mess s 2665 5

3 8

F#wmX
A construction of g-analogue of Dedekind sums
( Dedekind F1® g-analogue DKL)

B2 X

1. g-Analogue of Riemann’s (-function and g-Euler numbers
( Riemann O¢-A D g-analogue & ¢-Euler )

2. The Iwasawa Ap-invariants of I'-transforms of the generating func-
tions of the Bernoulli numbers

( Bernoulli HO REYDOT-ZRDEE) A ER)
3. Iwasawa A-invariants of I'-transforms
(I-EBHDOEEN-AER)

B

:};’ 5

1069744



A construction of ¢g-analogue of Dedekind sums

JUNYA SATOH

Konan Women’s Junior College.

ABSTRACT. We give a new method of construction of g-analogue of formal power series. The
construction follows Carlitz’s g-Bernoulli numbers and ¢-Euler numbers. As an application, we
can deduce unknown g-formulae from known classical (i.e.,in the case of ¢ = 1) formulae. We
find the method through a study of ¢g-analogue of Dedekind sums. We define them using ¢-Euler
functions, which are g-analogue of higher-order Dedekind sums introduced by Apostol [1]. And
we prove the reciprocity law for these ¢-Dedekind sums.

0. INTRODUCTION.

If one looks back the classical proof (cf. Carlitz [4]) of the reciprocity law for Dedekind
sums in order to construct g-analogue of Dedekind sums which also have the reciprocity
law, one can soon see that the following elementary equation is essential in the proof:

l—ul-—-vw l—-vl—u l—ul-—vw
(1) 1 1 = 1

)
et—uet—v u—vet—u v—uet—v

for any distinct complex numbers u and v, where el‘_—z means the generating function of

Euler numbers associated to u. So we must extend the above equation to the generating

function of g-Euler numbers for our purpose. As a result, we obtain a very suggestive
equation (see Lemma 5) under the conditions |u| > 1 and |v]| > 1:

(2) Fuzg(t) * Foyg(t) =

Uu-—2v v—1u

where Fy.,(t) means the generating function of ¢-Euler numbers associated to u and the
left hand side of (2) is determined by Lemma 4. The above equation is correspond to
:,__’;e%:—’; :(1). We take a deep interest in the
invariance of the form. By the generalization of the theory, we give a new method of

the decomposition into partial fractions of

construction of g-analogue of formal power series. In the following, we explain about the
essence of our theory. In [2], Carlitz defined ¢-Bernoulli numbers for a complex number ¢

as follows:
1 forn=1,

0 forn > 1,

Bolg) =1, q(gB(a) +1)" = Bulq) = {

with the usual convention about replacing 8™(q) by B (g). However it is almost impos-
sible to extend the above recurrence definition to arbitrary sequence, harmonizing with
g-Bernoulli numbers. So we need to consider another construction of ¢-Bernoulli numbers.
For that reason, in the next place, we explain another construction of ¢g-Bernoulli numbers
from the position that the generating function of ¢-Bernoulli numbers can be viewed as a



solution of g-difference equation, following the author’s previous paper [6]. Let G4(t) be
the generating function of ¢-Bernoulli numbers, i.e.,

Golt) = 3 Bula) .

n=0

Then Gg(t) is determined as a unique solution of the following g-difference equation [6,

(2)):
Gy(t) = qe'Gq(qt) -t —g + 1.

If |g] < 1, then the solution of the above g¢-difference equation is expressed as follows [6,

Lemma 1]:

Ge(t) ==Y qmeldli(g"t + g 1),

n=0

where [z] = [z;¢] means Y;T_il for any complex number z.
Now the generating function of classical (i.e., in the case of ¢ = 1) Bernoulli numbers is
formally expressed as follows:

¢ 00
Gl(t) = et — 1 =- Z entt’
=0

so we can easily imagine that
[e e}
— Z qne[n]tt
n=0

may be suitable for g-analogue of G;(t). In fact, if we use an operator ¢, such that

Sla.

wg=1y+(¢-1)

9

then Gy(t) is expressed as follows:

Golt) = o (- 3 anetle).
n=0

The purpose of this paper is that we give a new method of construction of ¢-analogue
using the above operator ¢q- As the first step, we extend the map:G(t) — G4(t) to general
power series using ¢4 and *. Next we show that the map is a homomorphism. So we can
deduce unknown g¢-formulae from known classical formulae. For example, we can deduce
(2) from (1).

- In the following part, we describe the construction of g-analogue of Dedekind sums in
order to explain the background of our theory. In the second part, we bring about our
purpose and review the argument of the first part from a new angle of vision.
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1. CONSTRUCTION OF ¢-DEDEKIND SUMS.

1-1. Notation and properties of ax(z;q).
Throughout this paper, we assume that ¢ and u are complex numbers such that |¢| < 1
and |u| > 1. Following Carlitz [5], we define ¢-Euler numbers associated to u by

Hy(q;u) =1, (qH(q; u) + l)n —uHnp(g;u) =0 for n >0,

and ¢-Bernoulli polynomials and ¢g-Euler polynomials by

n

Br(z;q) = ) (:L) g™ Bm(q)[z]" ™™

m=0

and
n

Ha(e,us0) = 3 ()4 Hon(ui 0)[a]" ™,

m=0

respectively. In paticular, we define the following:

DEFINITION 1. For each non-negative integer n, we define

an(239) = —Hn (z07%59)  and  an(q) = an(0;9).

g-1
These polynomials have the almost same properties with classical Bernoulli polynomials

By () and play an important role in this paper in spite of the divergency of lim,_,; an(z;q).

In fact, (8) implies as a Laurent series

Gi(t)

where Aq4(t) and G¢(t) mean the generating functions with indeterminate ¢ of an(q) and

Bn(q), respectively.
Now we study properties of an(z;¢) for n > 0, which will be used to define our ¢-Dedekind

sums Spq(h, k).

LEMMA 1. For any non-negative integer n and positive integer k,we have

k-1
(4) K" 3 (a¢) e (54%) = qgl_ ~Ha ((40)7%59)
a=0

where ¢ s a k-th root of unity.
PROOF: By the definition of an(z;q), the left hand side of (4) is equal to

[k]nkf O g, (2, (g0 ¥)
a0 =1 (10 750°).

a=0

3



This is equal to the right hand side of (4) by [6, Lemma 2], which will be again proved in
the last of this paper in consequence of our theory:(16). &

Next we define g-analogue of Bernoulli (or Euler) functions as follows:

DEFINITION 2. For each non-negative integer n, we define

an(2;q) = an ({2};¢) ¢17},

where {} means the decimal part of x.

Using this notation, Lemma 1 is expressed as follows:

(5) » [k]n Z ¢*an (%;qk) = qu— lHn ((QC)_I;Q) .

a mod k

By solving the above equality with respect to an (%, qk),we obtain

LEMMA 2. For any non-negative integer n and positive integer k, we have

o (7ie) = [kll"k S et ((@0)5a).

¢k=1

PROOF: Since ay (%;qk) is a periodic function with period k with respect to a € Z, they

are represented as finite Fourier series:
a k—1
& (736") = X Cut™,
s=0
where £ is a primitive k-th root of unity. Hence we obtain the following by (5)

C _.lkz—:léasa (2 k)____l_ 1 H (( gs)—l. )
TRLS )T R 1 )9

This completes the proof of Lemma 2. §
Note that by (3) and [4,(6.4)] we have

0 i {on o) it = e (P () - 22

where Bn(z) mean the n-th Bernoulli functions: By, (z) = By ({z}).
Now we define g-analogue of Dedekind sums using an(z;q) as follows:
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DEFINITION 3. For each non-negative integer n and for any positive integers h and k, we
define
5 (ay - (ah
sme(h k)= 3 B (F) %n (T;qk) '
a mod k

Then we obtain the following result which is an immediate consequence of Lemma, 2:

LEMMA 3. For any non-negative integer n and positive integers h and k such that (h,k) =
1, we have

_an(q)Bl 1 __1___._____1__
smalhoK) = =0 T @ Cgl C-T¢P-1

(#1

Ha ((9)7 %) -

Note that by (6) we have

. anB 1 BBy 11
i {ona(h) = G561} =y s~ P11,

where s, 11(h, k) are classical n + 1-th higher-order Dedekind sums introduced by Apostol

[1]. In the next section we prove the reciprocity law for these ¢g-Dedekind sums.

1-2. Reciprocity law for s,,4(h, k).
Our main result in this section is described as follows:

THEOREM 1. For any non-negative integer n and positive integers h and k such that
(h,k) =1, we have

(K]" snq (R, k) + [B]" snq (K, h)
={(a=1)a () o () W11+ 0 () 1+ o () 1}

- 2= {(a-1)a2(g) + a(9) + a()}" - 1ran(a),

with the usual convention about replacing a*(q) by a;(q) (note that a¥(q) is equal to ag(q)
not necessarily to 1).

Our result implies Apostol’s reciprocity law [1, Theorem 1]. In order to prove Theorem
1, we need several lemmas.

Let f(t) and g(t) be power series which have the following representations:

00 n 0 "
=3 fet= 3y
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and
=3 gnellt = 3 G 1o,
n=0 n=0 n
respectively. Then we have
m=0

and
Gn = Z gm[m]
m=0

for n > 0 (according to necessity, we assume the convergency of the above series). And we
define a * product between el™l* and e[t as follows:

elmlt . lnlt — olmnlt

and extend it between f(t) and g¢(t) linearly. Then we have

(7) ) rgt) =3 ( 5> fgn- m) i

n=0 =0

and the coefficients of % in (7) are given by

i i fmgn_m[n]k = i": ifmgn[m‘*'”]k

= 53" fmgn () + )}

m=0n=0

P> megnz () am il ml*

m=0n=0

k k (e e]

=3 ()61 32 il
1=0

k@azmzwamf“

m=0 7=0

Hence we obtain the following:



LEMMA 4. For the above f(t) and g(t), we have

9 = S Aa-DFG+F+6)" &
n=0

Similarly to [6, Lemma 1], we can express Fy4(t) by

(8) Fuqlt) = (1 _ _11;) iu—ne[n]t

if Ju| > 1. Hence the x product is defined between Fy;q(t) and Fyye(?) if Ju| > 1 and |v| > 1,
and the following holds:

LEMMA 5. For any distinct complex numbers u and v such that |u| > 1 and |v| > 1, we
have

(9) Fusg(8)  Fosg (£) = S22 Fugg () + 2% Fu (1)

U-—-v

PROOF: Using the * product, the defining equation [6,(6)] of Fu,(t) is expressed by
Loty Fug(t) = Fuyg(8) + £ -1
" u;g uig Y

where we regard et as elll!. Hence we obtain

(%et * Fu;q(t)> * (%et * Fv;q(t)) = Fu;q(t) + Foyg () + (l - 1) Fug(2)

v
1 1 1
#(@1) P+ (5-1) (5-1)
And the left hand side of the above equality is equal to
1 1
%e[Z]t * (Fusq(t) * Foyg(t)) = %emt(Fu;q * Foyg) (qzt) :

Therefore Fyq(t) * Fy.(t) is a solution of

(10)  goelf () = O+ (5-1) Pua)+ (5-1) Foad + (3 -1) (5-1),

and the uniqueness is showed easily. On the other hand, we can see by a short calculation
that the right hand side of (9) satisfies (10). This completes the proof of Lemma 5. §

Since the + product is defined between A i ([k]t) and A s ([h]t), we obtain the following
by Lemma 5:



LEMMA 6. For any positive integers h and k such that (h,k) = 1,we have

1 1 1
(11) A ([k]t) « An ([R]t) = kX: e h__lF(QC) 1,4(1)
c =1
C#l
+3 an 1,7—k_1F(qn)‘ ®)
n#l
k+h-2
g At Ag(t) - EEEZ2 4,0,
PROOF: Noting
1 1-k
(#1

we can see easily by Lemma 5. 1

By comparing the coefficients of & —r in (11) and using Lemma 4, we obtain the following:

LEMMA 7. For any non-negative integer n and positive integers h and k such that (h, k) =
1, we have

{a=1)a () () B8] +a () 1+ o () i}

1 1 1
=z > Hy ((99)7%9)
k —-1¢-h - ’
b= ! ¢
¢#1
1 11 L
+ Er,"X—:1 mmﬂn ((gn) 1q)
n#1
1 k+ho2

+ 75 1@ - Det(9) +elg) + a(9)}" - T =au(q).

At present position, we can see the reciprocity law for ¢-Dedekind sums immediately from
Lemmas 3 and 7. We done the proof of Theorem 1. §

Finally we conclude this part by raising the following questions:

(1) Find the reciprocity law for generalized ¢-Dedekind sums

(ii) Determine the relationship between g-Dedekind sums and Lambert series.
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2. GENERALIZATION OF CONSTRUCTION OF g-ANALOGUE.

In this part, we construct g-analogue of formal power series which satisfy some conditions
(for example F,.1(t) and Gy(t) etc.). The * product introduced in the first part is defined
between power series in ¢!, so in order to treat G;(t), we need to extend it to polynomials
in t at least.

For fixed complex number ¢ such that |g| < 1, we define an operator ¢, on formal power
series ring C [[t]] as follows:

DEFINITION 4. For f(t) e C[[t]], we define

ea(F) = 1)+ (= 1) £(2).

We construct g-analogue based on the operator ¢4. And the following Lemma is essential
in our theory:

LEMMA 8. There uniquely exists a C-multilinear map ®n for each positive integer n:

o, :F[[t]] X o x C[[t]]l———»C[[t]]

~

n times

such that

(1) Qn(fl,,fn)zfl(o)fn(o) mod ng 1)

(11) Qn(flv"'afn—lil):(I)n-—l(fla"'afn—l) ifn>1)

(i) @g(@alfis---sfn)) = @a(@g(fi)s- - »0a(fa)),
for fiy.-.s fa € C[[t]].
PROOF: The uniqueness of ®, for each n > 1 is showed without difficulty, because
®, (t™1,...,4™n) for non-negative integers m; (1 < ¢ < n) is uniquely determined by the
mathematical induction on n and my +--- + my,.

Next we show the existence. For that, we introduce the following bracket [+,+] = [x,+],

from C[[t]] x C[[t]] to C[[t]] by

(fg] = i figm @=1)"

]
"0 n:

where f(*) and g(*) mean the n-th formal differential of f and g € C [[t]], respectively.
Now 1,; and [x, +] satisfy the conditions (i), (i) and (iii) of Lemma 8 for the cases of n = 1
and n = 2, respectively, thus by the uniqueness we have the following:
@1 = 1id and q)z = [*,*].
9



On the other hand for n > 3,

[...[ *,*],*,...,*]
\\‘ﬂ/
n times

satisfies the conditions (i), (ii) and (iii) of Lemma 8, so it coincides with ®, by the unique-
ness. This completes the proof of Lemma 8. &

Hereafter we denote [f,g]y by f*qg for f and g € C[[t]], ie.,
DEFINITION 5.

[e o]

Frag=3 fogm =Dl

|
= n!
By Lemma 8, we can investigate the poperties of +,.

LEMMA 9. x4 satisfies commutative law, i.e.,
frqg=9x [,
for any f and ge C [[t]]

PROOF: It is clear because of the definition of x4 or the uniqueness of ®,. §

LEMMA 10. x4 satisfies associative law, i.e.,
(f+q9)*¢h = frq(g+qh),

for any f, g and h e C[[t]]
PROOF: By the uniqueness of ®3, both of [[*,*],*] and [*, [*,*]] coincide with ®3. &

Note that C [[t]} has a product structure with respect to #4, by Lemmas 9 and 10.
Next we explain that *; satisfies a kind of exponential law.

LEMMA 11. For each complex number a, there uniquely ezists fo(t) € C[[t]], such that

fa(0) =1 and Pq ((fa(t)) = q*fa(t).

PROOF: It is obvious that f,(t) = elalt. g

Now we can easily describe that +4 satisfies a kind of exponential law as follows:

PROPOSITION 1. For any complex numbers a and b, we have
Dy(fas f3) = fatpr By el ug eltlt = elotlt,

PROOF: By Lemma 8, ®,(fa, f;) satisfies the conditions of Lemma 11 for a + b, so it
coincides with D |

Therefore the x4 product is regared as an extension of the x product which is introduced
in the first part. And by the above argument, we can construct g-analogue of formal power
series which satisfy some conditions.

10



DEFINITION 6. We set the following:

o0 o0
R=(R,+,)= {Z ane™ l )" anq™is absolutely convergent.} ,

n=0 n=0
o0 o0
Ry = (Rg,+,%¢) = { ang" et Z anq™is absolutely convergent.} ,

n=0 n=0

finite
Ryltlg = (Rqltlg, +,%¢) = { Z faxqlxg---xqt | fn€ Ry for each n}
N’

n=0 A
n times

Note that all of elements of R,[t]; can be viewed as those of C [[t]] because of the condition
on R, so let ¢4 be the inclusion map, i.e.,

Ry[t]y < C[ft]]-
DEFINITION 7. For each f = 352 jane™ € R, we define
oo
f*a= Z ane[n]t.
n=0

And we define g as follows:

Pq: R[t] Ry[t]g
finite finite
ant" —_ Z fal xglkg - *qt.
n=0 n=0 —
n times

If we extend @, to Ry[t],then it is a ring endomorphism on Ry[t]; with respect to + and
*¢, and the following diagram commutes:

¥Pq

Rq [t]q - RQ[t]q
iql iql

cly] 2~ ¢ 4]

And by the definitions, it is clear that ig o g 0 94 is C-homomorphism from R]t] to C [[t]]
So we define g-analogue for each element of R[t] as follows:

DEFINITIOM 8. For each f € R[t], we define a g-analogue fy of f by

'-.fq:iq090q°¢q(f)-
| 11



Examples. Using our construction of g-analogue, the generating functions of Carlitz’s
g-Bernoulli numbers and g-Euler numbers are expressed as follows:

Go(t) = (G1(2)), 5
D Fuy(t) = (L%Fuq;l(t))qand

u—1

Ag(t) = (g.lt(i))q

Since iq o g 0 Py is C-homomorphis, we obtain the following:

THEOREM 2. For H(ty,...,tn) = b amy,..,mat] L. tn™ € Clty,...,ta], we for-
my,...mp€C
mally set
H*q(tl,...,tn)z Z aml,...,mntl*q"‘*qtl*q'“*qtn*q"'*qt"'

my,....mp€C g .
LyeyMn€ my times my, times

And for fi,..., fa € Rl[t], if the following holds
H(fl"'-afn) 207

then the following holds

H*((f1)gr-- -+ (fa)g) = 0.

Examples. The motivation of this paper is the construction of g-analogue of (1) (see
Introduction). At present stage, it is clear, i.e., we have the following by Theorem 2:

1-wv 1-u
Fu;q(t) *q Fv;q(t) = Fu;q(t) + D —u

u-—-v

Fuiq(t),

for any distinct complex numbers v and v such that |u| > 1 and Jv| > 1.
Next we shall look back the argument of the first part through our theory. For that, we
need two Lemmas.

LEMMA 12. For any f(t) = g(t)h(t) such that g(t) is monomial in t and h(t) € R, and
positive integer k, we have

k
(£(kt)), = g(m>qu([k]t)-
PROOF: By the definition and a short calculation, we can obtain what we want. g

12



LEMMA 13. For any f(t) € C[[t]] and ¢ € C, we have
F(#) rq el = f(g=t)el).

PROOF: This is also clear, by the definition and a short calculation. g

Now since classical Dedekind sums sn(h, k) are expresses as follows [3,(6.5)]:
L2e 4 k—anzl 1oy (675
¢#1

sn(h,k) =

for n > 1 and so(h, k) = By, their generating function Sy, x(t) is given by

50 (1) + 1 ¥ oot (1)

C#l

Hence we have
Sh,k(kt) BlGl +t Z C__l(. h FC 1( )

—
ch

Directly we can construct g-analogue of the above equality, but by treating 2‘47"5—5—@, we can
obtain a simpler result. By Theorem 2, we have

Swi(kt)\ _ By 1 1 1
( kt ] & 7 Adlt )+k 2 qC_lg—h_lF(qC)‘l;q(t)'
(#1
Therefore, by Lemmas 3 and 12, we can express our ¢-Dedekind sums which were defined in

the first part as the coeflicients of (iﬁ%ﬁl) . And we can deduce Lemma 6, which implies
q

the reciprocity law for g-Dedekind sums from

G(kt) G1(ht
oo L ¢ 1,

¢k=1
C#l
+y P o)
n#l
L 1GIGI) _k+h-2Gi()
kh 1 t 2kh t

which is equivalent to [4,(3.4))].
13



Finally we conclude this paper by raising two examples about ¢-Bernoulli polynomials
and g-Euler polynomials. At first, we treat g-Bernoulli polynomials. For a prime number p,
the following equation plays an important role in constructing the p-adic Bernoulli measure
on Zy:

(12) k= IZB ( ) Ba(z),

a=0

for any positive integer k and non-negative integer n. ¢-Analogue of (12) is given by Carlitz
(2, (5.9)] and that of the equation for Euler polynomials is given by the author [6, Lemma
2]. Using our construction of g-analogue, we can clearly explain them as follows:

Now g-analogue of (12) for n > 0 is expressed by

(13) k]~ 1Zq“ﬁn(x+a,q ) = fa(2;9).

a=0

Since the generating function of ¢-Bernoulli polynomials is given by
Z Bu(33 )y = G (¢°) 2,

(13) is equivalent to the following:

(14) i (¢°[k]t) elel.

On the other hand, the classical equation (i.e., in the case of ¢ = 1) which corresponds to
the above equation is

k-1
1 a
(15) Gi(t) = E;::()Gl(kt)e t
and it is trivial. So we can deduce (14) from (15) by Theorem 2, Lemmas 12 and 13.
Next we explain an example about ¢-Euler polynomials [6,Lemma 2], which was already
used in the proof of Lemma 1:

k-1 -
a + 1
(16) [£]" Zo uilk —IH" <x T % k’qk> mHn(w;U;Q),
a=

for n > 0. Similarly to the above argument, we can deduce (16) from a trivial

k—1 :
1 (e e
— __"Fu;l(t) = E P Fuk;l(kt)e t
u 1 —u -1

14
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