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I. INTRODUCTION

§ 1-1 Basic Concepts of Tunneling in Solids
{ Historical Survey )

The concepts of tunneling, which are purely a quantum mechanical
process, that a particle passes from a classically allowed region to another
allowed region through a potential barrier(Fig.l-1)was first utilized by
Oppenheimerl) to the autoionization of hydrogen atom in an electric field.

2)

of an insulators} have been understood by the tunneling process.

After that such phenomena as ®-decay of a heavy nucleus”™’ and Zener breakdown

Earlier the Zener model of tunneling was adopted to the breakdown of a
p-n diode and verified the current-voltage characteristics qualitatively.d)
But the most convincing experimental evidence of the tunneling in a p-n junc-
tion was given by the invention of a tunnel diode by Esaki,s) He dis-
covered that a narrow p-n junction, illustrated in Fig.1-2, of which concen-
tration of donors and acceptors are sufficiently high exhibits a negative
resistance, and found that the 1I-V characteristics are well interpreted by
the tunneling model, proposing phenomenologically a formula called Esaki
Integral;

J=Szp_n5:p9n (£, -£,)d (1-1)

where £ and @ are the density of states of electrons and holes, respec-
tively, fn , £ the Fermi-Dirac distribution function and Zp-n is the
tunneling probability. Following Esaki's original analysis, the theory of

6)

and etc. They obtained

tunneling in a p-n junction was developed by many authors, e.g. Kane,
Keldysh,7} Harrison,s) Fredkin and Wannier,g) Molllo)

a similar formula described as

J = SPp_n(fp-fn)dEXdEL , (1-2)

where the tunneling probability Pp»n is given by applying the WKB methodll)
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Fig. 1-2. (a) Schematic energy diagram of the narrow

p-n junction invented by Esaki. (b) Current-voltage

characteristics of Esaki diode.



to the uniform-field junction in three dimensions as

Pon = exp( - Eg.’éﬂi ) exp( - E./EL ) (1-3)
1
E, = JZAF/2%( m*Eg . (1-2)

Equation (1-3) differs only in the last factor, which describes the energy
component parallel to the junction plane, from the one dimensional model.ll)
In spite of the doubtfulness of the WKB approximation for a state of long

12)

wave length ( which seems especially important in the case of a semicon-

ductor junction because of its smaller Fermi degeneracy ), following several
years were devoted to investigate the current-voltage characteristics of

various kinds of junctions by applying the formula given by Egs.(1-2) - (1-4),
and many fruitful results have been obtained‘lsﬁle)

In the earlier stage of the studies the interest was stimulated to the
direct band to band transitions. In 1959, however, Holonyak et a1.17)
observed sharp thresholds in the 1I-V characteristics of a Si tunnel diode

corresponding to the onset of phonon emission, and excited interest in the

indirect interband transition, 8 ¢1)

22)

The impurity induced tunneling trans-

ition was also observed and some theoretical investigation have been

done.23’24) But we have not obtained full understanding of the phenomena
as yet.

The year 1966 was full of topics and the history of tunneling took
a new turn, Esakizs) observed another thresholds in the current-voltage

characteristics due to energy band structures of material and determined the
band energies of Bi , proving that tunneling is a powerful method to study
the energy band structures of semiconductors and semimetals. Conley, Duke,
26)
tunnel junction and determined experimentally the Fermi energy. Two of

27) and Mahan»Conleyzs) )} studied a GaAs Schottky junction
29)

Mahan and Tiemann investigated the incremental resistance of a Schottky
them ( Conley-Mahan
and showed a possibility to determine the density of states by tunneling.
The theory of magnetic scattering ( Kondo effect ) in a tunnel diode

30 and Appelbaum,31’32)
33)

to the many body theory in tunneling. The experimental evidence
34)

was proposed by Anderson which was later developed

of the many body effect was found by Hall et al. They observed
a temperature sensitive conductance dip around zero-bias called zero-bias

conductance anomaly (ZBA) in a p-n junction made of II-V compound semicon-



ductors. The ZBA have been observed in almost all kind of tunnel junction
at low temperatures ( usually at liq.He temperature ), and several causes of
the phenomena have been proposed; (1) magnetic scatteringss’zé)
37) (3) defectssg’sg)

Dukedl) developed an unified theory of tunneling including ZBA by making use
42)

{2) collec-

40)

tive excitations of phonons (4) superconductors.

of Kubo's linear response formalism, and got an expression for tunneling
between many body states of the form

2 ¥
J =Z""-1m2/‘\qu

t + ’
Ak2q2<t°[c“1“1(t)cq1“1 ay0, %, z({)]> ’

1

(1-5)
where /\kq is the vertex function, T, the Wick's chronological operator
and C+ and C are respectively the temperature dependent creation and anni-
hilation operator. This formula contains the many body density of states

factor through the temperature Green function given by43)

+
G(t-1t) = (T[Cp(1C, ] ) (1-6)
By using Eq.(l-5) several interactions of tunneling electrons have been

37,44) 45)

Thus tunneling has been proved to be a powerful probe

verified, e.g. phonons, and several excitatioms in

46)

plasmons,
superconductors.
of the elementary excitations in semiconductors as well as a measure of the
correctness of the many body theory.

Besides the developments of tunneling in semiconductors, the works

about superconductors must be remembered. Following the original observa-

40)

tions of the BCS gap by Gieaver in a tunneling junction made of Pb, the

47)

theory of tunneling in a superconductor. was established by Bardeen and

48)

Cohen et al. To date extensive studies of this field of spectroscopy

have done and such properties as gapless superconductor and Josephson effects

49,50) It must be born in mind that the

have been studied with tunneling.
theory of tunneling from a many particle point of view described above was

originally established for the description of tunneling in superconductors.



§1-2 Heavily Doped Semiconductors

Contrary to the efforts in semiconductor material science to make it
as pure as possible, the interest in the effects of heavily doping on the
electronic properties has been stimulated by the tunnel diode physics.

By increasing the degree of doping the average distance between the
impurities decreases and these atoms begin to interact or the wave functions
of electrons localized at each atoms begin to overlap. The energy level
of donors { or acceptors ) is broadened to form an impurity_&ggQ.Sl)

The electrons are then easy to travel from site to site responsible for the
electrical conductivity and simple localized picture of impurity state

52)

becomes doubtful. If the concentratioﬁ is increased further the band

width of the impurity band may become broader and finally merges into the

53)

conduction ( or valence ) band. The introduction of the impurity atoms

breaks the periodicity of the crystal and the van Hove singularity at the

54)

band edge will disappear, helping the merging of the impurity band.

In this highly doped material the impurity potential is expected to become
54,55) Thus

we cannot distinguish an electron bounded to an impurity atom from conduction

weaker by the screening effect due to many charge carriers.

electrons, and electrons are well approximated by the free electron descrip-
tion or the sample is in the metallic region of concentration.
The material of this highly doping is called heavily doped or degenerate,SGJ
We must use the Fermi-Dirac statistics for electrons and holes. Tunnel
diode is available by making use of this heavily doped semiconductor and the
band tail ( or the impurity band ) is thought to be at least partially
responsible for valley and excess current‘57’58)
In a2 standard theory of semiconductors the properties of an electron
in the conduction band are often approximated by a plane wave with the

effective mass, and donor states by the hydrogen atom 1S stateisg’éo)

In a heavily doped semiconductor, however, the large number of donor
impurities can supply many electrons in the conduction band. Therefore
the system contains many interactions, i.e. electron-electron, electron-
impurity and impurity-impurity interaction as well as electron-lattice
interaction.54’61) To make the problem more complicated, the impurity
atoms are thought to distribute utterly at random in the whole crystal,
which makes the exact treatment of the interactions impossible. We can

know the physical properties only through the statistical averages.Gz)



The principle of the coherent potential approximation ( CPA ) is to reduce
those interaction energies into the electronic self-energy and in this
scheme we can see an electron traveling in the statistically averaged

63)

tors was stimulated by the invention of a tunnel diode, they are of

potential. Thus though the interest in the heavily doped semiconduc-
interest from a broader point of view, i.e. the problem in the heavily
doped material is that of many body ploblem and it serves us a good example
of the general problem of the energy spectra of a disordered system, which
had been earlier studied as the phonon spectra of random lattice.64)

In the past ten years, many works have been published on how to take
into account properly the disorderness as well as the many body aspects and
much of the electronic and electrical properties associated with the impurity
band have been resolved, e.g. density of states, electron mobility,

magnetic susceptibility and Hall ccefficient,65'7l)

They showed that
almost all of the properties are closely related to the electron density of
states, which is sensitive to what model is used for the individual impurity
potential and to what interactions are taken into account.

Since the observation of the impurity coduction in a7germ§nium single
) 3-75

most interesting of which is the negative magneto«resistance.76)

one of the
The
phenomena are very similar to Kondo effect in a dilute magnetic alloy77) and

crystal by Fritzsche72 various phenomena have been studied,

attributed to the localized magnetic moment due to electron correlation in a

78)

random lattice. It has been thought as a true effect that the impurity

band realy exists and there have been some evidences of the effect.7g’80)
But the density of states has not yet been measured as a function of energy

and we don't know whether the band tail (impurity band ) decays continuously

81)

into the forbidden band or it has any cut-off‘bg) Such a principle

question is still controversial if an impurity band ever exists separated

from the main band.%?)

The concepts of the mobility gap in an amorphous semiconductcr,SE)
which is an ideal random lattice, presented a question if electron is
localized in a continuous energy spectrum. The band tail in a heavily

84)

doped semiconductor has been exposed to similar question, and the problem

of the duality of the localization and delocalization in these states has

given us an academic problem as well as a practical problem.gs)
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Fig. 1-3. Density of states of a doped semiconductor.

(a) At low concentration a donor level is formed below
the conduction band minimum. {(b) By increasing the

concentration the donor level is broadened by the over-

lapping of the wave functions. (c) In the metallic
concentration region, the impurity band merges into the
main band.
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Fig. 1-4. The schematic illustration of the error in
the tunneling coefficient by WKB approximation. The
exact coefficient vanishes at the band edge. The criti-
cal value kc is dependent on the model for the poten-
tial barrier. ( After R.T. Shuey : Tunneling Phenom-
ena in Solids Ref. 49, p.93. )




& 1 -3 Tunneling Spectroscopic Study of Impurity Band
( Purpose of the Research )

The first of the experimental trials to observe the band tail of a
86) 87)
They studied the optical spectra of a heavily doped germanium and found

that the direct ( Zg - F}:) and indirect ( [*és ~ldl } band gap are
88)

heavily doped semiconductor may be the works by Hass and Pankov.

reduced by doping. Recently Tuck showed that the density of states
tail of GaAs decays exponentially into the forbidden band. But to
date we haven't known the reliable shape of the density of states of
impurity band distinguished from main band.

Tunneling has been one of the useful methods for the study of the
band structure of solids. But the fact that the formula for direct
tunneling Eq.(1-2) doesn't contain the density of states factor explicitely
had made them peﬁgmistics) about the tunneling spectroscopic study of the
density of states of semiconductors untill Mahan and Conley's investigation
in 1966.2%)

current density

They applied WKB approximation and assumed a formula for the

Jo= A\ Pyl fp-f 1 pgdE . (1-7)

The problem was, however, more complicated, because it had not been under-.
stood precisely how the tunneling transmission probability should behave near
the band edge. To make the matter more difficult we cannot apply a simple
plane wave for an electron in the impurity band because of the many body
aspects.

The applicability of the WKB approximation to the tunneling was first

studied by Takeuchi-FunadaBg) 90)

and Shuey independently from a different

point of view. They obtained qualitatively same results ; "the tunneling

transmission probability must vanish at the band edge ( or zero of wave

91) .
Their

analyses are, however, based on a too simplified model to apply them to the

vector }'. This fact was studied more rigolously by Duke.

investigations of the current-voltage characteristics of real junctions.
The first purpose of our research is to investigate the tunneling

prouvability for a p-n junction exactly. We show in Chap.I that the

tunneling probability should have a multiplication factor, which is a

function of the density of states of both sides of the junction irrespective



to the shape of the junction potential. On the basis of this result we
further study the phenomena of tunneling in an impure semiconductor in the
framework of CPA, which is the second purpose. The third is to seek the
method of determining the energy spectrum of the impurity band by applying
the theory. In Chap.Ml the current formula is given with the aid of one-
electron wave function for an impure-semiconductor and the method to determine
the density of states is shown. The formulation includes some assumptions
and to overcome the faults partially the theory is further developed in
Chap.¥ in the frame-work of Hamiltonian formalism with the aid of Green
function method. This formula is found to give convincing informations of
the energy spectra of the impurity band through the electron self-energy
{ self-energy effect ).

The fourth purpose of the research is to study the energy spectra of
a heavily doped semiconductor by applying the theories developed above.
In Chap.Il and Chap.¥ the direct current component of a germanium tunnel
diode is examined, and the density of states of the impurity band is presented.
The results show that the impurity band decays continuously into the forbidden
band and that there should be an energy gap between the impurity band and the
main band for samples of lower concentrations. The fifth purpose is to
study the localized nature of electrons in the metallic concentration region.
In Chap.V the anomalous zero bias conductance due to localized magnetic moment
is observed, suggesting that impurity band should have localized moment in the
immobile states. The reason why we investigate a p-n junction is to avoid

the conflicts and ambiguities caused from surface statesgz’gs)

and any other
interactions associated with the indirect transition.

Throughout the article we will pay efforts to make the theory as simple
as possible unless we lose the generality of the problem, since the theory of
tunneling and impurity band includes many un-solved problems. Our problem
is, therefore, how to seek the principle results by experiments, which will

give a certain encouragement to the theoretical fields.



ITI. TUNNELING AND DENSITY OF STATES

2 -1 Basic Formulation of Tunnelin
g

We begin with the Hamiltonian for the system which consists of two
electrodes separated by a potential barrier as is illustrated in Fig.2-1,
where we set the direction of the current flow to the z-axis and the junction

plane in the x-y plane:

H = H_ + H' ,

o
Hy = H + H ) (2-1)
H' = HB .

In Eq.(2-1) the total Hamiltonian H should be equivalent to HL or HR in
the limit Z —y-00 or z —s+o0 , Trespectively, and we can define

eigen states in those limits as

H o 1q> = E lq> Z — ~s0
L q (2-2)
HR 1 k> = Ek { k> Z —3 + 00

Thus another Hamiltonian HB » Wwhich corresponds to the potential barrier,
may be considered as a perturbation. According to the time dependent per-

94}

turbation theory the transition probability due to H' is given by
2
Por = F l@tnix] . (2-3)

The tunneling current from the left hand side electrode to the right can be
expressed by using Eq.(2-3) and the occupation probability of states as
follows

iR ° 23(%; £(1-€6)P 0, (2-4)

—10 —



Fig. 2-1. The Hamiltonians for a tunneling junction,
The junction potential ia assumed to be a function only
of Z.

—11—



and that from right to left

Jpop = 2 Z fo (1 - £, )P, (2-5)
gk
where the factor 2 comes from the spin degeneracy. By virtue of the

symmetry of the matrix elementgo)

<alHyl k> - <k [Hyl-q ) , (2-6)

we get the expression for the net current

Jp-r " IRer
= - 2 %; (- £, 1P 5 - (2-7)

Because of the translational symmetry in the plane parallel to the junction

plane, we get the restriction to the matrix element

{alHylk) = Ta S , (2-8)
B qk “q,k;

where suffix Ll for q and k means the component parallel to the junction plane.

Thus we can write Eq.(2-7) generally with the aid of the energy conservation

law of transitionll] as

Jo= -2e ] [f-€ 1P o8 | SCE -E

(2-9)
ak L-R “q,k;

R)
9)

of tunneling is the calculation of the matrix element qu between the eigen

which is just the same formula given by Fredkin-Wannier, and the problem
states of each electrode.
In the course of the actual calculations we often find it more conven-

ient to transform Eq.(2-9) as follows

J=-2eZ<U>P[fR-fL] . (2-10)
q qﬂ

where

i i
TR N PL—R (2-11)
x ( 'Uq"><“k“>

—_12 —



is called the tunneling probability and the group velocity is given byiz}

2E 2E

I ¥ I . i
(’Uq") = F q, and (*Uka) T (2-12)
Another transformation is also convenient;
o |2
J o= - ze;(vku>le{ [ £, - €1 (2-13)
where
o~ AT
Jy = m(thB%k) (2-14a)
Ky
or
Ui
A ¢ q“>~¥’ (2-14b)
(Vx>

T« is the transmitted wave amplitude.lz’gs)

If we adopt WKB wave functions for {k» and |q)> , the tunnel-
ing probability pWKB is a function only of potential V_ and energy L ;

B
Zp
pWKB = exp[ - 2 ® dz ] , (2-15)
2,
where 1
K = L—Z%’—ﬁ JVg(Z) - E , (2-16)

and ZR and ZL are the classical turning points.iz)

—_13 —



& 2-2 Tunneling Probability for a p-n junction,

2 -2 -1, Calculations for Model Potential Barriers

In this subsection we will calculate the tunneling probability for
some model junctions and compare them with those of the results by WKB approx-
imation.

(a) Rectangular Barrier

The rectangular barrier shown in Fig.2-2) is the simplest and most

idealized junction, which appeares in a standard text of quantum mechanicsgs)

8)

and studied already by Harrison. But the results are very instructive to
understand the principle of tunneling and we'll show the formulation. The

Schrodinger equation for the system is given by

2
il 2
(- . v T - el , (2-17)
where
V(Z) = V ( 2z S. 0 ) >
Vg (0 £z L w) , (2-18)
( z 2 W )

In order to calculate the transmission amplitude o, the solution for
P k

the Schrodinger equation is given by

ig z -iq_ z
Y, = e " R * ( z<0 ),
%*®, 2 -K, 2 p
Y = A e + Aye (0<z<w), (2-19)
- ikzz
% = Jy e ( z2w ),
where we have suppresed the component parallel to the junction plane, i.e.,
exp| ikxx + ikyy } , etc, for the sake of simplicity. ( For the time
being we will consider only the z-component ). q, » %, and kZ are

given by the z-component of the energy:

e 14—
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Fig. 2-2. Schematic energy diagram of a rectangular
barrier. The energy of the system is measured with

respect to the bottom of the conduction band of right

hand side electrode.

— 15 -



’ﬁzqi R4 L
ELZ = EE;:-» R ERZ = sz and \’B - ERZ = o . {2"20)

By using the continuity conditions at z =0 and z = w ,

4 qﬁ ’

’ (2-21)
1 1
m, V; TVi T ‘?z WP} ’
1 J
we get the transmission amplitude of the form
i4k ¥ - K W * q _ * k -
Ty = —2Eoe P (o 2yTl Ry Ry (2-22)
RTB B L B R
We obtain the tunneling probability
2
Ve y -2K
Prect © 5 ” ZL 2H — e s , (2-23)
(v + V)V + V)
where »& is the group velocity in i-th region. In the case of a semi
conductor junction we get the inequality
Vi Y € )Y s (2-24)
and equation (2-23) is approximated by
16 v, ¥ -2Kw
. L R z
Prect = —-_;'2“'* e . (2-25)
B
The tunneling probability by the WKB approximation is given by
WKB
Prect exp[ —zxzw ] . . {2-26)

—_16 —



By comparing Eqs.(2-25) and (2-26) we see that the exact transmission

which is the factor
9a)

probability contained the multiplication factor vR L
of density of states for parabolic energy band of both electrodes.
Equation (2-25) is written in an explicit formula for three dimension by
16 VLV
Prect = —-«::iw~—~exp[ -2 ﬁsw ] exp| - Ei/ﬁg ] , (2-27)
B
1

1
, 7, .2
IVE, = (my )" /K (Vp-E)

(2-28)

(b) Uniform Field Barrier
The p-n junction is often approximated by the uniform field model

6,10)

shown in Fig.(2-3), of which potential energy is given by

V(z) = vV, -V ( z£0 ),
= Vy -V - Fe (0¢gzgw), (2-29)
= 0 ( zzw )},

where F is the electric field strength multiplied by the electronic charge e .
Using the same procedure as Eqs.(2-17) - (2-21), the transmission amplitude
in the right hand side electrode is given by
; 2kza
my T
T = . "R , (2-30)
{2y -1 2l na -5 2]
} — B. - i — B, — A - i —A,
mp i 2 my i 2 mp i 1 m i 1

H
where Ai(Z) s Bi(Z) are the Airy's function and A;(Z), Bi(Z) their

97)

derivatives. By using the asymptotic formulae for Ai(Z) and Bi(z),

the tunneling probability is derived as follows,
2 2, .
(4 k mg)/( wmmpa®) - [Z, exp[ - 24}

- . (2-31)
2 4

2
Z 2 2
{z mgqi}{ s ™% 33 }
+
2wl atilTass® wla® Tam?

v 17—



Fig. 2-3. Uniform field model for a p-n junction.

Fig. 2-4. Schematic energy diagram of a parabolic
potential barrier. The barrier width w = dn - dp
is determined by the Poisson equation with charge

density eNL (dpgziﬂ] and -eNR (Oiz&dn ).

— 18 —



In Eqs.(2-30) and (2-31) several quantities were defined by

2m E E 2m
B 2 z 3 B
Z, = - R 2, = a(w - =) , 8 = —=F and
1 ﬁzaz 2 F ﬁz
3
2m E 2
5o 3 (2
ah

In the energy range to be interested or for the energy range corresponding to
the band edge, the denominator of Eq.(2-31) varies slowly with respect to
energy. Practically it is considered to be constant, The tunneling

probability by WKB approximation is given by

Pukp = exp[ - 2& ] . (2-33)

Therefore equation (2-31) is proved to have multiplication factors ( qzkz ),
corresponding to the density of states of both sides.

{c) Parabolic Potential Barrier

Parabolic potential barrier is the best model for an abrupt p-n

junction.gs) The potential energy is expressed as follows,
V(z) = VB - Vv, ( z g_dp )
2T N ez 2

= VB—V———‘-E‘W(Z-dP) ,(dpSZS.O)
271:NR e 5 (2-34)

= ——*—E—-—-(Z -d)T (0424 d )

= 0 , ( zzd )
where VB is the built-in potential, NL and NR are respectively accept-
or and donor concentration and € the dielectric constant. The calcula-

tion is somewhat lengthy, and the result is given as a function of the

99)

parabolic cylinder functions. By using the asymptotic formula of the

functions, after some manipulations, we get the tunneling probability of the

—19 —



form

m, k
LZ o 2
P = 2%
quz 1 k!
q, 2 1 kzvz 1
16 k. q, 2 ) Z;.(;;) 7 yi)(?;) *7
= mexp[-(yn*‘yp)ﬁl(z) (-5-
MM
rn fB -1
X { E;’Yn + m Yp}
-2 q. .2 q -2 q 2 1
1 i{'z 1,%2 3 1. %z
X{ P{a-2)) « 26D - T (7-3D }
P P
-2 k 2 k 2 -2 k 2 \y-1
1 1 z) . 1.7z 3 1.7z )} :
- F{— 5(==) - = - 565 » (2-35)
x{f”(a 2rn) 27 r(4 A
where
16 X m N, e 16 7 m N e®
AL L'L 4 R'R
P £%€ ' n #le
and
2 Ng  Bm (Vp - V) 5 N Bm (V- V)
Yp *® PO A 722 - (2-36)
NL + NR rp NL + NR rn

The last two factors in Eq.{2-35) are nearly constant in the low energy region.
Hence equation (2-35) can be approximated by

2 2
1, kz
"gz * Yﬁ 1 2ye2 (1 .l
Poe Clqzkz exp[ = 3 ] ('2_ yp) P (':-2" yn) n » (2‘37)
where C1 is a constant. In order to simplify the problem let's consider

the case of a symmetric junction, i.e., a junction with m = mp and NL = NR'

—_ 20 —



This assumption will give no essential error to the conclusion. By virtue

of the conservation law of energy and transverse momentum,
ERZ+EJ- = q + $ - v - (ELZ+EL ) R (2-38)

equation (2-37) is written by

: S— E
i
P = C, exp[-;&}’JERZ( {C+'§V-V—ELZ) exp{-——g—] , (2-39)

[+]

where Cz is another constant, <;C and d;v are the Fermi energy of right

and left hand side electrode, respectively. The exponent in Eq.(2-39) is
given by
V. -V Z +4 -V v, -V
A= e - e (), (2-40)
E Z2E 2E
00 oo 00
where
vV, - V
‘EL = 1 g ge ) (2-41)
o oo 00
and
1
N 2
o1 R )
E00 = 3 eh ( mRe) . (2-42)

The value of A varies slowly with respect to the applied bias energy V and
gives similar dependence to the WKB exponent, and the exact tunneling
probability is proved to have the multiplication factor ( qzkz ) correspond-

ingto the density of states of both electrodes.

2 -2 -2, Arbitrary Potential Barrier
Summarizing the results in Sec.2-2-1, we may generally write the
tunneling probability between parabolic energy bands as
q.k

zz‘exp[—‘}\]B(qz.k) &

(2-43)
m, my z qul '
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for an arbitrary potential barrier, and the functional forms of N and B{qz,kz)

should be determined by the shape of the barrier. Actually it is an easy
task to prove Eq.(2-43) quite generally. To do this let's go back to
Pig.(2-1}). The Schrédinger equations are given by the following forms,
- ;ﬁi 72 ﬂf = gV, <
2m, L LY.L C z<z2 )
[~ ~ﬁ—2-V2+V()]’\l/ —EW (z, £ 24 (2-44)
2 21 Vg =EgV¥p - L& 2sg) -
- ;éi v2 w/ = E \V ( z 22 )
ZmR R R TR ’ R

where EL s EB and ER should be chosen so as to satisfy the energy conserv-

ation law. The solution of Eq.(2-44) 1is written for each region as

WL - elqz-z . Q e- lqiz ,

q
Y = 8,90 + B, 8@ (2-45)
'\lfR = :l"‘k eikz*z s

in which we have suppressed the component parallel to the junction plane,
i.e., exp| ikxx + ikyy ], etc. for the sake of simplicity. 331 and
B , are the parameters determined by the continuity conditions Eq.(2-21).

The two solutions ¢E(z) and Qa(z} are assumed to be normalized in the sense

¢ &
w{.d% g CFE } = @a’ (P;

= 1 N (2'46)

100)

which is Wronskian determinant. By making use of Eq.(2-21) we get the

expression for the tunneling probability of the form
q k

Zz -2
14 , (2-47)
m, my [ l

3
Mg
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where

&) g, b,z ik,
- | *E{‘E(ZL)} { el 1CN)

Ty

b (zg) ik $,(z))  iq
z 2 7L Z
- { T I(ZR)}{ my m 2“1,)}

Mg M

& (z) iq Po(z,) ik
_ 1 M) 19,0 Glz) ik,
- 4DI(ZL) q)Z(ZR) { g@(zL) * m }{ms Eﬁz(zRi My }

p Pz ikz}{] $(z) iq,

- W S (G am - mHa e R - &

By the way the functions (i)«(z) are the solutions of the wave equation

éfﬁk s 2m (E-V )1V = 0 (2-49)
dz? A2

In the potential barrier we see
E-Vv < 0 s (2-50)

that is, d""hl/‘/dz2 has the same sign as W&‘ , S0 that dﬁ and d)z
are convex toward the =z-axis. Because the solutions should be given as a
certain function including decay factor, we can chose for the solution ¢% a

monotonously decreasing function of the form

1
¢ = 3 3 . (2-51)
a0 + alz + azz + asz ¥ cieenes

Then ¢E is given by

472 = (P1 S 12 dz s (2-52)
$

which is another formula of Eq.(2-46) .100)

By combining Eqgs.(2-51) and
(2-52} we see that 492 exhibits a monotonously increasing function of the
form

2 3 ,
P, = b +biz+ bzt bzt e e . (2-53)
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Though inequality (2-50) does not hold at z = z, and z = Zp » if the

t
energy are small the values of ¢3 5 at these points can be approximated by
the values of ¢%(Zo) R vhere z, is the classical turning points.

Consequently we can find an inequality,

| ;e Bz | > [y () By | ’ (2-54)

and equation (2-48) can be approximated by

Oz)  dayy  Pylz) ik
- o2l T2 R "z -
a-= dpl(z’“)d)z(z“){mealfzﬂ m, }{“‘B plzg)  mp } (2-59)
Now by putting
A= ozl Qi iz 1, (2-56)
we can write Eq.(2-47) as
4 qzkz
- ~exp[ =N ]
mg mLmR
P = - 5 . 5 , (2-57)
$,(z)  ia, d,(z) ik,

'“Bq(zx,) ‘ o

which is just the formula wanted,
As the solutions d{(z) and dé(z) are determined by the potential

nBp ) T

barrier V(z) in Eq.(2-44) , so if V(z) is large small variation of the
energy EB will give a negligible effect to the functional forms of the
solutions, resulting in the energy insensitive function of N, The denom-
inator of Eq.(2-57) , or
! L -2 ' -2
¢ﬁ(zL) iq ¢é(zR) ik

z z|

4 ——— - ——— -
B(qz 3 kZ } = ;;g— . WE} + mL W} mR N (2 58)

is also a slowly varying function with respect to energy, and we get

2

2 ) . (2-59)

2
B(a, » k, ) = B(q, , Kk
Remind that the dencminator of Eqs.{2-31) and (2-35) are also written by the
form of Eq.(2-59) , which enables us to expand them with respect to qz and

ki . Therefore we get a similar formula to Eq.(2-23) for the lowest
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approximation where YV, should be replaced by an appropriate value.
PP B P pprop

§ 2-3 Current Formula and Density of States

By the investigations in the preceding section we have found the

tunneling probability for a p-n junction can be written by

P e Compl A1 B exp - ot
= exp| - exp[ - = . (2-60)
! Eo
where
2
A 2 2
E, = 55; ( kx + ky ) , (2-61)
and E and A are determined by the junction potential. The tunneling
current is given by
J = -Texp[oalgdﬁ[fn-fL]N(E, V) s (2-62)
where N(E, V) 1is the tunneling density factor defined by
% tnax
NE, V) = £ JOO[E7 - V- E+0] expl - 2=t ] dt . (2-63)
o o
0
tmax is given by
g.*g, -V-E
t = Min { 1, I >0 } s (2-64)
max E

In Eq.(2-63) the energy E should be measured from the bottom of the energy
band in the right hand side electrode.
To illustrate the behaviours of the density of states facter, we will

consider some limitting cases;

(a) Higher energy region (E/Eo)tmax5> 1.
Equation (2-63) is approximated by
1 L
NGE, V) ~ E2 (B +m -V-E) . (2-65)
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The first and the second factor in Eq.(2-65) corresponds to the parabolic
density of states for conduction and valence band, respectively. 1f 5%
and %~ are large the latter factor can be approximated by a constant, and

equation (2-65) is reduced to

11
NE, V) ~ (&, +6 -VIPES . (2-66)
(b} Lower energy region (E/Eo)tmax<K 1.
Assuming ac and &V are large enough, we get approximately
3
5. *5, -V 3
NE, V) ~ 2SR (2-67)
o

Thus the function is insensitive to the density of states for valence band,lOI)

but its dependence on energy is 3/2 power law. Duke obtained a similar

result for a sharp junction model.gl)

(c) Intermediate region

The function will be proportional to E" , where the value of n varies with
respect to energy. By calculating numerically we found that n can be
approximated by 1.0 in a wide energy region, as will be shown in Fig.(3-1).
Figure (2-5) shows the function of N(E, V) schematically. As
the tunneling current for the WKB approximation is given by
E

J = ~2ewaBSdE[fR-fL}S dE

= - 2e P S GE[f-f1E (2-68)
the corresponding density factor is proportional to E , which is shown in the
figure.

102,103)

Finally let's consider how to measure N(E, V) experimentally.
If the temperature is assumed absolute zero, the Fermi-Dirac distribution
functions f_, and fL can be described by step functions, and the current

R
formula is written by

%
J = Aexp[ -2 ] S dE N(E, V) . (2-69)

4C~v
The differential conductance is
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Fig. 2-5. Schematic diagram of the tunneling density
factor. In the lower energy region it deviates from
parabolicity ( dotted line ). The broken line is

that for the WKB formula.
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dJ dA ) aN(E, V) 21 1
@ @Y v Texpl -] S dE 5V * T
&~V
+ Texp[ -x ] N(Ee r.c~v, V) . (2-70)

Because the junction potential VB(z] is very large, the second and third
terms in Eq.(2-70) are very small compared to the remaining terms. We get

an approximates formula to determine N(E, V) :
-1 dJ dA
NE =5V, V) = Y7 exp[a] [?N' + a\-,-.Jr] . (2-71)
In the case of tunneling into (from) states near the band edge, the second
term in the bracket of right hand side of Eq.(2-71) is often very small and

we can neglect it. Thus we know that tunneling is a powerful method to

determine the density of states in semiconductors.
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ITI. TUNNELING INTO IMPURITY BAND ( I)
One Electron Approximation

83 -1 One Electron Weve Function

The problem of tunneling in solids is how to solve the Schridinger
equation describing the system, and tunneling across a potential barrier can
take place between eigen states of each electrode. We will start out the
problem of tunneling into impurity band with the construction of one-electron
wave function for an impure semiconductor.

The most important feature which determines the properties of the
density of states tail in a semiconductor is the randomness of the distribution

56,62) which can be described by the Hamiltonian

of impurities,

H = H + H' . (3-1)

In the above expression HO is the Hamiltonian for an ideally pure semicon-

ductor and given by

(3-2)

basing on an effective-mass approximation, where p is the cannonical mo-
mentum and m the effective mass of electronm. H' is the potential energy

due to impurities

N
H' = f vir-R ) R (3-3)

n=1
where v(r - R, ) is the potential due to n-th impurity at a site R, and
Ny
the energy due to electron-electron interaction, for as was shown by Wolff

the number density of the impurity atoms. In Eq.(3-3) we have omitted
104)
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its main effect is to shift the band edge, which has no significant meaning
in tunneling characteristics.

Our problem is to solve a differential equation of the form

E-n bt Yoy = w Ym (3-4)
o]

where Ho is written as

2
Hy = % 2. (3-5)

With the aid of the Green function satisfying

{E - Hy } G (x, ') = @, vy |, (3-6)

we may write the solution of Eq.(3-4) aslos)

V) = G+ Scocr.r')ﬂ'(m Y, (3-7)
where d)(r) is the solution for the differential equation

{E—Hc}q)(r) =0 . (3-8)

We'll rewrite above equations inan operator 1anguage,106) for the

sake of convenience of the following formulation.  Equation (3-7) is writ-

ten as
Vi) = <rlxd
= (rlk) o+ KrlgElk) (3-9)
where
1
6o = E-H 71 g (3-10)
0

and [k> and k) are the state vector of H and Ho , respectively;
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Blk>
H k)

#

Elk> (3-11)

£1%) . (3-12)

By virtue of Eq.(3-12) we get the diagonality of the Green function

(k[6 Ik = G ()&,
- 1 (3-13)
E- & +13 ) '
‘ . . . . . . 107,108)
Now the state vector |k) is given by iteration in terms of Born series
k> = k)« GH'IK) + GH'GHK) + ..... cees . (3-14)
By introducing a2 new Green function defined by
G = 1 = 1
E-H E-H -H
1 1 1 .
T E-R CE-A M ECH : (3:15)
or
G = G, + GHG , (3-16)
equation (3-14) is written in a more convenient formula
[k> = |x) + GH'[K) , (3-17)

105)

which is familiar in the theory of scattering. But here H' is not

due to single scattering center but consists.of potential due to many impuri-

ties, which distribute over the volume at random. Equation (3-16) is writ-
ten in a explicit form as
Ny
G-G0 + Z Gov(r—Rm)G , (3-18)
m=1

which expresses one of the features of the many body problem, that is, elect-

rons interact each other by way of the impurity potential as the super-exchange

—_— 3] —



54)

interaction. As was already mentioned ( Sec. 1-2), in a random system

any physical properties are meaningless without averaging procedure. Here
we will apply the diagram perturbation method developed by many authors.43’109)
In order to seek the analytical formula of Eq.(3-17) let's consider the
matrix element of GH' between (k) ;

(GH') o, = (KIGH'IK")
i

= Go(k) Z kav(Rnl)

n

1
N. N,
i
+ Gc(k) Z Z ka"(Rnl)Go(k ) X"k"k‘ (an}
LRS! )
4 eieneeraaeaa ) (3-19)
where
ka' (Rﬂ) = (klv(r‘Rn) “’(') ] (3-20)
and use of Eq.(3-13) has been made of. Equation (3-19) is written dia-
grammatically as
Q X X% X.,
GH' = ! = N IR S TP , (3-21)

where solid line represents the Green function Go(k) and the cross above the

interaction line means the random sum over the impurity sites. The averaged
Green function <G>hv may be written as follows
; ?
(6% = - —
¥ XX X
- + i + L 4 L d 4 rreasen s (3_22)

and the self-energy
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@ X X e X
¥ = o= b o i e S e Ix e s (3-23)
Thus we get
o'y, = (6, T , (3-24)
and
&2, = G, *+ GIL{(Gy, . (3-25a)

Equation (3-25a) is called Dyson's equation, a basic equation for the many

body problem, and written by an equivalent formula
Gyl = et L3 (3-25b)
av o '

Combining Eqs.(3-17), (3-24) and (3-25b) we find the wave function written by

ﬂfk(r) = (rlk)
R ERGICOND)
= Gl e ) IR K CEHD 1K) (3-26)
= (rlk) + E(r!k')(k'l@)avz I %)
= (rlk) + Z(r]k')(kfl———l-’;———zk")(k"i)j (X, (3-27)
6~ -L

o

and our problem is reduced to the calculation of the matrix element of self-
energy (k| & Ik') . Equation (3-27) says that the new state ﬂ&k(r) is
described by the linear combination of the complete set {(r(k)} for a pure
material, and the factor (k'!<GH'>AVlk) corresponds to the coefficient.

This is similar to that given by the plane wave method for band theory of
solidsgﬁ) and essentially same results for a single impurity are given by Ning-

sanl10) 111)

and Blaker-Harris. According to Eq.(3-23) Ezkk' is given by

Zkkl = (KZk")
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N, N.N,
i

11 ‘
- Z Y B ) LYl Vi Ry I8y R )

a1t
n, k mn,
e , (3-28)
of which calculation is somewhat complicated. If the potential v(r - Rn)

is of short range approximated by a B-well potential
v(r - R) = U, 8(r - Rn) , (3-29)

equation (3-28) can be calculated straight forwardly and Izkk' is proved
diagonal and a function only of energy E as

Zkkv = E(E) 8kk' » (3'30)

where we have replaced the random sum by the random average66)

N,
Z’ ; NiSdR . (3-31)

n
112)

Equation (3-30) is proved generally by Saitoh et al., and described im-

plicitly by Yonezawa68) and Sawaki et 31-113) Equation (3-27) is thus

reduced to

W, ()

i

<l + <rlk) g

x SZ(E)
= P () FE, g, N, U) (3-32)
where
$ @ = <zl (3-33)
and
« 1 X (E)
FE, &, N, U) = 1 ETE, - T . (3-34)
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g
Equation (3-34) corresponds to the so called wave matrix W,IQ‘)

and equa-
tion (3-32) shows that for a short range potential we can define a quasi-state
described by quantum number k of which energy is E ( not & ). In

other words, the quantum number is an unknown function of energy

k = k(E) , (3-35)
or equivalently the energy is an unknown function of k ;

E = E(X) , (3-36)

and the functional form should be determined according to the configulation
of the impurity distribution and its concentration Ni . This idea is equiv-
alent to the principle of the coherent potential approximation,ﬁg) i.e., to

define an effective Hamiltonian
H = H + % . (3-37)

s0 as to satisfy the requirment that the Green function Ge of He must be

equal to <G>aV . Consequently the energy of an electron is given by

E = & ¢ Y (E) . (3-38)
Actually it is easily shown that Eq.(3-32) also gives the same energy. Thus
we can define the density of states bng)

D(E) = ZS(E—E) I A , (3-39)

k 2 2E
" 2

where spherical symmetry of the state vector has been assumed. In Sec.3-4

we'll discuss in detail about the approximations adopted here.
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§ 3.2 Current Formula and Density of States

Using the wave function Eq.(3-32) we'll get the expression for the
tunneling current into ( or from ) an impure semiconductor, which will give
a method to investigate the effects of the density of states tail on electron
tunneling. For the sake of simplicity of the calculations some approxima-
tions are employed: first, the valence band in p-side is parabolic and the
wave function obtained in Sec.3-1 is used only for the n-side region in which
energy band has spherical symmetry in k-space. This is a good approxima-
tion if we are concerned with the band tail of conduction band in n-side and
the Fermi energy in p-side is large enough, for as will be shown in what
follows the deformation of the parabolicity of the energy band due to impurity
potential is significant only in the small energy region near the band edge}lz)
Secondly, the effect of impurity potential in the barrier region is neglected.
In an actual junction, however, the potential fluctuation due to impurity
in the depletion layer may have some effects on electron tunneling.lls*lls)

The wave function in the four region is given as follows, referring

to Fig.2-4
Yos ST e RS

Vo= e U v AV T Lan

(3-40)
- igr .
Vo = By Uy v ARV e » (1)
W= T Vi . (111)
where P is the vector component parallel to the junction plane. By adopt-

ing the continuity condition Eq.{2-21), the transmission amplitude is cal-
culated and given by

?Iklz = lFl'zlﬂ}Jz , (3-41)

where F and :?k is given by Eq.(2-34) and (2-35), respectively. The

tunneling probability is written as follows
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'i’tﬂfn)‘ sz . AV e g2

(vp> K

where again use of the wave function ﬂy% was made in the expression of the

s (3-42)

group velocity ({2}}, i.e.,

(V> = SV;—E; v, \h ar = {F|? (v >, (3-43)
and
2t
AT -
z

Substitution of Eq.(2-35) into Eq.{3-42) gives

Vg -V e T
Po-n = C3<1I§>¢Un>‘ exp[ - —p— 1 exp[ —¢ PZ 14 E 1 . (3-45)
00 00 [s1}

where C3 is a constant and similar approximations for Eq.(2-37) have been
employed. B¥ the translational symmetry in the plane paraliel to the
junction plane the transverse wave vector must be conserved. Assuming

m = MWy, the conservation law of energy and transverse wave vector is written
as

E_+E = §E + qv -V - (Enz +E ) s (3-486)

where E, 1is equal to

. A2
A 55;

Combining Eqs.(3-45), (3-46) and (2-10) we get the expression for the

2.2
Ckeeko) . (3-47)

tunneling current;

Jo= -1 exp[ -\ ] S dE [ £, - £, 1N, V), (3-48)
where
7€ (1 &
NE, V) = €] E?-S dt J(1-t) (& ¢ §,-V-E- £,0) exp[- £~ t] , (3-49)
0 (]
0
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£
g = —
k ZmR

and A is given by Eq.(2-40). Equation (2-49) 1is just the same formula

(3-50)

for a pure material Eq.(2-39) and doesn't contain the correction function F,
and suggesting that we can know the effect of the impurity potential via the

energy dependence of €& >

which is equivalent to Eq.(3-%5). If we are restricted ourselves to the

investigation of the characteristics for the band tail jp n-type electrode the

inequality holds,llg)

5, > § (3-52)

v

and equation {3-49) is approximated by

11 1 1

N(E,V) = (& +& - E - v)iiéi‘ E&» dt(l-t)izex [- Eh-t] (3-53)

" c v k E Pl- E )

o o
0

Figure (3-1) is the dependence of N(E,V) as a function of Ek in the lower

energy region. If we approximate Eq.(3-53) by a linear function
N(E,V) = a 'Ek R (3-54)

the density of states near the band edge is given as a function of tunneling

density factor as follows

Ll

1 2 3k (2m) 2 27k
D(E=&-V) = - k22 = 2 &
(o Zﬁ? 2E 4ﬁ?ﬁ3 k 2 E
1
= IN(Z -V, V)
< N( Be-v,v)f — < | (3-55)
2(g, - V)
where use of Eq.(3-39) and Eq.(3-51) was made. Thus combining Eqgs.(2-71)

and (3-55), we can investigate the density of states as a function of applied

bias energy.

— 38



T T
i) ]
b3 /
g 7/
[ Vs
//

Z 2} d
&
-
Q
1
w
>
=i | o -
o
z
8

0 1 i

0 [+1. 10 15

ENERGY  £y/26se

Fig. 3-1. The linear approximation for the tunnel-

ing density factor.
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¥ 3-3 Experimental Investigation of Density of States

By making use of the method given in the previous section we'll investi-
gate the density of states of (000) valley of n-type germanium. Germanium is

20)

an indirect gap type semiconductorl and the tunneling current under the
usual operation is due to the indirect transition between the top of the valence
band F;S )} and the bottom of the conduction band (L). But in the
reverse current there is a marked increase ( Kane Kink ) corresponding to the

onset of the band-to-band direct transition;lzl)

the transition between the top

of the valence band and the bottom of the subsidiary conduction band minimum at
1

the zone-center ( ]“2 ). Beyond the Kane Kink the total current J can be

written as a sum of the indirect current copponent Ii and the direct current

component I‘jl .16) I, is well described by the formula given by Price,
Radcliffel??)  and kane®  ( PRK ),
Ii = aV exp[ - F vV ] . (3-56)

in which o and @ should be determined experimentally.123’124)

By apply-
ing Eq.(3-56) we can eliminate the direct current component from experimental
data as is shown in Fig.(3-3) schematicaly.

In the case of the indirect transition, because of the conservation
law of momentum, electron cannot transfer without an aid of phonon or any

other excitations,zz’lzs)

and we must take properly into account these effects.
In contrast to the complicated nature of the indirect transition, the tunnel-
ing current due to direct transition, which is just the current we have ever
considered in this work, is much simpler to investigate the effect of impurity
band. Another difficulty in tunneling is the zero bias conductance anomaly
(ZBA) observed at low temperature even in junctions made of direct gap type

34)

semiconductors. The ZBA is, however, sensitive to temperature and the

energy width is less than 50 meV around V=0. Therefore in the investi-

gations of the direct current in a germanium tunnel dicde ( V< -90 meV ), we
can neglect all of these inelastic and indirect tunneling transition.

The material is a germanium single crystal doped with As or Sb atoms.

The donor concentrations were 5 and 15x1018 cm's for As and 5 and
13:1018 cm“3 for Sb. The tunnel junctions were made by alloying InGa
( Ga 0.5% ) at about 550°C. The current(J)-voltage(V) and the incre-
mental resistance dV/dJ - V were measured at liq.He temperature. To
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Fig. 3-2. Schematic diagram of tunneling transitions
in a germanium tunnel dicde. The direct transition
takes place between the top of the valence band and the
bottom of the conduction band minimum (f*; 3. In
the case of the indirect transition (]”;Seﬁ L ), the
momentum is conserved with the aid of phonons.

S P 2

L

Fig. 3-3. Schematic current-voltage characteristics
of a germanium tunnel diode. In the reverse current
there is a threshold voltage Vk corresponding to the
onset of direct transition. The diode current is
given as a sum of indirect current Ii and direct
current Id .
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trace the dV/dJ - V curves the harmonic technique was used;126)

the super-
posed alternating signal was 500 Hz and less than 100 pVp-p.

In Fig.(3-4) typical plots of PRK relation for Sb doped samples are
shown. From the linearity in the lower energy region we can we can deter-
mine the parameters & and g for Eq.(3-56). By subtracting the contribution
of the indirect current we get the Id -V and dId/dV -V curves as is
shown in Fig. (3-5). By making use of Eq.(2-71) the tunneling density factor
N is obtained; the result for a Sb doped sample is shown in Fig.(3-6),
where the junction parameter E0 is estimated to be about 0.016 eV. In
the higher energy region they exhibit the parabolic behaviour of the tunneling
density factor in good agreement with the theoretical results. The effective
mass of electron and hole is m, = 0.041m0 and m, = 0.043mo, respectively.127)

The junction parameter E0 is estimated to be E0 = 0.02 eV for Nd = 511018

cm~3 and 0.05 eV for 1.511019 cm’3 for a bias energy region measured

( 100 < -V < 150 meV ). Thus the linear approximation Eq.(3-54) seems valid
for the lower energy region. We applied the approximated formula Eq.(3-55)
and the results are shown in Fig.(3-7), where we have reproduced the parabol-
ic behaviour of the density of states in the main band. The deviation from
the parabolic relation around the band edge is the incremental evidence of the
impurity band ( band tail ). The sharp dip for As doped sample suggests
that there should exist an energy gap between the impurity band and the main
band for much lower concentrations. The results will be discussed fully in
Sec.4-4, but the following features are demonstrated now;

(a) The results prove the existence of the virtual energy level associated
with the (000) subsidiary valley of germanium.lzs)
(b} The impurity band decays continuously into the forbidden band, and its
behaviour depends on the dopant. For As doped sample, the density of

66)

states of impurity band is asymmetric around its maximum, i.e., the expo-
nential tail in the lower -energy side but a sharp drop in the higher side.
In the case of Sb doped sample, however, there is no evidence of the dip,

and the long tail can be described by the relation

D(E) o< exp[ - (EI"] (3-57)

where n varies smoothly from 0.5 to 2.0 as is shown in Fig.3‘8.7l)

61,105,129) .

{c) The results satisfy the Friedel's Sum Rule, i.e., the inte-

grated density of states is equal to the integrated density of states of the
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parabolic band irrespective to dopant and its concentrations. This fact is
thought to prove the validity of the theory, because the donor atoms is expect-

ed to distribute substitutionally.

§ 3-4 Notes on the Qi§i-Particle Approximation

Before concluding this chapter we'll make it clear what approximations
we have adopted in Eq.(3-39) and therefore in Eq.(3-55). As was already
mentioned, the application of the one-electron wave function given by Eq.(3-

32) is equivalent to the simplest form of CPA,

E = 5, + TE . (3-58)

Consequently the wave vector is given as a real quantity

7 1
ko= O Lgy? (3-59)
and now k loses its original meaning as a quantum number for the bare parti-
cle and it should be thought as a quantum number of a quasi-particle. This
relation did make it possible to combine Egs.(3-55) and (3-49). However

turning to Eq.{3-27), the electronic state is given as a linear combination
of the original ( bare particle ) representation. If the diagonality of the
self-energy does not hold, the one-to-one correspondence between the original
representation and the quasi-particle picture becomes meaningless, Actually

by writing Eq.(3-27) as

qyk(r) = ¢i(r) {1+ akk'akk' )+ E:d).(r)ak,k , (3-60)
k'xk
where
ak,k = Z(k#] -13 ik")(k"kZ{k) , (3-6l)

k' o
it is expected that tunneling can take place into all of the bare particle

states, Therefore Eq.(3-41) must be corrected properly. Similarly the
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concepts of the group velocity Eq-(3-43) is doubtful, which is shown by re-

writing Eq.(3-43} as

A L RSP Z‘ak‘k'z[\vk'>

k ek

(3-62)

The non-zero of Eq.(3-61) for k'kk means the transition between the bare par-

ticle states, consequently the group velocity defined by Eq.(3-62) is not the

constant of motion. To date it hasn't been known how much the contribution of

the off-diagonal elements is, and we cannot know the correctness of the pro-

cedure to investigate the density of states.

Cne way to generalize the problem is to treat tunneling in the bare-

particle description. As will be shown in the next chapter the density of

states and the Green function is connected by the relation
- 1 v
D(E) = 5 ImG(kk'; E)S,,
kk!
where

G(kk'; E) = {k\(szikW

In this bare particle representation, the self-energy X (E)

complex reflecting the finite life of the bare particle state.

ting

A = Re T(E)
and

U= mxIm ,

equation (3-63) is written as follows

1 r
D(E) = - = }:
ﬁ 2 2
X (E - Ek -AY s T
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(3-64)

is generally a

Thus by put-

(3-65)

(3-66)

(3-67)



3

5= )]

2 —
1) Rek - ¥ )? (3-68)
4 %%

Equation (3-67) shows that the bare particle state of energy £k is shifted
by A and has a damping [, and this nature of description is thought to be

partially responsible for the transition of the bare particle states. Actu-
ally extending the meaning of the group velocity, equation(3-59) gives the
expression for the complex group velocity 85130]
1 1
vy & E-3 ) (3-69)

m

and the imaginary part of Eq.(3-69) express the decay of the states.
By the way, by combining Eqs.(3-38) and (3-39) we get the state densi-
ty of the form

3
= 1
3 =
pey = .3 )¥a-2L, | (3-70)
4 7%k oF

which is just the same formula given for the quasi-particle approximation,

.131) Thus by using the one-elec-

where we have only to replace ¥ by A
tron wave function, we have neglected the damping as well as the off-diagonal-
ity.

In the next chapter we will formulate the theory of tunneling in the
bare particle representation in order to generalize the treatment, where the
imaginary part of the self-energy will be taken into account.

Finally let's take a glance at the localization of the electronic
states. If an electron is strongly bound at an atomic site, the electronic
state cannot be described by a wave function of the form given by Eq.(3-32),
which extends uniformly over the whole crystal. It is one of the main faults
of our original formula Eq.(3-7). If the material is lightly doped ( which
is not the case of our tunneling problem ), we should start out from the atomic
wave function.es) The situation may also be the same in the case of an

amorphous material. This is, however, beyond our problem.
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iv. TUNNELING INTO IMPURITY BAND ( II )
Self-Energy Effect

8 4-1 Formulation of the Problem

The fault of the current formula Eq.(3-48) was caused by the applica-.
tion of one-electron wave function. To avoid this we'll develop the theory
of tunneling in the frame-work of the Hamiltonian formalism established by

47) 152) and Appelbaum-Brinkman%z)

Bardeen and developed by Zawadowski
Our system consists of two electrodes; left hand side electrode label-
ed as L and right hand side electrode labeled as R, separated by a poten-
tial barrier which is thick enough in a sence as will become clear in what
follows. In both electrodes electrons travel interacting with impurity

potentials, which will be described by the following Hamiltonians;

H = HR + HL + H

Xf::

k k' (4-1)

et
by ) ) v@-anlng v G en
qq'

} +
quka,kbq L
K

s
Bole, ZZ NGESEVINE
+

l_‘x
"

aP~—1 0 =
'nm

where a{ » B b; , and b is the creation and annihilation operators of
electron in the right and left hand side electrode, respectively, Vo the
contact potential and V 1is the bias energy applied across the junction.
VR(k' - k) and VL(q' - q) are given by the Fourier transformation of the
impurity potential defined by

N

ek = ) S velr-R) e T T (4-2a)

R
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Fig. 4-1. Schematic energy diagram of the junction.
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and

N

‘. _ _ -i{q'-q)-r
VL(q q) = ): S vL(r Rn) e dr . {4-2b)
R
n
respectively, where vu(r-Rn) is the potential due to individual impurity at
a site Rn , and the summation should be completed over all the impurity sites.

The periodic potential of the crystal is compressed into the effective mass as

2,2 22
£ - ’f‘i}_ ) £, - %ﬂ. _ (4-3)
™R "y
The Hamiltonian H should be equivalent to HR ( or HL } in the limit
7z ——+ + 00 ( or Zz —+ -oo ) and each electrode is assumed to have a ortho-
normal set independent of one another ( electrode approximation ). This

is described by setting the Hamiltonian, refering to Fig.(4-1), as

H = H ( z22, )
= Hy + H (Z,€z<Zp ) (4-4)
= H ( z<z, )

which is true if the junction is thick enough to neglect the Hamiltonian of

94)

another electrode. Another Hamiltonian H which represents the trans-

B 3
fer of electrons from one electrode to another, is thus considered perturb-
ation. The transfer matrix qu is often called vertex function because

41)

In order to obtain the tunneling current across the junction we diago-

of its role in the diagrammatic representation of tunneling.

nalize the Hamiltonians HR and H

L 3
+
Hy = EpAuhp (4-5a)
)A
{,
H = EB,B, , (4-5b)
v

by orthogonal transformations

a = Z CkpA}i . (4-6a)
H
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by = ): by (4-6b)
v

¥

where A* w » By and B, are the creation and annihilation operator

A
,_L Ed
of p-th eigen state of right hand side electrode and v-th eigen state of

left hand side electrode, respectively, and EP‘ , Ey their eigen values.

The coefficients ck» and qu should satisfy the ortho-normality relation:
Z c, C t = & (4-7a)
kp kg Kk ! ’
)l
Zc c+ = § (4-7b)
v q'v qq’
v

The tunneling transmission current is given, by definition, as
Jv, Ty = - gd‘ﬁ JE) [ £ - £y | I (4-8)
where the current density j(E) is

. 2%e 2
3E = B PP 5e, -8 Sme- B (4-9)
}z\l
where the factor 2 comes from the summation over the electron spin.
In order to rewrite jJ(E) in the original representation we introduce

Green functions defined by

S 1+ )
Ga(kk'; E) = <0la, £ - a) 10> , (4-10a)
', - 1 + -
6O(kk'; E) = <0Ja, ——at {0 (4-11a)
R k5o e e
and
) .. _ 1 + R
G (qq'; E) = <Olbq B bq. 10> , (4-11b)
L

where [0 is the vacuum state and Hg is the Hamiltonian for an ideally
pure crystal. Substituting Eq.(4-6) into (4-10) and (4-11) we get
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and

The Green functions

G
o

and

The

and

) - t 1
Gp (kk'3 B) = Ezckpckﬂp ETE, B
g
e + 1
GL(qq" E) = Echycq'v E - Ev + i&
v
o . . 1
GR(kk', E) = - gk oy Skk'
o, LRy = 1
GL(QQ', E) B f’q Py S aq'

defined by Eqs.(4-10) and (4-11)

connected by the following relation,

introduced by Egs.(3-15) and (3-16},
Gy(kk'; E}y = (k [Gelk®) ,
o = allo>

(4-12a)

(4-12b)

(4-13a)

(4-13b)

are equivalent to G and

imaginary part of each Green function is given by

[}

ImGR(kk'; E)

-

[

ImG, (qq'; E)

1

+
Z cqch,v S(E - Ey)
v

where use of the following relation has been made,

1 _ 1
X + is

= P ame
X

- ind(x)

The level density of each electrode is given by

Dp(E) = ZS[EP - E)
}A

- - % j: InG, (kk*; E)
Kk

¥
- Z Ck}LCk'}‘ S(E - EP) ,

3

8ik'

1]

(4-14)

(4-15)

(4-16a)

(4-16b)

(4-17)

(4-18a)



1 ) . -

DL(E} = z .’S(Ev -E}y = - EE}mGL(qq'; E)Sqq, . (4-18Db)
v qq’

Now by using above equations we get the current density function writ-

ten as follows

L

J(E) 3%5‘?» Z l(v&HBt}wlz&(EP - B) 8(Ey - E)

Py
22 ) ) ) caumgiodctgla

i

uv kk' qq’
+ . ¥ XS O - E
Sav Sy ki S~ B OBV - B)
- 28 5: Ej o1t G (qta; E) ImG,(kk'; E) (4-19)
e qk qu; L q'q, R > .
kk' qq'

In this formula we see that the effect of interactions is included in the

Green functions and the tunneling can take place in the bare particle repre-

33) Thus tunneling be-

sentation as was shown by Appelbaum and Brinkman.
tween many body states is reduced to that in the bare particle configuration,

and our problem is to calculate the transfer matrix and the Green function.
41)

Equation (4-19) 1is similar to the formula given by Duke, but our
theory developed here is much simpler. We have neglected such interactions
as with phonon537) or exciton,lsz} which will be easily contained by extend-
ing the Hamiltonians. The electron-electron interaction was also excluded
in the Hamiltonians. But in deriving Eq.(4-19) we have no assumptions on

the nature of ( Hy - Hg ) , therefore as far as the approximation of the in-

dependent electrode 1is satisfied we may use Eq.(4-19) for any kind of inter-

action.
§ 4-2 Current Formula for Short Range Potential
In the previous section tunneling was formulated quite generally.
Our purpose is to study the tunneling phenomena into the impurity band. In

this section equation (4-19) is evaluated explicitely for a model potential,

— 53—



and the current-voltage characteristics are showed to be a direct reflection of
Im Y , and one of the faults of our previous results Eq.(3-48) will be re-
covered.

As was done in Sec.3-2, in order to simplify the problem we assume
that in the left hand side electrode there is no impurity and electronic state

is expressed by plane wave with effective mass m and electrons transfer

L 3

into the right hand side electrode in which electrons travel interacting with
impurity potential. Then we can reduce Eq.(4-19) to a simpler formula

jE) = & Z Z 1 15 &5 5(E. - E) G, (kk'; E) (4-20)

K qk q'k' Yqq'""q - RYTT 2 '
kk' qq'
We assume further that the impurity potential VR(r - Rn) in Eq.(4-2) is of
short range and approximated by a &-well potential. Then we get the Green
function of the formllz)
1
T = [ .. S -

G (kk'; E) I ¥ (5 Skk, (4-21)
Equation (4-20) is then written as

jE) = 2 Z [t [2 8(E - E) ImG,(kk; E) (4-22)

ki qk q RV :
kq
As was shown by Bardeen47) the vertex function is given by
*
2 2f 2f
= A k * 79

qu 2mB S( fq 22 - fk 2z ) dSB * (4-23)
where ny is the reduced mass

_511.. S S , (4-24)

B ML "R

and the surface integral should be completed in a plane parallel to the junction

plane in the barrier. fq and fk are, respectively, solutions of the left
and right hand side Schrddinger equations,l32’134)
[* «ﬁivz + Vo(2) Bz - 2,) - € ]f(r) = 0 (4-25)
ZmL B L q q '
A2 2
[« iii;v v OVy2) Blzg - 1) - g ] () = 0, (4-26)
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where 8(z) is the step function. As was shown in Sec.Z-2, the shape of
the potential barrier will give little difference to the results and for the

sake of simplicity we assume that VB(z) and ﬁﬁ(z) are a constant, i.e., a
rectangular barrier. Then the vertex function is derived straight forward-

ly and given by

2 m
T, = .2.‘5_ 5, % — L "R e (a-27)
4 T (ii‘_u___’.‘i)(:‘__}_.ﬂ_)
™, Mg /ATy My

where the suffices | and Il for q and k mean the vector component parallel

and perpendicular to the junction plane, respectively, and w is the barrier

width (w = 2p - 7 }. The penetration factor « is given by
1
K = X Aj ng( VB - Eq" - V) . (4-28)
where
ﬁzqz
£ = S . (4-29)
q" 2mB

Substituting Eq.(4-27) into (4-22) we get

<qn k” ) 2
3 m
, ~ 8eh” 2 L"R “2Kw
i) = - 2 x Z 2 2. e
qk B e, VAL
2 22" 2
L ™ R ™8
. 5%1&.5(5&1- E). ImGy (kk; E) . (4-30)

If the barrier height is sufficiently large, which is often the actual case,

the exponent in Eq.{4-30) can be approximated as

&
2KW  —a A * —-EL , (4-31)
(4]

where
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A= 2xﬂw =»2A[2m8( Vg - E -V )//ﬁ2 w o, (4-32)

£29i 42k2
& = e - 5 (4-33)
L ZmR ZmR
and 1
2 1
(Zmy) -5
1 B 7 ™
-*E: = - ( VB -E-V) . ;n-B-' - W . (4-34)

Though above formulation was done for a rectangular barrier, 2 and l/EO can
be replaced by Eqs.(2-40) and (2-41), respectively, for an abrupt p-n
junction.

As we have assumed that the electronic state in the left hand side

electrode is metallic, we can safely approximate qu by

A 2m, &
q = L9z o g , (a-35)
i H F
where A is the Fermi momentum. Thus integrating Eq.(4-30) over qu we
get
i
m
JE) = §*§-ﬁ~*<§—7—-[‘—~2——— ek, (4-36)
"B ¥, %
m2 m2
L B

where K 1is given by

2
(k, /me)
K = Z gm“ >~ exp[ - & /E ] ImGy(Kk; E)
o /m) e (% /mp)
N (kg /m)?
E -
- Ze ° Iy X "zm}‘ > : s . (4-37)
K Ky (a/m)Te Cg/mp)™ [E - &y -z

The summation over k! can be completed straight-forwardly, and the result is
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1 1 1
2 * 7 3
(2mg) £ v Inf (E-& -1
- A B +
K = - 2 B exp{ ‘_]{ * 2 + Re *
k o vy +E-¢g-T] Vg v E -8, -%
{4-38)
where the effective barrier height is defined by
2
2 m
* A R 2
= —— —— m»ﬁ
VB ZmR ( 5 xg} . (4-39)
g

The barrier height is assumed large and we can approximate the denominator in
Eq.(4-38) as

* *
Vg *E- € -L —= V,+E-X ) (4-40)
since the terms for large &, has negligible contribution to the integral
because of the exponential factor in Eq.(4-38). In the case of the phenom-
ena of tunneling into the impurity band the energy E is very small;

*

Vg > E- I s (4-41)

so we approximate Eq.(4-38) further, and we get

s

3
2 e
(sz)z *% V; £ E-€ -1
K = - V.°E {ImY + =— |d§ exp[- = ] Re |——pr——o .
3 B o E 4 E
87h o o . Va
(4-42)

Now we get the expression for the current density

JE) = CuE, V) e M ggE, V), (4-43)
where
% V—-——;
QE, V) = Im + B
2 EO » (4-44)

and the other energy dependent factors are compressed in C 4(5, V) which
varies slowly with energy and applied bias. The suffix 3 for Q means
the case for three dimensional model.

By now all of the formulation have been done for the spherical symmet-
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ric three dimensional energy band. In the case of oneé-dimensional energy

band we get similar formula by putting k; =0 in Eq.(4-20), and the

result is
R - . -A
j(E) = CS(E, V) e QI(E, V) , (4-45)
where
QU V) = mI + vy Re|EZE . (4-46)
A
B

If we put Im Y ——> -0 in Eq.(4-44), by replacing (E - L ) by
Sk equation (4-44) gives just the same formula as tunneling density factor
N(E, V) ; Eq.(3-53). This fact proves that ImY has an important role ir
the tunneling phenomena in the impurity band. Similar results of the self-
energy effect in tunneling have been evaluated within a quasi-particle approx-

imation.33’135]

In those case, however, the tunneling characteristics
are reflected by Re) as was the case in Eq.(3-70). Our present
results also include those effects, i.e., for large value of E , Im};, tends
to zero and Re)l, reflects the second term in Eqs.(4-44) and (4-46).

The tunneling current at T=0 K is given by

Ee
Jv, T=0) = g dE j(E) , (4-47)
Qt- v
where QC is the Fermi energy of right hand side material. The differ-
ential conductance is
&
ar R 2 (E) -
W = (& -V o+ S dE S . (4-48)
5oV
in which the second term is approximated by
4
ﬂ,..-a‘.l g 1 = __3.2\_“ -
3V j(E) dE 5V J , (4-49)
g .-V

because C4(E, V) varies slowly with respect to applied voltage comparcd to

exp[ A 1 . Thus we get



dJ . 3A .
w = I *'QC‘V) - 3vd - (4-50)

Apparently J is so small around the band edge that the second temm may often
be neglected. Combining Eq.{4-44)} agnd (4-50) we know the differential
conductance should reflect the dependence of QS(E = éc“ vV, V) for the first
order approximation. The second derivatives of the current may be more

dramatic :
S,

[V
R 10) - 223 C b my s
dv E= [’c“ ' =g -V 5-V 2V
where Vij (E)]E =Z means that E =& should be substituted after the
differentiation is completed. The value of second and third terms in Eq.
(4-51) are less than a few percentages of the first, because the value of
2 j(E}/aV 1is two orders of magnitude smaller than that of 2j(E)/3E .

Therefore by neglecting these terms we get an approximate formula

2 .
. .2 E)J - _EQLEL_V_)J , (4-52)
av 2E 2E

E= QC-V =£,c-v

where
aQ v
i 2Z B _2.‘;_}
3E Im=FE * Re[sol{l >E

oo
- E-2-¢ £ £
{ - | L el g dc—f—)} , (4-53)
VB 0 VB [+] [>}

or

2Q Vo
1 2% 1 B 23
>F Im >t + 3 Re N (1~ > ) . (4-54)

In measuring the differential conductance fine structures due to the structures
in the density of states of the impurity band may be weakened by the second
term in Eq. (4-50). But by measuring the second derivatives of the current
we can get convincing informations about the functional form of Qi(E, V) and
therefore about the energy spectrum of the impurity band.



& 4-3 NMumerical Investigation of the Conductance

In this section we will show numerically that the theoretical formula
for the tunneling current density does reflect the density of states of the
impurity band. To do this let's start with the formulation of the state
density function. According to Eq.(3-23) the self-energy for the Green

function is given by

1 ¥ 1] ¥ 14 1
Y = H +H GoH + H GOH GoH N
' 1
= H —————— . (4-55)
1-GH

By replacing GD by (va we get coupled equations for the state density
function Z :

| 1
¢ = Z(G)kk - Z E- - L® (4-56)
K K

and

Y= H ! (4-57)
1-(6) H

The density of states D(E) 4is given by

D(E) = -«%t- Imz . (4-58)

Here we will apply the results given by Saitoh et al., who obtained a cubic

equation for three dimensional crystalllz'136’137)
Vv
L T & TR L (4-59)
53 Yy

which isequivalent to Eq.(4-56), and the state density and self-energy are
related to y as

" = i -
D(E) T, Eg Imy , (4-60)

and
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. v
S (4-61)
g Y
respectively. In Eq.(4-59) Eg is the ionization energy of single
impurity and the reduced impurity concentration Vg is defined by
2% N
VR ) (4-62)
3.3
2m” €7
g

Using Eqs.(4-59) and (4-61) we can write Eqs.(4-44) and (4-53), respectively,

as follows
Q v, 1
v v—
.-é-:,—’- = Im -—;'}—- - ( —E—B—- )2 Im 53 » (4-63)
g g
and
2Q, . Vs
28 -~ " )
vs' 2)’ (1 - Y)
e, Vg3 O -NU-y-S5y
- () I 5 , (4-64)
0 g \)3"' ZY (1 - Y)
where
o0
2 Ea
53 = Sdt»exp{ -t ] (1 -y)" + <+ t . (4-65)
0 g

Similar formulae are obtained for one-dimensional modellsa)

Eqs.(4-59) - (4-64) as follows.

corresponding to

.\l
L 1 X (4-66)
Eg X 1 -x
v . N A (4-67)
1 I e,
D(E) = - zh-Imx . (4-68)
D
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e T . (4-69)
8
Q v, 3
1, Y1 B.2 1
- - Im( =) - o ) Img . (4-70)
g g
3 * ]
29 VX 1. V.3 2x(1 - x)°
3E - I 3 7 C oz (g I3 7
le - 2(1 - x) g le - 2(1 - x)
(4-71)

Computational results of above formulae are shown in Figs.(4-2) - (4-7).
By comparing those curves, the following features are demonstrated;

(a) If the impurity concentrations is lower than the critical concentration
Ve ® 8/27 , or the impurity band is separated from the main band, 2Q/3E
becomes infinity around the energy gap. Even if the impurity concentration
is higher than Ve ?2Q/3E exhibits a sharp structure due to the dip of

density of states,

(b) In the impurity band region, Q and 32Q/9E are dominated by the functions
of ImL and Im(2X/2E ) , respectively. According to the sharp cut-off

of Img% and D(E) at lower energy side of the impurity band, 2Q/3E
becomes infinity.

(¢} In the main band region, the curves for Q3 are different from those

for Q1 . The former exhibits a linear relation, if Em/ag is large.

If EO/E small, however, it does not. In the case of one dimensional
model, Ql is dominated by the second term in Eq.(4-70) and does not reflect

the one-dimensional density of states.

The characteristics shown in Figs.(4-3) - (4-5) are sensitive to the
junction parameter EQ/'E.g ,» especially if it is small. If the junction
studied involves an insulator film, its thickness should be measured exactly.
In the case of a semiconductor junction, the value of EO is determined by
Eq. (2-41). Practically the value of Eolsé is of the order of unity for
many of the materials.

Before concluding this section, we will show the Sum Rule for the
current as a proof of the completeness of the theory, which may be described
as "If the tunneling probability is constant the tunneling current should be
proportional to the electron density of an electrode". OQur problem is to
prove the relation
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Fig. 4-2. State density funct-
ion ( solid lines ) and imagi-
nary part of the self-energy (
broken lines ) for three dimen-
sional model. The critical

concentration is V.= 8/27.

e o e . e e e e e o

f‘_

e
[ e e e

4Q /dE

Fig. 4-3. The function of Q ( solid
lines ) and 2Q/2E ( broken lines ) for
EOIEg = 1,0. The barrier height is set
to be VB/Eg = 100, In the main band
region the curves for Q are nearly para-
bolic. The sharp dip of aQ/2E around
the energy gap is due to Im3TL/3E, and

a direct reflection of the impurity band.
The infinity of 2Q/3E at the lower
energy side of the impurity band is due
to the sharp cut-off of the density of
states.

Fig. 4-4. The function of Q and 2Q/3E
for Ey/e = 5.0 and v;;/ag = 100. In
the main band region the curves for Q
exhibits linearity. They have fine
structures (sharp dip ) around the energy
gap.



T ?g’ ‘ °  Fig. 4-5. The function of Q. and 3Q/3E
{ %“ for E /€ = 10.0 and V;/e = 100.
i {%% Curves show linearity of Q gin the wider
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Fig. 4-6. State density func-
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/ , Mmodel. The critical concentra-
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/ $
I i
}
|
|
I //P) :
ol 4
-6 -8 ~&
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JV, T=0) = CNi s (4-72)

where C is a constant. Combining Eqs.(4-8), (4-43) and (4-63) we get
the following integral:
I /€g .
JV, T=0 d s
v, T=0) = @ w ( Im v §~Alm 53 ) R (4-73)
—wo g
where p is a constant and w is the dimensionless energy w s Elﬁg . By
using the relation
1 -
Im X(w) = 5 X(w + 18 ) - X(w - i )} R (4-74)

the integration over w should be performed on the path [ in the complex
w-plane as shown in Fig. (4-8a),

21 Y £

v
JV, T=0) = —b— g dw {Ki - |=B 5, } (4-75)
I

This integral is evaluated by converting the integral to that in the y-plane,
the corresponding path I”” is also shown in Fig.(4-8b).

*

\
o) - _E_g dw (Y35 7B
JV, T=0) = 37 dy Iy v € 53
r’ g
[2,5]
1
v E =
= @xvz i2+ ~é—§ 8(14 E«gt)ze"tdt}
g 9 g
+ 00
V3 VB -t
+ ﬁ\% Im{ —= - 2 In(y) + 2y - i dt e ~ Y(y)},{4-76)
2y g o

where
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(a) (b)

Fig. 4-8, (a) The integral path in w-plane.
(b} The integral path in y-plane.
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E E
J(l-y)2 2 -1+ 2t -y
1 € 1 €
+ in £
E , &, E
1+7¢_—-t (1-y) +-§-—t + 14-?9.1; -y
g g N g
3
E E 2
sy Jaep?e 2 be 2 layp?e 2 . (4-77)
g 3V, £

The value of y should be chosen so as to give the value for the Fermi energy,
and if it falls in the energy gap we see that Im y = 0. Consequently the
second term in Eq.(4-76) equals to zero and we get

-]
V; Eo 7 -t
J(V,T=0) = v3§X 2+ Er- (1 + E?'t) e dt , (4-78)
g 0 g

which is the formula required and we have concluded the proof.

§4-4 Experimental Considerations

About the sample described in Sec.3-3, the measurements of the second

derivatives were done at 1liq.He temperature. In the measuring circuites
the second harmonics involve the trace of the (dv/dJ)s(dzJ/dvz) - V curves,
126)

where J is the sum of the direct and indirect current components.
Thus the large indirect current component makes it difficult to measure the
second derivatives of the direct current component so accurately as to be com-
parable with the theoretical curves. So we obtained dzJ/dvz - V curves
for the direct current component by calculating numerically with the aid of the
dJ/dv - Vv plots. Figure (4-9) is one of the typical dzJ/dV2 -V plots
for an As doped germanium tunnel junction. In the higher energy region
the curves are nearly constant reflecting the linearity of dJ/dV - V curves.
Around the band edge there exists a sharp dip, which is the evidence for the
dip of the state density between the impurity band and the main band.

The similar measurements were made on Sb doped samples; the results
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Fig. 4-9. Typical conductance plots at 4.2 X for

As doped samples. The sharp dip in the middle en-
ergy region proves the dip in the density of states.

The arrows show the energy corresponding to the edge

of the main band with parabolic dependence.
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Fig. 4-10. Typical conductance plots at 4.2 K for

Sb doped samples. There are no indication of the

dip in the curves within the experimental error.
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are shown in Fig. (4-10). The curve for a lower donor concentration seems

to have a small convex in a middle energy region, but that for a higher concen-
tration have no indication within the experimental error. In the lower
energy region curves for both samples show long tail, suggesting that the
impurity band decays continuously into the forbidden band in contrast to the
theoretical results. In what follows we will discuss the results about

three regions separately.

(a) Higher energy region ( Main band )

According to the numerical considerations in Sec.4-3, the characteristics for

the main band region is sensitive to the junction parameter. By using the
values for the direct current component in germanium:127) Vg = 0.9 eV,
my = 0.04 m_ and € = 16 , the value of E = 0.02 eV is estimated for

[+] [+]
Ny = 5x101% cn™3  and E, = 0.05 eV for 1.5x10* en™® , in & bias voltage

region measured ( 100 meV -V < 150 meV }. As the ionization energy of
(111) valleys are 0.0127 eV (As) and 0.0096 eV (Sb) ,%%) within the
effective mass approximation the 1S hydrogenic energy for (000) valley are
0.0029 eV (As) and 0.0022 eV (Sb). Therefore the junction parameter

EO/ gg ige efgimated to be about 7 (As) and 9 (Sb) for the samples of

Nd = 5x10 cm

the value of EQ/eg is large enough for the curve of Q to exhibit the

and larger for samples of higher concentrations. Thus

linearity, and the agreement of the experimental results proves the parabol-
icity of the energy band in the higher energy region.
(b) Middle energy region ( Energy gap )

The sharp dip for an As doped sample Fig.(4-8) 1is the evidence of the
existence of the dip of the density of states between the impurity band and the
main band, which proves the reasonableness of Fig.(3-7). The fact that
there is no evidence of the dip for Sb doped samples suggests that the im-
purity concentration is high, i.e., the sample is in the metallic region.

By using the &-well potential for v(r - Rn) the critical concentration Nc

at which the impurity band merges into the main band is given byllz)

452 m €

¢ 27T A3 (479

The value of Nc for As and Sb donors in germanium are NC(As} = 4,5X

107 em™®  and N_(Sb) = 3x10!7 em3 , respectively. Both values differ
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only slightly and cannot explain the difference betweena Sb doped sample and
As doped one. But the theory does not take into account the long range
nature of the atomic potentials. A Sb atom should have larger effective

56) and it should

range of the potential because of its larger atomic radius
have a smaller value of Nc than As atom has. In measuring the electric
and electronic properties Sb doped samples often exhibit different character-

73)

present result. For example, Yamanouchi measured the Hall coefficient of

istics from As doped samples, and they are in good agreement with our
germanium and found that Sb doped sample exhibits the evidence of the degen-
erate free electron gas ( Ndz 1017 cn3 ) while As doped one is not ex-
plained by the free electron model . 139-142)

{c) Lower energy region ( Band tail )

Figure (4-11) shows the semi-log plots of the second derivatives in the lower
energy region. Each curve is quite similar to that of density of states
Fig.(3-8), and shows the band tail extending continucusly into the forbidden
band, differing from the theoretical results: Figs.(4-2)-(4-6). Bonch-

81)

Bruevich showed theoretically that the impurity band has long tail within

the first order approximation, if the potential is of the long range type.
43)

Though there are many assumptions and approximations adopted

Similar results have been obtained by Kanda~0noderaI and Kanda-

Hasegawa.ldQ}
in their theories, it seems true that the long range nature of the impurity

145)

potential will reflect directly the long tail. By using the screened

Coulomb potential, the effects of the formation of clusters in impurity distri-
146) 71)

density of states in the high density limit ( metallic concentration region )

bution was studied by Kane and Halperin-Lax. The latter gave the
of the form expressed by Eq.(3-57). The results for Sb doped samples are
in good agreement with their theory, suggesting that Sb is easier to form
clusters due to large atomic radius.147’148)
By comparing Fig.(3-7a) with (3-7b), we know that the impurity band
for As doped sample is much larger than that for Sb doped one. Why ?
Cuevas and Fritzsche14g’150) determined the value of strain at which the satus
ration of the piezo-resistance occurs and found roughly agreement for Sb
doped germanium with what would be expected with parabolic band. But in
the case of As doped sample the results couldn';ggnderstood without the
assumption of the presence of large tail states. Their results have been
attributed to the significance of the large central impurity cell potential of

151)

As donors. The central cell correction has also been thought to be
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Fig. 4-11. The dzJ/dV2 - V curves for the band
tail region. The curve for an As doped sample
shows a linearity, but that for a Sb doped one does
not. { See Fig. 3-8. )
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responsible for the mixing of the electronic states of {000) valley with those
of (111) valleys, giving larger impurity induced tunneling current to a tunnel

diode made of As doped germanium,zz)

Thus our present results for im-
purityband of (000) valley may also be attributed to the larger central im-
purity cell potential in an As doped sample.

152}

the framework of the effective-mass theory by Kohn

Kaplan investigated the impurity level for subsidiary valley in
60) and showed that if the
impurity potential is of the screemed Coulomb type there are hydrogen-like
localized states near the subsidiary minimum, while for the impurity potent-
ial of &-well type it has no localized states. Similar results have been

153) Present results are the first observation of the

obtained by Peterson.
impurity level associated with (000) subsidiary valley of germanium, and
another proof of the long range nature of the impurity potentials. Further
experiments by introducing any other impurities or by applying deformation may
be of value for the examination of the effective-mass theory for a many valley

semiconductor.lsa)
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V. LOCALIZATION AND DENSITY OF STATES

§ 5 -1 Magnetic Moment in Tunnel Diode

The electronic states in the impurity band ( or band tail ) will
have the localized nature, irrespective to the concentration of donor
( or acceptor ) impurities.155_157) As is illustrated in Fig.5-1,
electrons in doped semiconductors should have both localized and non-
localized nature. The matter is, therefore, which nature dominates the
phenomena considered.

The negative magneto-resistance observed in a heavily doped semicon-
ductor at very low temperature has been thought to be a reflection of the

localized nature of electrcns.lss) 78)

Toyozawa investigated the co-op-
erative effect of electron correlation and the random lattice. He showed
that the localized magnetic moment should appear as a collective mode and
concluded that the negative magneto-resistance has its origin on the local-
ized moment. Similar phenomena in a ferromagnetic metal was studied by

Yamada and Takada,lsg)

attributing the negative magneto-resistance to spin
fluctuations. Thus the immobile state in the impurity band is thought to
be responsible for the anomalous electrical conduction in a heavily doped
semiconductor. In this chapter we will further study the localized nature
of electrons by measuring the zero bias conductance anomaly { ZBA ) in tunnel
diodes.

Among many types of ZBA observed in the low temperature character-
istics of a tunmel junction, the conductance maximum sensitive to tempera-

32,77,160) 32)

ture is due to the magnetic scattering. and

61)

in a tunnel junction and concluded that for an anti-ferromagnetic coupling

Appelbaum
Solyom-Zawadowskil studied the strong coupling limit of Kondo scattering
4G is maximum when the interaction is Tj dominant and AG is minimum
with a sharp maximum due to strong coupling when it is Ta dominant ( See
Fig.5-2 ), where the matrix element Ta corresponds to the impurity assist-

ed non-magnetic tunneling in a magnetic barrier and Tj to the magnetic

—_— 73 —



(a) (b}
w
[=]
Fig. 5-1. The electronic states in the impurity band

may be described by atomic wave functions and should
have localized nature, while electrons in the main
band behave like free electrons. At a finite temper-

ature electronic properties should reflect both features.

(al Tj dominant (b) Ta dominant
Fig. 5-2. The ZBA for an anti-ferromagnetic coupl-
ing exhibits two types of conductance. AG is maximum

for Tj dominant case (a), or minimum with narrow
maximum for '1‘a dominant case (b).
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tunneling with spin flip.

§5-2 Experimentals

Measurements were done at low temperature ( 1.6 < T { 30 K ) about
the tunnel diodes made by the same method described in §3-3. In an As
doped germanium tunnel junction 4G was always maximum and had the character-
isties of Kondo scattering for Tj dominant case. In the case of a Sb
doped sample there was no indication of ZBA due to Kondo scattering.

Figure 5-3 is the typical curves of dV/dI -V at 4.2 K, in which we can
see the zero bias resistance minimum or the conductance maximum for As doped
sample. Other structures above 8 meV are due to the emission of the

zone boundary TA, LA, LO and TO phonans.lsz)

At higher temperatures
the structure around zero-bias becomes less prominant and finally disappears
at about 'I‘0 = 20 K. This temperature sensitive part is called the ZBA.

The ZBA of As doped sample are shown in Fig.5-4 for various tempera-
tures by using the differential conductance. Raising the temperature the
line shape becomes more asymmetric. The maximum value of AG/GO is plot-
ted in Fig.5-5 as a function of temperature. In a higher temperature
region the AG/G0 is proportional to In T , which is one of the character-
istic nature of ZBA predicted by Appelbaum. In a lower temperature region
the curve deviates from the linear dependence due to strong coupling, indi-
cating that the sign of the exchange energy J must be negative, or the
coupling is anti-ferromagnetic.

32)

According to the theory by Appelbaum AG for Tj dominant case

is given as follows; for a weak coupling or at high temperature region,

AG
T~ NJf Flev, T) (5-1)
where f% is the density of states of electron at the Fermi-level in a

magnetic material, Ns the number density of magnetic spin and J 1is the

exchange energy. F(ev, T) |is
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F(eV, T) = jj af("’a; ev). af;::}'ln l 5 ””[ dwdw' (5-2)

where f(w) is the Fermi-Dirac distribution function and D is the cut-off

parameter. For a strong coupling case or at low temperature limit,
2
A
AG 1 0
T ™~ N 3T 7. 2 (5-3)
o €2 SR R

where Ab is the characteristic energy of scattering at T=0 K .

Equation (5-2) exhibits the characteristic 1In T dependence at high tempera-

ture and InleV| dependence at high energy. By measuring the temperature
at which A4G/G deviates from 1In T dependence we can estimate the value
of AO ;165) the results are summarized in Tab.5-1. According to the
theory by Nagaokalﬁs) the characteristic energy is given by
A, = D exp [- —-}——1 s (5-4)
o 2J fF

showing that if the impurity concentration is large fF is large and accérd-
ingly AO should be large in good agreement with the experimental results.
The magnitude of AG/G0 is larger for a sample of lower concentrations,
showing that the lower the donor concentration is the larger the number densi-
ty of the localized spin is, which is in good agreement with Toyozawa's pre-
diction.78)

Applying a magnetic field up to 15 KOe, the effect was so small as
to be detected only in the second derivatives of the current. To confirm
the mechanism we introduced Mn atoms into the junction by alloying In-Ga-
Mn ( Ga 0.5% , Mn 1% ). The results are shown in Fig.5-6. The ZBA
was enhanced showing that Mn is magnetic in germanium. As the donor

concentration of the sample is 1.5 xlalg cm"s, and the solubility of Mn

is expected to be less than 1016 cn3,163)

so the compensation effect can
be neglected. Assuming additive nature of the conductance ( Note that the
tunneling is formulated within the linear response approximation ), the

component due to Mn atoms is obtained as the difference between the two

curves in Fig.5-6; the result is shown in Fig.5-7. The component is also
characteristic to the magnetic scattering. The characteristic energy for
this component is too low to be measured. The low value of Ao for Mn
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Fig. 5-3. Typical dVv/dI - V curve for an As doped germanium tunnel
diode (a) and a Sb doped one (b). The ZBA for an As doped sample is
a resistance minimum. In the case of Sb doped sample there is no indi-
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Table 5-1. Properties of magnetic scattering. For the sake of compar-
ison previous results for GaAs and Si are tabulated.

AG/G,
Sample (T = 4.2 K) T T
18 _ -3
5x 108 cm 4.8t 0.3 % 20 £ 2 K 0.33 t 0.04 meV

as | 1-5% 1019 1.5+ 0.2 20 % 3 0.72 £ 0.07

2.6x 1019 0.7t 0.2 ~ 20 0.8 <

Mn 0.7t 0.2 ~20 ?

" 5x 1018

1.3x101° No
GaAs * ~ 55 0.6 + 0.2
Si ( P-doped ) ** ~10 ~ 0.053

* N.A. Mora, M. Kuhn and J.J. Loferski : Proc. Intern. Conf. Physics

of Semiconductors, Moscow, 1968, p.274.
** D,L. Losee and E.L. Wolf : Ref. 36.
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Fig. 5-6. By introducing Mn into the junction, the
ZBA is enhanced. The donor concentration of the
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Fig. 5-7. The anomzlous conductance due to Mn atoms.
It exhibits 1n T relation characteristic to the weak

coupling of Kondo scattering.
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suggests that the coupling constant J is much smaller than that for the
localized moment existing intrinsically in a heavily doped germanium. The
fact that the magnitude of AG/G0 for sample of N, = 2.6 xl()19 en™> due to
the intrinsic magnetic moment is nearly equal to that due to extrinsic Mn
impurities indicates that the number density of intrinsic moment is of the
order of 10'® en™® for this sample. The sample of N; = 5X 10'8 o3 s
expected to have an order of magnitude larger number of localized spin.

This is a reasonable value because Toyozawa estimated the number ratio of the
electron with localized spin to the non-magnetic electron as less than ten

percents.

§ 5-3 Localized Spin and Density of States

We have ever seen that an As doped germanium has localized moment as
well as the indication of the impurity band, while a Sb doped one has no
localized moment and its impurity band is completely merged into the main band.
This fact proves earlier expectations that the localized spin is closely

158) Because the results in Sec.3-3 and

related to the impurity band.
Sec.4~4 are for the subsidiary valley while those in Sec.5-2 are for the (111)
main band valley, we'll restricted ourselves to the qualitative discussions
in this section.

As was already mentioned the electronic state in the impurity band
should be essentially localized, and the delocalized nature may come out from
the overlapping of the atomic wave functions. The distribution of the
impurity atoms is at random, that is, the degree of the overlapping should be
different from site to site. In other words, the material is microscop-
ically inhomogeneous, which is the origin of the magnetic moment showed by

Toyozawa.?a)

Therefore we may find some localized states somewhere in the
crystal, even in the highly doped material. If the impurity band is merged in-
to the main band, some of the electrons behave as free-electrons in the
conduction band extending over the whole crystal, which have somewhat different

natures from the delocalized states in the impurity band. Thus in a heavily

PR | 1) -



doped semiconductor electronic states should have at once both localized and
non-localized nature, or in a quantum mechanical term the electronic wave
function should be described by some combinations of plane waves and atomic wave
functions, '

By the way, most of the properties associated with electronic conduction

54) which is determined so

are dominated by the electrons near the Fermi level,
as to satisfy the following relation:
gF

n =2 5 D(E) dE (5-5)

where n, is the total number density of electrons ( nearly equals to Nd ) and
the factor 2 comes from the spin degeneracy. If the impurity band is
separated from the main band, the Fermi level should lie in the impurity band.
If the impurity band is merged into the main band, it is somewhere near the
main band edge, and in this case the electric properties should reflect both
natures of the impurity band and the main band.

The dip of the density of states observed in an As doped sample suggests
that the Fermi level falls in the vicinity of the dip and the electronic conduc-
tion should reflect the nature of the impurity band. In the case of a Sb
doped sample the Fermi level is expected to lie in the main band, or the
electronic properties are dominated by the conduction electrons. Though we
have not known the evidence of the impurity band for the (111) valleys, it
seems reasonable to expect similar density of states to that of (000) valley,
and what mentioned above is thought to be the reason why we cannot find magnetic
moment in a Sb doped sample. The number ratio of the electron with localized
spin to the non-magnetic electron seems in good agreement with Toyozawa's
estimations, suggesting that the localized moment does appear as the collective

mode of many electron system.lSﬁ)



VI, SUMMARY

Theory of tunneling into impurity band of a heavily doped semicon-
ductor was developed in the frame work of CPA. First, the tunneling
probability for a semiconductor p-n junction was investigated inan exact
formula and the expression for the current was found to include the density
of states factor which is a function of the density of states of both elec-
trodes, On the basis of the wave function for the impure semiconductor,
the current formula was analyzed which gave the method of determining the
density of statestail through tunneling measurements, Secondly, the
nature of the tunneling current into the impurity band was investigated in
the framework of the Hamiltonian formalism with the aid of Green Function
method . The tunneling current was given as a function of the electronic
self-energy. The first and second derivatives of the current with
respect to applied voltage were found to give informations of the energy
gap between the impurity band and the main band. In the impurity band
the dJ/dV - V curve reflects the influence of Im ¥, while in the main
band region it reflects the parabolic behaviour of the density of states.

Using the formula given above, the energy spectra of impurity band
of (000) valley of germanium doped with As and Sb donors were investigated.
An impurity band was found for an As doped germanium, while in the case of
a 8b doped sample the impurity band was merged completely into the main
band showing that the sample is in the metallic region. The energy de-
pendence of the density of states of the impurity band tail was nearly ex-
ponential extending continuously into the forbidden band for both samples,
reflecting the long range nature of the impurity potential. The
results are the first observation of the localized states associated with
(000) subsidiary valley of germanium.

Anomalous zero-bias conductance maximum was found for a tunnel
diode made of As doped germanium, characteristic to the magnetic Kondo
scattering. The mechanism was confirmed by introducing Mn into the

junction, and the nature of the magnetic moment in the impurity band was



discussed. The exchange energy was negative and larger than that for d-
electron of Mn. The results were in good agreement with the theory by
Toyozawa, and impurity band was proved to be the origin of the localized
spin in a degenerate semiconductor.

Several problems remain. The experimental results for impurity
band decays exponentially into the forbidden band, which cannot be explained
by the present theories. The general formula including off-diagonal terms
has not been evaluated, which will be of great use te investigate the shape
of the impurity potential. The results were about the (000) subsidiary
valley, it is desirable to investigate phenomena appeared in connection with
the lowest valley. In order to estimate the effect of formation of
clusters, further studies for sample of much wider range of donor concen-
tration are valuable. The compensation of the sample by irradiation or

other means may be of value.
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