CA:f1r<(aPJ-) >’
f N2
Ly = 12{(aw)’). (3.8)

Thus we obtain the Lagrangian of the [SU(2)L xSU(2)g]gobat X[SU(2) v Jioear “lin-
ear” model, with the [SU(2);xSU(2) )0 being partly gauged[16]:

L=Ls+aly+ Ek,-n(V“), (3.9)

where @ is a constant, Lx,(V,) denotes the kinetic term of the hidden gauge

boson[2]:

1 2
Liin(Va) = —5((F,EK)) >»
FO = 8.V, -8V, —ig[V,,V,]. (3.10)

(The kinetic term of hidden local gauge bosons are possibly induced by the dy-
namics of QCD. Actually in the extended Nambu-Jona-Lasinio model, which is
discussed as an analogue model of QCD, a massive vector bound state appears as
a gauge boson of the hidden local symmetry[27].)

Normalizing the kinetic term of o, we find[14, 15]

fo=afy. (3.11)

$We impose the parity invariance.

10



In the “unitary gauge” (£(c) = 1) this Lagrangian reduces to

L = (8,10"71) + Lrin(V,) + m2 (V) — 2eg, (V.B*)
420G e (V,[0# 7, T]) + 21gynn (Bu[0* 7, T]) + - -, (3.12)
where the parameters in Eq.(3.12), the p meson mass m,, the p-vy transition

strength g,, the prm coupling constant g, and the direct y7m coupling constant

gyrr are given by[16, 19]:

m? = ag’f2, (3.13)
9, = agfy, (3.14)
Jorr = %ag, (3.15)
Gyr = (1 - g) e. (3.16)

Eqgs.(3.14) and (3.15) lead to[19]

9o = 2f2Gprms (3.17)

which is nothing but the KSRF relation[18] (version I). Eq.(3.17) is actually in-
dependent of the parameter a and hence is the decisive test of the hidden local
symmetry[19]. Thus it was conjectured to be a “low energy theorem” of the hidden
local symmetry[19] and was then proved at tree level[24]. Moreover, for a param-

eter choice a = 2, the above results reproduce the outstanding phenomenological

facts[16]:
(1) gprr = g (universality of the p-couplings)[17]T,
(2) m} = 2¢5,.fz (KSRF II) [18],

(3) gyxr = 0 (p meson dominance of the electromagnetic form factor of the pion)

[17].

1 We assume that the p-coupling to the nucleon is minimal. (see, for example, Rel.[2].)
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4 The p-Meson Contribution to the Low En-
ergy Parameters

In this section we discuss the p-meson contribution to the low energy effective
chiral Lagrangian[8, 9, 10]. Here we think about the tree-level effect of the p
meson in the hidden local symmetry model. The following analyses are done in
the unitary gauge (£(0) = 1).

From the Lagrangian, Eq.(3.9), the equation of motion of p meson is given by

1 .
V, — ay () - — (8" F) —ig [V¥, F]) =0, (4.1)

P

where a,(7) is the parallel component of the Maurer-Cartan 1-form given in

Eq.(2.14).

li(mp) 13/
L —6.0+ 3.9 -7.3
Iy 55428 7.3
ls —13.8+1.2 —14.6

Table I: The p-meson contribution to the low energy parameters in units of 107°.

Solving Eq.(4.1) by iteration and substituting the solution into the Lagrangian
Eq.(3.9), we get the following O(p*) terms;

Ll = 16 — (puput) + —16—<’D vp,ut) (pruprut)

—i4—g—2- (FED Ut U + FDUDUT)
—Z;— (FRUtPEU) -

where the covariant derivative D, is defined by

1

¥ (FRE®# 4+ FL F5) (4.2)

DU =08,U —iL,U +iUR,, (4.3)
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and F Zi and F ,ﬁ, denote the field strength of the chiral gauge field if we gauge
the [SU(2);xSU(2)g]giobat Symmetry. As shown in Refs.[5, 6], the general O(p*)

Lagrangian, which includes the pion and the external gauge fields, is given by

Ly = % <DMUD“UT>2 + %<DMU’D,,UT> <’D"UD"UT>

-16 R v L v
+ig (FEDUtD'U + FLDUD UT>

+1 (FRUTPEU) 1 b (FRF™ + FLF5), (4.4)

where 1, I3, ls and lg are low energy parameters and h is a high energy con-
stant which is irrelevant to the low energy experiments. Comparing Eq.(4.2)

with Eq.(4.4), we can easily read off the p-meson contributions to the low energy

parameters[5];
V= _ af? vV _ af?
! 4m?2’ 2 4m?’
af? af?
Iy = ——= l§ =——=. 4.5
5 4m;?73 6 2m’27 ( )

The a;-meson contribution to /5 parameter is important. The p-meson contribu-
tion is not enough to saturate this parameter.

In Table I, we compare the p-meson contributions with the low energy pa-
rameters determined by the experiments[5, 9, 10}, where we take the parameter
choice @ = 2. These imply that the p-meson contribution saturate the low energy

parameters, [y, [, and lg.

5 The One-Loop Corrections

In this section we consider the one-loop effects of the gauge boson of the hidden
local symmetry.

First we introduce the R,-gauge-like gauge-fixing terms and FP ghost La-
grangian corresponding to the hidden gauge boson. These are given by (see Ap-
pendix A)

Lor =~ ((OV)) + 30072 (8,Vales — € + €n - €)
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+11—6aa2g2f: [<(§L — E}t +&r— f};)z> - % <5L - f}: +&r— f}£>2] , (5-1)

Lrp=1 <13 [QG“D“'U + %aang,f(va + §}tv + v€p + f}zv)] > , (5.2)

where v denotes the ghost field. In the following calculations we choose the Landau
gauge, = 0. In this gauge the would-be NG bosons o are still massless, no
other vector-scalar interactions are created and the ghost field couples only to the
gauge fields. Since we are interested in the strong interaction effect, we consider
the photon field as the external field and do not consider its loop effect.

For canceling the lowest derivative divergent part we redefine the normalization

of the parameters and the fields such that

a—= Zaara 9= Zggr; 68# = ZeerBrp,;

V.= Z%,/ZVW, = Z,lrlzw,, o= Ziﬂa,;
fo=ZMfer,  fo=Z 0. (5.3)

We note that from Eq.(3.11), the wave function renormalization constants, Z,
and Z,, are related by
Ly = Loyln. (5.4)

Further, Z, corresponds to Z;/Z, in usual QED case, so that from the Ward-

Takahashi identity, we can conclude
Z.=1, (5.5)

which implies the electromagnetic charge universality. So we take Z, = 1 hereafter.

We define the p meson mass parameter m, by

a,9; f2 (5.6)

r*

2
mP

Hereafter, we denote the pion momentum by k£, and g¢,, and the p meson mo-

mentum by p,. We also denote the photon momentum by p,. In the following

calculations we set the pion momentum on the mass-shell, k% = ¢* = 0.
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5.1 The Determination of the Z Factors

There are four independent Z factors in Eq.(5.3), Z,, Zy, Z, and Z,. In the low
energy calculations, Z, always appears together with Zy in the form ZVZg and
hence we have three independent Z factors in the low energy limit; we use the p-
propagator, the m-propagator and the o-propagator to determine these Z factors.
Then we determine the counter terms for the pmn vertex, the p-y mixing and
the ynm vertex. Explicit calculations are done in the dimensional regularization
scheme. The Feynman rules are shown in Appendix B.

First we calculate the correction to the p-meson propagator. The one-loop

contributions to the p-meson propagator are shown in Fig. 1. These are given by

n a P
- -
TN N
\ \
N — 4 N — /
™ 4
FPP I‘\PP I‘\Pf
(a) (b) (o)
P
g v
PP
Tt
v
I'\Pﬂ

(e)

Figure 1: One-particle irreducible graphs contributing to the p propagator

2 2 1 8
I‘P — L, — 2 y _a_r 9y i 2 e
(a.) (pﬂp p gﬂ ) 12 (471')2 - n( p )+ 3 ]

1 g2 8
P _ 2 il T - 2 e
TG = (Pupe = P*9) 1 (1) [E In( p)+3],

2
2
_ _9r 2 (1 2, 1
ch) = —(—417(_)2 [gw{(imp (E —In my, + g)



277 (412 6
2
- 9r _1_ 2 — In(— 2 §
(e) (471_)2 69;wp ( Il( p )+ 3
+ . In(—p?) + = (5.7)
gPePr \ 2 PITa)l ‘
where
1 2
=1 — v+ In(47),

[y : Euler constant, n:the dimension of the integral]  (5.8)

and F.1)(p?) and F.)(p?) denote the complicated functions. In the low energy

limit, p? = 0, these reduce to

0 3 93 1 ] 2, 9 2
F(°+b+c+d+e) p2=->>0 5(471')2 e nm, + 6 Mpur- (5-9)
From Eq.(5.9) we can determine at p? = 0 the counter term
3 92 (1 5
(ZvZlZ,2. — 1)mig,, = S ) (E —Inm? + g) M2 G (5.10)

in such a way as to obtain the p meson mass parameter M, in the low energy
limit;
M (p* =0) =m) = a.g f2,. (5.11)
Next, Z, and Z, are determined by renormalizing the wave functions of the
7 and o fields at the on-shell point ¢* = 0 (remember that o is massless in the
Landau gauge). The one-loop graphs contributing to these propagators are shown
in Figs. 2 and 3. The one-loop contributions to the m-propagator are given by

3a2 g2 [1 )
7y =~ I | _qam2 42
(@) 270 1 2 (471')2 [g nm, 6
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Figure 3: One-loop contributions to the o propagator

2
2 Gy q 1 2 ]
T | -In(-¢)+2|,
2(47rf,,,)2[ n(=a)

:[‘7!'7[' —_
® =49 z
() =Y (5.12)

Similarly the one-loop contributions to the o-propagator are given by

3 ¢ [1 )
Iee _ 2y R | 2 —
(a)qzo q 2(47r)2 [g nm, + 6] )
1 q° 1 8
oo 2 2
= — — — —1 — ——
® = 2 nf,) [6’ nl=0)+ 3]’
I‘E’C‘; = 0. (5.13)

These contributions determine the 7 and ¢ wave function renormalization con-
stants:

2 2
_ 3a; g,

1 5
r ——lnm?+ = 5.14
2 (4m)’ L€ nm”+6]’ (514




AT e () 3 2 [1 5
(a+b+c) g, 2
Ze—1 -—_— =-——"=1=-—1 - . 5.15
" 2(4%)2 [_ nm, + 6] ( )

q’=0

From Eqs.(5.10), (5.14) and (5.15), we can determine the Z factors:

3 g2 [1 )
Zo—1 = —(@®=-1)—="— |==lnm?+ = 5.16
1 2(a, )(47r)2 [E e ¥ 6] : (516)
3a2 g2 [1 5
Z,—1 = L = —lnm?+ = .
r— 1 2 @n ) [g nmp+6], (5.17)
2
9y 1 2 5
ZyZ2—-1 = -3 --1 -|. 5.18
v (47)? [g nmp+6] (5.18)

As is seen from Eq.(5.16), for the parameter choice a, = 1 the parameter a is not
renormalized. This implies that in the “vector limit”[26] the loop effect of the p
meson does not induce the deviation from a = 1 in contrast to the expectation of
Ref.[26].

These Z factors determine the counter terms for the prr vertex;

i%g,(Z‘I/ZZgZaZW ~1)=0, (5.19)
for the p-y mixing;
— €009y [ 9222 2,207, — 1) = 0, (5.20)

and for the yr7 vertex;

—ierespe(k — q), [ZeZ" (1 - %Z“) B (1 a C.l‘l_r)]
3a,(2i, —1) (495)2 [1 —Inm?2 + g] : (5.21)

= —ie, ek — q)# .

5.2 The prm Vertex, the p-y Mixing and the yr7 Vertex

Now that we have determined the counter terms, we can obtain the one-loop
corrections by calculating the one-loop graphs contributing to the pnm vertex, the

p-y mixing and the yrm vertex.
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Figure 4: One-particle irreducible graphs contributing to the prm vertex
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First we calculate the correction to the pm7m vertex. The one-loop graphs
contributing this vertex are shown in Fig. 4. These contributions are given by

3 2

™ . a g 2
I = ig,€ape(k — q),—~=—"=F, ,
(@ = i9reanc(k = 9)ug (@r)? @(P%)
I\(p;r)w == igrfabc(k - q)ll-a_f gg 2F(b)(p2),

4 (4m)

. a,(3a, —4) p? 1 8
I‘P""W: rack_ —'—l —p? =,
© iGr€abe( ) 18 (47rf,,,)2 = n( P)+3
. 1 p? 1 8

T = —ig empe(k — q)y——— | = — In(—p?) + = |,
prm
T =0

2

r_ a p 1 o, 8
T = ig,€apek — Q)ue—— | = — In(=p?) + = ,

I = T4 =0, (5.22)

where F,)(p®) and F)(p?) denote certain complicated functions which have no
divergent part and Fi,)(p? = 0) = Fy)(p? =0) = 0.

From Eq.(5.22) we can easily see that at p> = 0 there exist no contributions.
From this and Eq.(5.19), we find that the p77 coupling remains the same as the

tree level in the low energy limit;
aT
gorr(P® = 03K° = 0,¢” = 0) = =g, (5.23)

Eq.(5.23) implies that for a, = 2, the universality of the p-couplings remains intact
in the low energy limit.
Similarly, one-loop graphs contributing to the p-v mixing are shown in Fig. 5.

These are given by

1 ergr |1 8
e = L — 020, —— | = = In(—p?) + =
a-(a, —2) e.gr [1 8
=22 = L — 020 —— | = = In(—=p?) + =
(5) 5 (PuPv — P9 )(M)2 [g n(—p°) + 3] :
I‘zc”) =0, (5.24)
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which have no contributions at p> = 0. From this and Eq.(5.20), we find that the

p-y mixing also remains the same as its tree level in the low energy limit;

gp(pz = 0) = Qrgr 1%1" (5'25)

Next we calculate the one-loop contributions to the yr7 vertex. These graphs
are shown in Figs. 6 and 7.

The contributions from the graphs in Fig. 6 are given by

T p 1 2 8
N N Q)u48( arnfo ) [— — In(—p*) + g] , (5.26.a)
LT = —ie ea0(k — q) L_p - —In(—p )+ (5.26.b)
(b) T #24 (4 f.”,)
I =0, (5.26.c)
—_— 9a; g7 [1 5
de) = 26,631,5(]9 - Q),u 8 (4 ) I:t - lnm + 6] (526d)
3a2 g2 [1 )
= - . -—1 F 5.26.
Ly = tereselk — ¢)u (@) [6 nmj+ = e T Eelp )] (5.26.¢)
r , 3a, g2 [1 5
IThy = —ierespe(k — q)uT((M)g [E —Inm’ + g + F(e)(pQ)] , (5.26.1)

7™ =0, (5.26.g)
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where the function F.)(p?) is defined by

Fro(p )——gfoldmln (1-x—) /ydy/ d:cln( “g(l_”’y)fz).

1— y)mp
(5.27)
‘:15‘ I" \ ., l" ';ﬁ'l
2220 p m ¢ el i°

‘\ ’ \\ \\ !

L g . e

- -
F”r)'( ) FE',’)"(P ) 1“(7;;'(?2)

Figure 7: One-particle irreducible graphs contributing to the y7n vertex which
include the tree level direct ymr vertex

Next we calculate the one-loop graphs through the tree-level direct v vertex

(Fig. 7). These contributions are given by

T a3(2 - ar) gg
th) = —1e €3bc(k - Q)p ] (47{')2 F(h)(pz))

- (2 -a,)(3a, —4) p? 1 2 8
in) = Ze'rESbc(k - q)p 48 (47rf7rr)2 'e—' - ln(—p ) + g )
TGy =9, (5.28)

where F)(p®) denotes the complicated function defined by

F(h) /ydy/ d:c[ 3;1:y_2)1n( —y)m (f (1—-”3)yp

y)m?2

4 (2 — 1) =220 =20 ]

(1- y)m% —z(1— z)y?p? (5.29)

In the zero photon momentum limit, p?> = 0, the contribution of these graphs
reduce to

3a,(2a, — 2 5
ieycsnek — g), a,(2a 1) g; I:.;_ —lnmlz)+ —] . (5.30)

4 (471')2 6
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This is precisely canceled by the counter term, Eq.(5.21). So we get the ya«

vertex function given by
F’yr'}r(pZ;k2 — q2 — 0)

= —ie,eqc(k — q), (1 - %T)

3a, g¢?
A 2
4 (4’/‘1’)2 (e)(p )

a,—1 p? 1 8
[ 8 (4xf.,) {E ~In(=p%) + 5}
+

% F<h>(p2>] . (531)

This implies that for a, = 2 there exists no direct ym7 interaction.

2
9
4

_|_

5.3 The Results

From Egs.(5.23) and (5.25), we obtain the desired “low energy theorem” (KSRF
D;
9,(P2 = 0) = 2f2 gpnr(p’ = 0;p2 = 0,p2 = 0) (5.32)

at one-loop level.
Eq.(5.23) implies that for a, = 2 the universality of the p couplings remains

intact in the low energy limit;

Gonn(Py = 037, = 0,p, = 0) = g, . (5.33)

Combined with Eq.(5.23), Eq.(5.11) yields the KSRF relation (II) for a, = 2

in the low energy limit;

2¢,2 _ _ 2 2 _ 2 — 2 _ 2
Mp (pp - 0) - 2gp1r1r(pp - O’pr - 0’p1r - 0) T (534')

Moreover, Eq.(5.31) implies that no direct ym interaction is induced for the
finite photon momentum not restricted to the zero momentum limit, if and only

if we take the parameter choice, a, = 2;

I (p2 ;p2 = 0,p; = 0) = 0. (5.35)
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6 The Renormalization-Group Equations

In this section we make some comments on the renormalization-group equations
for the parameters, a, and g,, in the modified minimal subtraction scheme.
From Eq.(5.7), we can get the p-meson wave function renormalization constant

in this scheme;

51—a? g2 1
—-1= L= 6.1
ZV 1 12 (471')2 I3 ( )
Further, the Z factors lead to
2
1
Z -1 = —S@-1-%_ 1 (6.2)
2 (471') €
2
1
ZyZ2—1 = -39 __ 6.3
V&g (471’)2€ ( )

Comparing Eq.(6.1) with Eq.(6.3), the Z factor for the hidden gauge coupling

is given by .
87T —aZ g7 1
L,—1=— LT 6.4
J 24 (4r)° € (6.4)
From Egs.(6.2) and (6.4), we can get the f functions for a, and g, (see Fig. 8);
da g2
(a,,0,) = ~ = —3a,(a? - 1), 6.5
falar gr) = ng (a7 = 1) ()’ (6.5)
09, 87 —a? g3
r) = =— L= 6.6

The f function for a,, Eq.(6.5), has an ultraviolet fixed point at a, = 1, which
corresponds to the fact that the parameter a is not renormalized if we set a = 1
from the beginning. Eq.(6.6) implies that the hidden gauge coupling constant g,
is asymptotically free for not so large value of a, (a, < v/87). These imply that for
a reasonable value for a, in the low energy (for example a, = 2), the parameter a,
and the coupling constant g, go asymptotically to the value of “vector limit”[26]
(a, = 1 and g, = 0), i.e., the “vector limit” is realized as the “idealized” high
energy limit of the hidden local symmetry.
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Figure 8: The renormalization-group evolution of the parameters, a, and g,. We
take a,(1 = m,) = 2.0 and g,(u = m,) = 6.0 as input values.
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7 Conclusions and Discussions

We have studied the one-loop corrections of the hidden local gauge boson to the
successful tree level predictions. The KSRF relation (I) is satisfied even if we in-
clude the one-loop correction of the p meson. This suggests that this relation may
become a true low energy theorem of the hidden local symmetryl. Further, in the
parameter choice a, = 2, the KSRF relation (II) and the p-coupling universality
survive the loop corrections. Most amazingly, there exists no direct yrm coupling
for the finite photon momentum not restricted to the zero momentum limit, if
and only if we take the parameter choice a, = 2. This implies that the p-meson
dominance of the electromagnetic form factor of the pion remains valid, even if
we include the loop correction of the p meson.

Further, we have studied the renormalization-group equations for a, and g,,
and shown that the values in the “vector limit” (¢ = 1, ¢ = 0) are ultraviolet
fixed points of each 8 function. This implies that the “vector limit” is realized as
“idealized” high energy limit of the hidden local symmetry.

As far as tree level is concerned, one might argue[26] that the hidden local
symmetry is entirely rotated away by a choice of gauge (unitary gauge). However,
this is not true at one-loop level. Actually we have demonstrated that the gauge
degrees of freedom (o, FP ghost as well as p meson itself) are essential to the
whole successful results mentioned above.

In this paper, we have calculated the loop corrections in the low energy limit
except for the ynm vertex. It is important that we investigate the loop corrections
to the above results at higher energy scale, p* ~ m?, and see whether or not we
can use this “effective field theory” up to the a;-meson mass region. In that scale,
however, we should consider the counter terms with higher derivatives (O(p*)

terms)**, as considered in the chiral perturbation theory[4, 5, 6].

Il Actually we have recently proved this relation to all orders based on the BRS symmetry[25].
**The structure of these counter terms are investigated by Tanabashi, using a formalism in
which the gauge invariance is transparent[28].
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After such consideration, we can compare the results with the generalized
hidden local Lagrangian which include a; meson as well as p meson[24, 14]. As
such we may relate the unknown parameters to the underlying dynamics, QCD.

It would be very useful that we apply this hidden local symmetry as an “ef-
fective field theory” not only to the ordinary technicolor model, but also to the
dynamical electroweak symmetry breaking models with large anomalous dimen-
sion, such as the walking technicolor[29], the strong ETC technicolor[30] and the

top quark condensate models[31], etc., in which the vector resonances may exist.
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Appendices

A The R; Gauge Fixing

In this section we introduce the R, gauge fixing condition which cancels the vector-
scalar mixing terms in the hidden local Lagrangian.

First we define the BRS transformations:

6prs€r r = tgv€L pr, [v: ghost field],

6prsV, = 8,v +1g[v,V,] = D,v,

SsrsB=0, [B: NL field),

6prs?¥ = 1B. (A.1)

We introduce the gauge fixing plus FP ghost term given by

Leryrp = —16pRs <17 [23"% - %aagf? (fL - EJJ[ +&r — 5};) + O‘B] > , (A.2)

where o denotes the gauge parameter.

From the definitions of the BRS transformation, Eq.(A.1), Eq.(A.2) becomes
1
Corerp = <B [zam ~ saagf (& — €] +&n—€]) + aB] >

+ <2'17 [28“D“v + %aagff (v&, + EZU + v€r + 5}20)] > . (A.3)

The E-L equation for NL field is now given by

B = -1— <Ta [26#% — %aagf,f (fL - fj’, + ER - Ejz)“ > ) (A4)

[0

where 7* denotes the generator of the hidden local symmetry. Substituting
Eq.(A.4) into Eq.(A.3), we can get the following gauge fixing term and FP ghost

term:

tor = —5 (1 [0~ Joass? (6 - ] + en—ef)|)
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X <T“ [28“1/“ - %aagf,f (EL - Ez +&r — 5;(1)] > , (A.5)
Lpp = 1 <6 [28"Dpv + %aagff (va + f;[v + vép + f};v)] > . (A.6)

Here using the formula for SU(N) generator 7,

S (T°4) (T"B) = 5 (AB) — == (4) (B), (A7)

a

Eq.(A.5) reduces to
Lor = —11; < [zam - %aagf? (& — &l +éa- 6;2)] >

i 2 2
vivs (o) (ee—el+ea—el) x9)
where we use (0*V,) = 0.

Finally we get the following gauge fixing term and FP ghost term in N = 2

case:
Lor = = (@) + 50972 (0,146 — €] + e — €D)

16 ,(A.9)

+ocad’g’f} [((& —e ) - (e —elrea—eh)
Lrp=1 <z7 [28“D#v + —;-aangﬁ(vEL + 51'0 + v€p + E};v)] > . (A.10)

B Feynman Rules

B.1 The Propagators

Dp(p) = 85—

DY) = 6=

—P
1
DF(p*) = 5“6:55
a a: 1
DX(p*) = 5b—_?



B.2 The Vertices

B.2.1 The vertices which include one photon

-0 mixing

N> --0°

/4

yoo vertex

.o
Y
Yo »
h* b
LN
yrw vertex
,n.a
LY
238
> b
Pzt
yormw vertex s
]
[ ]
AP
1
Y e----m
1
1
]
'7.{.6
yrarw vertex
ITra
' ,W'b
oA 4
n X '1
2t X&
V.
o4
P4
T LEN
I7Td

ief(,p,‘5“3

—i§€€3ab(}71 - 102)“

, a
—i(1— §)€€3ab(P1 —p2),

3 a
ZCE (8acbb3 + Babbes — 264366c) Py

. T7a—8
—1ie 122

[(pl - pZ)uealﬁéed +(p2 — pB)ufbcsfSad
+(ps — pa) €casbab + (P4 — P1) ,€da360bc
+(p1 - pS)ueacS(de + (Pz - p4)“6bd35ac]
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yrwoo vertex

lﬂ-a
1 ,UC
Plélk - ’ 1
e : P3 —ZGW(PS - P4)“
' 'y ™
PQT Pa~ _o'd (fbcd63a + Eacd63a - 263cd5ab)
'ﬂ'b

B.2.2 The vertices which include one photon and one p

-y mixing

28R =—— PZ —6agf39uv5a3
Yo7 vertex e
a
e e§ggw/
- - -- (25535,,5 — 8350eb — 53b5ea)
1
'm_b

ypoo vertex

o

1
€99
- -0 2"

(25535,11, — 63a66b - 63b6ea)

& - -

vpo vertex

rn'/ €9.fo Gy €absy
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B.2.3 The vertices which include one p

prw vertex

b
a -
Py =——e e
&
P2~ g€

poo vertex

a

v
a .
Pp———g P
4
p2~ ~0'C

pomm vertex .
]

]

A P3

a

d 1]
Pp———@ ->F- -T
o
1]
'ﬂ'b

prrrw vertex

a

~ig 5 €abe(P1 = P2),
1
"Zgafabc(Pl - Pz)#
g [1( + P2 + P3), Bt
2, 2P1 P2 T P3),0ab0cd

+ (pl - pZ)# (5ac6bd - 5ad5bc)

a

1272

ig
(pl - pZ)ueabe(Scd + (Pz - pS)ﬂebce(Sad

+(p3 - p4)ﬂ€cde6ab + (P4 - pl)ﬂedaeébc

+(pl - pS)MEaceébd + (p2 - p4)“6bd55ac]

1
_194_]‘2(‘”1 - Pz)p

(eabdéec + Eabcéde - 2€abe6cd)
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B.2.4 The p 3-point and 4-point vertices

p 3-point vertex

p3 a
o 19€abe [guv(P1 — P2),
P b + gvalp2 — pS),, + Jau(ps — pl)y]
P2 v
p 4-point vertex
o8 [
—92 eeabfecd(gowgﬁtS - gaégﬂ'y)
n P4
+ eeaceebd(gaﬂg'yé - gaég‘vﬂ)
+ feadfebc(gaﬁgé'y - ga-yg5ﬂ)
P2 P3
b
p[i‘ p‘cy

B.2.5 The vertices which include the ghost field

p-ghost-ghost vertex

)41

Pu G€anellt

B.2.6 The vertices which include the NG bosons only

orw vertex

P2, -
fo e T a
B '5'. 0 —Ffabcpl : (Pz - Ps)
p3 - ‘ﬂ.c o
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conmm vertex

7 o
v A 1
Pl:.: P4 ﬁ((sacébd - 5adébc)(p1 - pz) : (ps - p4)
I)-' ‘-i\
4 PZ ps\
’71'6 a¢
471 vertex
a d
i . P i 3a — 4
Yoo 12f
PiN_ 2 D4
O [Sasbea {01 = p5) - (52 = p) = (1 = 1) - (ps = P2)}
J SR |
27 po Pia +6acOba {(P1 — Ps) - (Ps — p2) — (p1 — p2) - (P4 — P3)}
6 \
L ¢ +06ad0bc {(pl - pz) : (P4 — Ps) - (Pl - Ps) : (Pz - P4)}]
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