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Introduction.

Let Mg be the coarse moduli space of complete non-singular curves of
genus g and Sg* the coarse moduli space of principally polarized abelian
varieties of dimension g. There is a canonical map :

i:Mé%%—-} s ,*

defined by sending the isomorphism class of a curve C to the isomorphism
class of the Jacobian variety of C. The famous theorem of Torelli asserts
that this map i is injective (e.g. [28]). Moreover the map i is holomorphic
(and even algebraic). It can be seen by rewriting the map i. That is,
Sg* is defined analytically as the quotient space of the Siegel upper-half
pPlane Sg of degree g by the integral symplectic group Sp(g, Z). It
can be considered as the moduli space by letting 2 mod. Sp(g, Z) correspond
to the isomorphism class of Cg/(lg, Q)Zzg. Then the map i can be defined
as the map which sends the isomorphism class of C to the residue class of
the period matrix of C, and by this definition i. is known to be holomorphic
(cf. (4.1)).

However the spaces Mg ang Sg* are not compact if g > O; which gives

rise to the problem of their compactification. Several kinds of compactifications



with geometrical meaning are known. In case of Mg the moduli space S
of stable curves of genus' g due té Deligne and Mumford gives the'good”
compactification‘([4]). In case of Sg*, the Satake compactification g;*
is a naturél one ([19]; [20]); As a Set §;* ié a union of Sg'*’ 0<g's<
However this compactification has too small boundary (of codimension g),
so 5;* is very singulér at the bogndary though normal; Igusé studied the
desingularization problem of the Satake compactification by blowing-up
along the boundary ([8]). Unfortunately this procedure does not give the
desingularization if g > 3. The author was informed that now in this
direction Mumford and Satake began to study in more general situation (i.e.
the desingularization of the Satake compactification of the quotient spaces
of bounded symmetric domains). It should be also remarked that the very
interesting study on the degeneration of abelian varieties by my colleague,
Nakamura ([13]) has a close relation to this problem. It is ekpected that
in the near future welhave a nice compactification of Sg* other than
Satake compactification. Anyway in this article we shall consider the
Satake compactification §;* and the normalization ég* of the blowing-up
of 5;* along the boundary which we call the Igusa monoidal transform.
Denote by p the canonical bimeromorphic map from Sg* to g?*.

Then the problem arises naturally whether the ﬁap i: Mg > Sg* can

be extended to a holomorphic map j : Sg > Sg*. Our Theorem 4 in §6 gives.

the affirmative answer to this problem. The composite map §‘= pej Sg-+ Sg*



sends the isomorphism class of a stable curve C to the isomorphism class

of the Jacobian variety of the norﬁalization of C (Theorem 3 in §5). 1In
fact we show the existence of 3' first and we show that 3- can be lifted

to j. In the proof we use the methodé introduced by Igusa in [8] in its
full eitent; Especially we use the notions of Fourier-Jacobi series and
central cones. For the proof of Theorem 4 we must use the fact that a cone
in the vector space of real symmetric matrices generated by a finite number
of non-negative integral matrices is covered with a finite number of central
cones, which is proved in Theorem 1 in s1.

After this we shall study the properties of j precisely.

First of all with a stable curve C we associate a (dual) graph whose
vertices are the irreducible components of C and whose edges are the
double points of C (4.4). We call C planar if the graph associated
with C can be written in the plane. Those points in Sg corresponding
to planar stable curves are mapped by j into '"good" points in §g* ;
especially the singularity in §g* of each image point is at most quotient
singularity (Theorem 5 in §7).

Secondly denoting by Ug those points in Sg which correspond to
irreducible stable curves, we shall study j on Ug. Let C be an
irreducible stable curve. Then the generalized Ja;obian variety J(C) of
C 1is a group eitension of the Jacobian variety J(C) of the normalization

C of C by a product of some copies of the multiplicative group C*. We



note that the extension class of J(C) 1is explicitly determined by C
(Theorem 6 in §8]; With the help 6f this théOrem we prove that j is
injective on Ug (Theorem 7); which gives a natural eitension of Torelli's
theorem.

Finally we prove that in casé of g =2 the canonical map j is an
isomorphism (Theorem 8 in §9). This fact plays an essential role in the
study of degenerated fibres in families of curves of genus two by Ueno and
the author ([15]).

This article is divided into 9 sections. The first three sections are
preliminary. In Section 1 we recall the notions of fundamental cones and
central cones in the theory of positive symmetric métrices due to Igusa [8]
and we prove Theorem 1. In Section 2 we recall Satake compactifications
and introduce the Igusa monoidal transforms with Igusa's fundamental results
in [8]. In Section 3 we make a brief summary on the theory of stable curves
due to Deligne and Mumford ([4]).

There is a universal family o : Zg+ Hg of stable curves which is smooth
outside a divisor D in Hg with only normal crossings (3.3). By corresponding
k in Hg - D to the period matrices of m’l(k) in Sg’ we obtain a
multiple-valued holomorphic function T = Tm : Hg -‘D > Sg,'which is called
the period map (of o). In Section 4 we introduce this period map and after
making a precise study on the homology group of stable curves we study the

behaviour of the period map T near the discriminant D (Proposition 5



and Theorem 2). This result is the foundation of the main theorems in this
article,

The rest of this article is devoted to the proof of the main theorems
mentioned before.

The author would like to eipress his hearty thanks to his best friend
Dr. Kenji Ueno; whose incessant encouragement and advices were indispensable

to this work.
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§g°(n) : the set of those points in gg*(n) which are limits of points in
S *(n) with normal coordinates bounded above (2.5).
Sp(g, R) : the symplectic group of degree g with coefficients in R (2.1).
T = Tm : Hg° > Sg : the period map associated with wo (4.2).

T" : S > Sg : the period map associated with a family = : X - S ((4.2) Def. 8).
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curves (8.0).

Yg+’ Y+ : the set of positive integral matrices (1.1).
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Yg , Y : the set of non-negative integral matrices (1.1).
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Y : the set of positive half-integer matrices o with Cc° # ¢ (1.5).

Y , Y : the set of positive real matrices (1.1).

: the set of non-negative real matrices (1.1).

Z : the ring of integers,

z*: the set of positive integers,

rg(n) = Ker (Sp(g, Z) -» Sp(g, Z/nZ)) : the principal congruence subgroup (2.1).
W), ).

w:Z - Hg : the universal family of tricanonical embedded stable curves (3.3).
% gé'*(n) > 5;*(n) : the Siegel operator (2.2).

W, . W

X/s

(e, B8) : the intersection number of o and B (4.1).

c : the dualizing sheaves (3.2).

1g : the identity matrix of degree g.
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§l1. Fundamental cones and central cones.
(1.1) Let Yg denote the set of symmetric matrices of degree g, which
) + +
is a vector space of dimension N = g(g + 1)/2. Let- Yg (or simply Y
if no confusion occurs) denote the set of positive symmetric matrices of
+ L3 13 > vy +
degree g. Then Yg is an open convex cone in Yg and its closure Yg
is the set of non-negative symmetric matrices of degree g. We write y > 0
. . + . . . o+
if y 1is an element of Y ; we write y >0 if y is an element of Y .

On Y there is a non-degenerate bilinear from defined by

(1.1.1) Y xY — R
g g
w w
o*, ¥) tr(y*y)

+
where tr( ) denotes the trace function. With this bilinear form Yg is
the dual cone of itself,

In Yg the set Yg of all integral matrices forms a lattice. Denote
+ — +

Y Y by Y  (orsimply Y),and Y nY by Y & (or simply Y
] T S1m an n or S1m
ey Y g i ’ e g Vg Py

respectively. Note that we can choose a system of generators of Yg in

- +

Yg . Then the dual lattice Yg** i.e. the set of matrices with tr(oy) ¢ Z

for all y in Yg is nothing but the set of half-integer symmetric

matrices, i.e. o = (0,,) with o,, ¢ Z and 20,, ¢ Z for 1<1i, j<g.
ij ii ij

The set Y * = Y ** h Yg+ of positive half-integer matrices o is the set

+ +
of matrices ¢ with tr(oy) ¢ Z for all y in Yg .

(1.2) The group GL(g, R) acts continuously on Yg as
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w w

t
(u, y) —> uey=uyu
+
and this action keeps Y stable and is transitive on Y+.
+

The discontinuous subgroup GL(g, Z) of GL(g, R) acts on Y , The
reduction theory asserts that the action of GL(g, Z) on Y is properly
discontinuous and there is a normal fundamental domain with respect to this
action.

Following Igusa [8] we shall not consider the fundamental domain itself
but a fundamental set F such that GL(g, Z)-F = Y+ and the set {u ¢ GL(g, Z) ;
u-F n F # ¢} is a finite set, or equivalently to say, F is covered with a
finite number of fundamental domains.

Definition 1. Choose an element ¢ of Y+ and fix it. Let f; be

by . .
the set of elements y of Y satisfying
t

(1.2.2) tr(ouy u) - tr(oy) =2 0

for all u in GL(g, 2Z). We call this f; the fundamental cone associated

*

with c.) Also denote E; n ol by Fo‘ The E; and FO have the following

properties :

. 3 ) . *
i) FO is a closed convex cone in Y

i) GL(g, 2)F =Y ;

*) This E; was introduced by Venkov [26], Koecher [12] and independently

by Igusa [8].
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144) {u e OL(g, 2) s u-F " F 4 ¢} = {ucOl(g, 1) ; Cusu = g}
where F° denotes the set of interior poiﬁt; of F; We denote the above
subgroup of GL(g, Z) by IC?) ;

iv) ([12]) if moreover d is a half-integer matrik, then for only a
finite number of u in GL(g; Z) we have qua n Fc # ¢. The boundary

of F consists of a finite number of '"thin'" convex cones. Hence F is
o} o

covered with a finite number of fundamental domains.

(1.3). In the following we shall consider a special fundamental cone.

Let o be the half-integer matrix

(1 1/2 e 1/2)

172 1 e 172
1.3.1) g = . .

-} . L]
* [

L1/2 172 e 1

/

We denote F (resp. F0 ) simply by F (resp. F ).
g -] -]

Denote by Vg the real vector space of column vectors with g coefficients,

Take a column vector x with coefficients Xps ttt xg. If we introduce

a column vector x with coefficients x_, ¢+ , xg, X

1 = - (xp et Xg),

g+l

then we have an imbedding i :V -+>V whose image is the subspace V !
g g g+l g

defined by the equation

x1 + x2 + eee ¢ xg+1 =0,

Let y = (yij) be a point of Yg. Introduce a new matrix y in Yg+1

with coefficients yij’ 1<1i, j £ g+l where additional g+l coefficients

\



are determined by the equations
g+l o .
(1.3.2) I Y.. =20, i=1,2, «0s, g+l.
j=1 7

The correspondence y >y can be e;tended to a linear map Yg +>Y . With

g+l

(1.3.2) y is uniquely determined by its N % g(g+1)/2 coefficients yij

for 1 <i < j < g+tl. It is clear that by these N coefficients y is

also determined. Arranging these coordinates lekicographically we call them

normal coordinates of y. Also we call y the matrix associated with y.
Let ™ be the symmetric group of permutations of the set {1, s+« , n},

There is a canonical representation ¢ + GL(g+l, Z) defined by sending

g+l
p=(>pW) to up) = @E),;) with u@), =1 if {, 3§ = @, p@)

and 0 otherwise. Clearly this matrix ﬁtp} preserves Vg' above, hence

it induces a matrik u(p) in GL(g, Z) through ig. Then we have a

representation
'n’g+1 E—— GLCgs Z)
'Y w
P — u@.
This representation being injective, we identify =« with its image in

g+l
GL(g, Z). Then we have

Lemma 1 ([8]). I(co) = wg+1 u (- ﬂé+1).

1.4). Next we shall introduce another type of closed cone. To define

this cone and investigate it we must introduce a few more notations.

13
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Let y be an element of §+_; Xg_ “and put

u@) = inf  tr(oy),
g € Yg*

]

and
M) = (o € Y * 5 tr(oy) = u()}.
Lemma 2, i) For a positive real number A we have
pOY) = 2ly) and MOy) = M(y).
ii) For every element u of GL(g, Z) we have
Wy W) = u(y) and Mewy'w) = “wieu.
iii) For Yy, y' ¢ ?* we have
M(y) 0 M(y') e MOy + uy")
where A and ﬁ are positive real numbers.
iv) Q(y) is upper-semicontinuous.
The proof is clear.
Lemma 3. Suppose y is contained in Y. Then we have
i) the sét of values tr(oy) with o ¢ Yg* is a discrete set in R+,
especially we have ﬁ(y) >0 ;
ii) M(y) # ¢ and it is a finite set R
iii) ghere is a neighbourhood U of vy ;uch that for any element of
x of U we have M(x) M(y).
Proof. i) It is sufficient to prove that for any number N only a
finite number of o's in Yg* satisfy the inequality

(1.4.1) tr(oy) < N.
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On the other hand for a sufficiently small positive number ¢ we have
Yy 2 alg where lg denotes'the'idenfity ﬁatrik in Yg (for example, ¢ = the
least eigenvalue of y). Then if & satigfieé (1.4.11; we have

N > tr(&y;) z tr(é(slg)‘) = etrd'..
Since 6 is positive definite; there are only a finite number of such o's.

ii) This is clear from the proof of i).

iii) In the same way as in the proof of i) we see that for any compact
set K in Y+ and any real number N, only a finite number of o's in Y*
satisfy the inequality

tr(qi) < N
for an x in K.

Let ﬁ(y) + ¢ be the smallest value of tr(&y) but ﬁ(y). Take a
neighbourhood V of y whose closure V is compact and contained in Y,
Then by the remark above for only a finite number of ci's, i=1, 0o | p,
in Yg* there is an element i in V with tr(aik) <‘u(y) + €, Especially
M(y) is contained in '{cl,~--, dr}, so assume for example M) =’{cl,-°', ok}.
Hence for j 2 k+1 we have

SICROEMORNES
By continuity of the function tr(gj.) there is a neighbourhood W of y
contained in V such that for all x in W and for all j = k+1;

tr(cjx) > ﬁ(y] ; %~e;

By the uppersemicontinuity of ﬂ(y) also there is a neighbourhood W' of vy
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such that for all x in W' we have
WG < U+ re.
Hence if we put U = Wn W'; then for any point x in U we have
26,0 2 w0 * 7> 1)
for j = k+1 and |
tr(ox) = u(y) *+ e > u(x)
for any o # oj G =1, « ; r). That is;
M(x) < M(y). q.e.d.

Lemma 4. Put

Y ¥ = {y e Y.+ sy = [0 0 T where y' ¢ Y t}

g,8' g Q0 Yy g
and
o 4 +
Y = vu Y .
g gysg g’g
Then for each point y = (0 0'} of Y we have :
0 ¥y g

+ + :
i) the set of values tr(cy) with o ¢ Yg is a discrete set in R ;

ii) uly) =u(y") >0 if y #0 ;

(* * 1

| 50" e MyNY # ¢ ;

1) M) = (o= |, )]

iv) there is a neighbourhood U of y such that M(x) < M(y) for
all x in U kwith X 2Y.

Proof. The claims i), ii) and iii} are clear from the fact that for

each = [ , with y' ¢ Y and o =
AT Y'} g'

* * 1 +
'I with o'e Y .
g ) g

*

o ———

we have



tr(oy) = tr(o'y").

iv) Let ﬁ(y) + ¢ be the smalleﬁt value of tr(gy] but ﬁ(yl. Since
ﬁ(y) is uppersemicontinuous; there is a neiéhbourhood U of y for any
element x of which

WG <) * e
Hence if moreover i é y; for any o « M(x)

tr(oy) < trloy) + tr(o(x-y))

= tr(ox)
= u(x)
cu) *e.
which implies
tr(oy) = u(y).
That is,
; o e M(y). q.e.d.

Definition 2. Let o be an element of Yg*. We call the closed convex
) - —
cone defined as C0 ={yeY ;o e M)} the central cone of o. Also
- .
denote C nY by C._.
o g
+
By Lemma 3 ii) Y is covered with central cones. There arises naturally
the problem whether the fundamental domain is covered with a finite number
of central cones. It is the main object in this section to answer this
question affirmatively.

Remark. In general ﬁ(y) =0 and M(y) = ¢ for y in the boundary

17



18

!

' 1 -/2
- Y+. For example you can see easily that for y = [ /T /;] it holds
(. J

that y(y) = 0. It seems to me that if the set of values tr(gy) is discrete
(hence u(y) > 0 and M(y) # ¢), then y is conjugate to a point in ?+.
This subject also seems to have a relation to 'rational boundary components'
in the sense of Baily and Borel ([2]).

(1.5) First of all we shall note some elementary properties of the
central cones,

Lemha 5. 1) Let Yg° be the subset of g's with Cc° # ¢. Then
Y is covered with Co's with ¢ € Yg°. We call such CG a non-degenerate
central cone. |

ii) Let o be an element of Yg°. For a point y in 'Cd, M(y) = {0}
if and only if y ¢ Cc°.

iii) Let o be an element of Yg° and put Nc = {1 ¢ Yg° H Co n CT # o).
Then we have

Cd = {y ¢ Y+ ; tr(ty) 2 tr(oy) for all rt ¢ No}.

Proof. i) The claim is clear by Baire's theorem.

ii) By Lemma 3 iii) the set Yc of elements y with M(y) = {0} is
open, hence Yo c C°°. ‘

Conversely suppose that y is contained in CC°. Note that ﬁ(i) = tr{ox)
on Cc’ which is a linear function. Hence if o' satisfies the equality

ﬂ(y) = tr(o'y), we have tr(o'x) = tr(ox) = ﬁ(k) on a neighbourhood U of

y, since tr(o'x) > tr(ox) on U. Therefore o' = 0.
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iii) It is eviden; that
Cc c {y e.Y'+ 3 tr(le > tr(qfl for all f ¢ N&}.
We shall prove the converse by reductio ad absurdﬁm: Let y be an element
of Y with tr({y) é tr(oy) for all_ % € No which is not contained in

C . Take an element x of Cc°. Then we have two inequalities :
g

tr(oy) s tr(zy)

tr(ox) < tr(ri).
Since the segment ;;' is not contained in Co by assumption, on it there
is a point z in the boundary of Co’ hence at least an element <t of Nc

is contained in M(z). This implies tr(oz) = tr(fz), but this is impossible

by the above inequalities. q.e.d.
, .
(1.6) Let a5, 0, A be n elements in Yg . We call D(al, LN an)
. + .
= {i Aiai 5 Ai e R and Zki = 1} the simplex generated by a5, *tt A
. : + ’
we call C(al, ves an) = {F Aiai H Ai eR}= 1y +J\D(al, ves an) the
1 AeR
cone generated by al, LI an.

If all ai's are in §;+, we say C(al, see an) to be integral.

Our main theorem in §1 is the following.

Theorem 1. Let 25, 't , 8 be n integral non-negative matrices of
degree g, and let C(al, see an) be the integral cone generated by them.
Then C(al, ves an) is covered with a finite nuhber of non-degenerate

central cones,

’ +
Clearly we have only to prove that C(al, vee an) nY 1is covered
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with a finite number of central cones.

The redﬁction theorj assert; that the fundamental domain in Yéf with
respect to GL(g, Z) 1is a finite union of integral cones (g}g. éf. [11]).
Hence we have :

Corollary 1. A finite union of fundamental domains in Y ¥ with respect
to GL(g; Z) 1is covered with a finite number of non-degenerate central
cones. Especially the fundamental cone associated with a half-integer
matri% is covered with them,

Corollary 2. For a half-integer positive matrix o the central cone
C0 is a finite union of integral cones and has only a finite number of
neighbouring non-degenerate central cones.

Proof. 1If we prove the finiteness of the number of neighbouring
non-degenerate central cones, then the other statements are clear from the
definition and Lemma 5 iii). On the other hand let S be the set of
non-degenerate central cones which cover the union of Fo and its neighbouring
fundamental cones, Then S 1is a finite set by Corollary 1. Since Co is
contained in Fo’ every neighbouring central cone of Cc belongs to S,
which proves the assertion. q.e.d.

To state the mext corollary we shall introduce a stratification of Y+.
For a finite subset M in Yg* we define the strétum YM associated with
M as the set of points y in Y+ with M(y) = M. By virtue of Lemma 3

. -
ii) and iii) these strata cover Y and are locally finite.
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It is also easy to see that each stratum is locally an integral cone
and on it y(y) is a linear function. Hence as the similar way as the
proof of Lemma 5 ii) we have

Lemma 6. If we consider the stratification each stratum of which is

+ o °
the set of points y in Y with M(y) n Yé =M for a finite subset M
in Ygo, then this stratification coincides with the one defined above.
+
That is, for each point y in Y the set M(y) is determined by M(y)n Ygo.

Hence together with Theorem 1 and Corollary 2 we have

Corollary 3. i) Every integral cone is covered with a finite strata.
(Note that every integral cone is contained in the interior of a larger
R . +
integral cone in Y .)

ii) Each stratum is a finite union of integral cones.

iii) If ?'M > Yy, then M < N.

iv) Y = na oCo

ceMnY

(1.7) Now let us prove Theorem 1.

First of all we shall reduce the theorem to the case of a special type
of cones.

Definition 3. A cone C(al, LN an) is called regular if

a1 > 0, a1 > a, 2 et 2 an > 0.

For any cone C(al, ses an) using the barycentric subdivision of

D(al, L N an), we have

Lemma 7 ([11] §4). Put S ='{a:_L *eerva T 0}. Then C(al, see, an)
1 T
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is a union of a finite number of regular cones whose generators are in S.

Lemma 8 ([11] s§11). tet' C(él, oo anl be a regular integral cone.

Then there is a matrix u in GL(g, Z) with uC(al, tee an]tu < ?g+’ ot

equivalently, uaitu e ¥ for all i, where ?é+ ' is defined in (1.4).

n
—

Proof. We shall prove this léemma by induction of g. In case of g
there is nothing to prove. Suppose that the claim is true for any g' < g.

Let k be the minimum of i with det a, = 0. Then for any i < k we have

a, > 0. Now take an element u of GL(g, Z) such that ulaktu1 = lg gk']

with bk € Yg'+ (g' < g). Since ulaitu1 > ul?jtul for any k=21i > j,
0 0. }
0 b;']

it follows that u a_tu = ( with b ! ¢ ?-+, and b '=>D) w2 b 1,
11 1 4 1 g

>
k k+1 ~

* ¢ fo o
Hence by assumption there is an element u_, of GL(g', Z) with ub,'u = [ ' 1
) -2 2i 2 0 bi)
1 0t

-g! .
bi > 0. If weput u = | "e-e up, it satisfies the desired condition.
0 u
\ 2)

>

q.e.d.
Secondly we note the following.
Lemma 9. Let C(al, see | an) be a cone in ?g+. For any point vy
in D(al, eee an) there is a neighbourhood U of y with M(x) < M(y)
for all x in Un D(al, e an).

Proof. We may assume that al, see an are irredundant, i.e. D(al, vee |
A
a

1 . A ce
i ves an) ; D(al, see an) for any i where D(al, , 3., , an)

1

is the cone generated by ‘{al,~-°, an} —‘{éi}. Assume that

= T
y = A,



with . > 0. We may further assume that Ay > 0 for i< k and Ay < 0
for i > k., Then we have

. ‘ A ..

D(a,, ¢+ , a) =y D(y, a ,,*** , a,, *s¢ , a].
1 g e 1

_ 1<jsk

Hence we may assume Yy = al.

The set D_ = {i = Zi.a. 3 A, > 1/2} is a neighbourhood of a_, in
0 —id 1 } 1

D(al, ces an). Put D1 = D(al, a_ +a_, *** , a_ + an). Then the map

1 2 1
p:Dl V4 DO
w . w
z = llal + iizli(al + ai) —_— a/(Z-AI)

is a homeomorphism. Further we have

M(z) = M(p(z))
and

z 2 a1 for all z in Dl'

By Lemma 4 iv) there is a neighbourhood V of a1 in D1 for any element

z of which M(z) c M(al). Hence U = p(V) 1is a neighbourhood of a1 in

D(al, cee an) for any element x of which M(k) c M(al). q.e.d.
Proof of theorem 1.
By virtue of Lemmas 7 and 8 we have only to prove the theorem for regular
integral cones contained in §g+° (See also Lemma 2 ii).) Moreover since
M(y) 1is invariant under scalar multiplication (Lemma 2 i}), it is sufficient

to prove that the simplex D(al, cee an) is covered with a finite number

of nondegenerate central cones.
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We shall prove it by induction on g. 1In case of g =1 the theorem
holds trivially. Hence we suppose that g > 1 and the theorem is true for
all g' < g.

Let C(al, cae an) be the regular integral cone cgnsidered.

Let k be the maximum of i with det a, > 0. Then we shall prove the
theorem by descending induction on k. It is easily seen that we may assume
that n is equal to g(g+l)/2 and the generators a,, **+ , a are
linearly independent (i.e. the cone is non-degenerate and its generators are
irredundant).

Suppose that k = n. Then D(al, vee an) is compact and contained

+
in Y . Hence the claim is true for k = n by virtue of Lemma 3 ii) and iii).

Now suppose the claim is true for any k' > k., By assumption we have

f0 0 } +
a . = | b . eY (g' < 2
k+1 {0 bk+1) ? k+1 g’
and for j > k
0 0 ] . + - 4+
a, = [ b, e Y ny
i 0 bj) j g' g'’
hence
* +
D(bk+1’ , bn) c Yg‘ .
By the assumption of induction D(bk+1’ ses, bn) is covered with a finite
number of non-degenerate central cones. Further by Corollary 3, D(bk+1,---, bn)
n .
1) (1) (1) (i)
c ing(ck+1 s s cn ) such that for each D(ck+1 s s cn )
an open dense subset of it is contained in a stratum YM(i).
By this remark we may assume that an open dense subset of D(b see . b))

k+1’ n
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+

is contained in a stratum YM' in Yg' .

Put D0 = D(ak+1, ces an) and D1 = D(gl, f'f ,'akl.

(We identify y' in Y . with (0‘ 0 T

Take a point x in D0 n YM g 0 vy

in Yg+') and fix it. By Lemma 9 there is a neighbourhood U of i‘ in
§;+ n D(al, ver an] such that for any z in U we have M(z) ¢ M(;).
Therefore for a sufficiently small positive real number A the simplei

: B . . 3 . 13 . + .
D <" (1 - A)x +# D, is contained in U. As it is contained in Y, it

1, 1

is covered with a finite number of non-degenerate central cones C , «s» , C .
By the assumption and by Lemmas 2 iii) and 4 iii) we have |

C uyeseyC o>5D'= ﬁD + (1 - y)D..
% % Osps<l X 0
On the other hand the intersection of ?é, and the closﬁre D" of

D(al’ cee an) - D' is nothing but the boundary of D Hence D" is

0
covered with a finite number of simplexes with k' > k, so the claim is true
for D" by the assumption of induction on k.

Hence D = D' y D" is covere& with a finite number of central cones.
Thus the theorem was proved.

(1.7) We shall close this section with a few remarks and problems.

Igusa proved that Co.‘ = Fo if g =2, and 3. This Cq was also

° ° °

introduced by Voronoi ([27]) with the name "principal cone'. It can be
eipressed eiplicitly as the set of matrices whose normal coordinates (1.3)
are all non—positive;l We shall denote C& 'simply by C;;' In case of

-]

g = 4 when one uses Igusa's result ([8] Lemma 5) he can prove that
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F <C uvu( v C_)
g g s C..
° ° 1si<jsS ij

where oij is defined as
tr(o;,7) = trloy) - vy,
for every y in Y4+. (Here yij is the Ci,j) component of the normal
coordinates of y (1.3).)
Now what is the most interesting is that the non-degenerate central
cones seem to coincide with the type I cones due to Voronoi ([27]) and
Koecher ([11]). The latter is defined as follows. Let v be an element

of Yg+ such that the minimum of values tgvg for g e z8

is equal to 1

t . . t ,
and that g'g with such integral vectors g as gvg = 1 generate
non-degenerate cone CV in §;+. Such Cv is called the tfpe 1 cone
associated with v. Koecher proved that all coefficients of v are rational
numbers ([11] p.405). If one can show that v is in fact a half-integer

matrix, the conjecture above is true. By the observation above the conjecture

is true for g < 4.
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§2. Satake compactifications and Igusa monoidal transforms

In this section we make a review on Satake compactifications gnd their
monoidal transforms along the boundary which were introduced by Igusa [8].
For details we omitted to prove here we refer the reader to [8].

(2.1) Denote by Sg the set of symmetric matrices of degree g with
complei coefficients whose imaginary parts are positive definite. This Sg
is called the Siegel upper-half plane of degree g. On it acts the symplectic
group Sp(g, Z) as T > M-{ = (At + B)(Cf + D)"1 for M = [é g} in
Sp(g, Z). Let Fg(n) be the kernel of the natural homomorphism
Sp(g, 2Z) + Sp(g, Z/nZ), which is called the principal congruence subgroup
of level n. This group rg(n) acts on Sg properly discontinuously ([25]).
Further if n 1is greater than 2, the action is free. Hence the quotient
space Sg*(n) = Fg(n)ksg admits a canonical structure of a normal analytic
space and if n 2 3 it is even non-singular. We write simply Sg* for
Sg*(l).

(2.2) Let A(Fg(n))k be the vector space of Siegel modular forms of
weight k, that is, holomorphic functions ¢ on Sg such that $(M-1)
= det(Ct + D)kw(f) for every M in Pg(n). Then the projective variety

S () = Proj(e A ())
g k20 k
contains Sg*(n) as a Zariski open subset,

Definition 4. The projective aigebraic variety 5;*(n) is called the

Satake compactification of Sg*(nl (cf. [19], [20]).
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The boundary Bg(n) = gg*(n) - Sg*(n) is a disjoint union of a finite

number of copies of Sg'*(n) with g' < g. This inclusion is defined by the

so-called Siegel operator ¢. Put g'" =g - g' and write an element <
of S as
g
t
(2.2.1) T = [tr : ]
e T

where ¢ is a g' x g" matrix. Then for every ¢ in A(I‘g(n))k we define
o(y) as

(2.2.2) o(y) (') = lim L v,

Im " »
and then ¢(y) belongs to A(Fg'(n))k' Hence ¢ gives a homomorphism :
A(rg(n)) > A(rg'(n)) of graded rihgs, which is surjectivé up to a finite
number of weights. This homomorphism ¢ defines, therefore; an embedding
a* 5;*(n) - _;,*(n) and.the image of Sg'*(n) by ¢* 1is a locally closed
algebraic subset in §é*(n). On 5;*(n) the group Sp(g, Z/nZ) acts and
this group transforms the image of Sg'*(n) by & to its conjugates, and
theseAconjugates with g' < g fofms the boundary Bg(n). In particular if
n=1, 5;* = §;*(1) is a union of Sg'* with g' < g.

(2.3) A system of fundamental neighbourhoods of the image ¢*(t') of
a point t' in Sg,*(n) is given as follows.

Fii a fundamental domain Fg(n) of Pg&n) in- Sg such that for all
L ] e F (n) form a

" g

g )
(For example take the

(
g' < g those elements ' in Sg' with < = lt
\
fundamental domain F (n) of T (n) in S .
: g g g

Siegel fundamental domain.) Take a neighbourhood U of t' and a positive
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RO

number K. We define (U, K) with g' <k <sg as

: '
(2.3.1) V(k)(U, K) = {t = { T 5 ] mod.rk(n) € Sk* ;
t 1"
L& Ty
T ¢ Fk(n), r'mod.Fg,(n) e U and Imt" > Klk-g'}’
and V(U, K) as U ¢*k(V(k)(U, K)). Then these sets V(U, K) form a

g'<ks<g _
system of fundamental neighbourhoods of ¢*(t') in Sg*(n) when U runs

over a system of fundamental neighbourhood of t' in Sg'*(n) and K runs
over the positive integers ([19] Th.1).

(2.4) Take a point r; in S _, and consider its image in §;*(n) by
¢* which we denote by t'. Then the analytic local ring. Ot, of g;*(n)
at t' consists of the so-called Fourier-Jacobi series. More precisely
Igusa proved the folloQing theorem ([8], Th.l and supplement).

Before the statement of the theorem we.shall introduce some preliminary
notations. Let ?;* be the set of non-negative half-integer matrices and
GL(g, Z)(n) be the kernel of the canonical homomorphism : GL(g, Z) - GL(g, Z/nZ).
Then GL(g, Z)(n) acts on ?;* as 0 » tuGu for u e GL(g, Z)(n). Denote
exp(21/-1 ()) by e().

Theorem. i) The analytic local ring Ot'

of g;*(n) at t' consists

of convergent power series of the form

1 .
(2.4.1) f[tT ¢ ] = DH (', g, T
L& ™) o
where
t
(2.4.2) H (<!, g, ©) = 2o_(x', ctuye(1/n) tr( tuour) .
u

Here the summation in (2.4.1) is taken over a set of representatives of
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Y;:/GL[g", Z)(n) and the summation in (2.4.2) is taken over all distinc?
twu for u in GL(g", zj (n). And every éq@!, ;) is holomorphic in
UxZ for an open neighbourhood U of f; in Sg' and the'vect&r space
Z of g' x g" matrices. Further eG(:', c)‘ satisfies the following
functional equations :
2.4.3) I +xtmoen) =8 (1, Q)e(-(1/mtr(e@ms + mr'm))
where m and n are g' x g" integral matrices ;
(2.4.4) eo(w.r'; ticrrr + o1yl

= 6_(+1, De((/mtr(s T C'T + DN CE)
1)

(At ' .
where M!' = [A' | e Splg', Z)(n) and M'et' = 1",
(C' DYy

ii) The ideal It' in Ot' which defines the boundary Bg*(n) consists
of such series gﬂa(f'; Z, f") that o is (strictly) positive definite.
(2.5) In [8] Igusa introduced the monoidal transform §g*(n) of g;*(ﬁ)
along the boundary Bg(n) and studied its singularity. We shall use the
notations in Section 1 freely.
| Denote'by p (or p more precicely) the canonical morphism from
§g*(n) to 5;*(n). Then the singular locus of §g*(n) is given as follows.
Theorem ([8] Section 3). Here we suppose that n > 3,
i) Let t be a point in §g*(n) and t = p(t) in §;*(n). Then t

is a simple point if t is contained in Sg*(n] or t is a conjugate of

. .
‘@ i OO

. . x)
a limit of points - =
P T \tC (k) {' , (x)

mod.Fg(n] such that Imt" > ®

J
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and the normal cdo;dinates (1.3) of Imr"(k) are bounded aboye, i.e. the
distance of Imr"(k) and the principal cone C: is bounded (cf. (1.7)).
-]
. S , |
ii) Let t be a limit of points r(k) = ‘ Tl(k) C(k) I>m6dlr (n)
d (5,00 0] e

(k)

witﬁ Imt" » © and the normal coordinates of Imr"ck] bounded above.

Further taking a subsequence if necessary, we may assume that there exist

(x) ’ E = limk_w,c(k) and éij = ]_imk*me((‘l/n) (_’En

(k)
i3

&) 4y,

» 3 ." - » "
the limits = llmk+mt ij

lci<cj<g" # 1, (where é" is the (i; j) -component of the normal
coordinates of T"(k)). Put Eij = e((l/n)(-t"ij)). Then a system of local
coordinates of §g*(n) at t is given by
(' =T, 0 -F, £ -8,
iii) The prbjection of the singular locus of §g*(n) to 5;*(n) is

precisely the union of all conjugates of the image of 5; 4*(n) by the

Siegel operator. In particular ég*(n) is non-singular if g < 3,

We shall denote by §g°(n) the set of points in §g*(n) satisfying the
assumption in the above theorem i).

(2.6) We do not know even whether S *(n) 4is normal. (It is affirmative
. . T T+S s
if the equality (I(n) : I(n) ) = I(n)  does hold.) Hence we shall
consider the normalization §g*(n) of §g(n).

Definition 5. We call §g*(n1 the Igusa monoidal transform of gé*(n)
or the Igusa compactification of Sg*(n].

In case of n =1 we write simply S * for § *(1).
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(2.7) In the following we study.the rela;iqn betwegn ég*(pl and
58*(mn) to show that Sg*(n) is iéémbrphic to (r(gl/r(m;ll\ég*(mﬁ). We
shall begin with a study of Satake compactifications.

We took a note before that the finite éroup Sp(g; Z/né) = Sp(g; Z)/t(n)
acts on g;*Cﬁ) complei;analytically (and even algebraically). Further we
have :

Proposition 1. i) For each n, m 2 1, there is a canonical morphism
bl :S *(m) > S *(n).
n, mn g g

ii) There is an isomorphism y_ (r(n)/r(mn))\Eg*cmn) > §g*(n)

)

which satisfies the following commutative diagram ;

| - V Sg ™)
@.7.1) Sg*(mn) \ I ¥n, m
, crcn)/rcmn))\é'g*cmn).

In particular ¢ is a finite morphism.
n, mn

Proof. The existence of these morphisms is clear and it is easy to show

that ?; - is a finite morphism. To see wn N to be isomorphic we have
s

]

only to use the Zariski main theorem since all varieties are normal.
Note that the sheaf I(mn) of ideals of cusp forms on §Q*Cmn) is

stable under the action by T(n)/T(mn). Moreover through wn - we obtain
. 3

an isomorphism :

¢ r/rem) 3o

e (1G00)

Then we have :
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Proposition 2. i) For each m,n 2 1, there is a canonical morphism

9' :§ *(mn) » S *(n) which satlsfles the following commutatiye diagram :
n,mn g g f .

*(mn)- ___l}_’_@___) gg* (n)

§v
. g
§é*(mn1 ;_;Jlﬂﬁl;_, g;*cnl.

ii) the group Sp(g, Z/nZ) acts on §g*(n1 and the action is compatible
with . S *(n) - §'*(n);
Pt S, ) g
. 8 o - . L - ‘~* .'*
iii) There is an isomorphism wn,mn : Sg (mn)/(r(n)/r(mn)) > Sg (n)

which satisfies the following commutative diagrams :

/ > *(n)
2.7.3) ” *(mn) \‘ I mamn
(F(n)/F(mn))\S *(mn) ;

‘n,mn

(I‘(n)/I‘(mn))\S *(mn) > §g*(n)
(2.7.4) B l w | l B
(r(n)/r(mn))\s”g*(mn)"" nm 's’g*(n).

Proof. i) By the remark above we obtain a 9; mn*-homomorphism of
H

sheaves of algebras :

A ko k
2.7.5) fh mn*‘: ® I(n) — @ I(mn)
? k=20 k20
* . A _ A ,
where q;qmn : Osg*(n) -+ OSg*(mn) is induced from qh,mn'

This homomorphism induces canonically a rational map
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~

_?n m Proj( @ I(mn)_k) — Proj( @ I(nlkl
’ k=2Q ' k=Q

and further éh m is a morphism in fact by the remark just before Proposition 2.
3 .

(We have only to use the fact that the support of ?; mn*(I(n]) is the same
. . ]

as that of I(mn).) Then it can be lifted canonically to a morphism :

p 1§ *mn) —— § *(n).
Vn’m g( 8()
ii) Clear from the remark above.
s & o . -~ » id- d *- Y hc 2' , s .ti
iii) Since gh,mn is induced from g;,mn homomorp 1sm_(. 7.5), it is
an affine map ([6] II. 3.5.1). Moreover clearly it is also proper, hence
finite by virtue of Chevalley's theorem (ibid. III. 4.4.2). Therefore én
is also a finite morphism. Since §g*(n) and gé*(n) are birational, the

rational function field of §g*(mn) is a Galois extension of that of §g*(n)

by Proposition 1. Hence the conclusion follows. q.e.d.
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§3. Stable curves and their moduli spaces.

In this section we recall the'défiﬁition and fundamental p?operties of
stable curves due to Deligne and Mumford [4]. For the proof not éiven here
we refer the reader to their article aboﬁe: Althoﬁgh their ﬁethod is
algebraic, it is the same in the analytic catééory by virtue of the
representability of the Hilbert functor ([21] Eip; 16).

(3.1) Definition é. Let S be an analytic space. Let g = 2. We
call a morphism = : X > S a family of stable curves of genus g over S
if it satisfies the following conditions :

i} n is a proper and flat epimorphism whose fibres are reduced,
connected curves ;

ii) for each s ¢ S the fibre Xs =‘w_1(s) has only ordinary double
points as singularities ;

iii) if T 1is a non-singular rational component of XS, then T meets
the other components of XS' in more than two points ;

iv) dim Hl(x ,» 0, ) = g.

C s XS

If S is one point, X is called a stable curve.

(3.2) Since ‘is flat and its fibres are locally complete intersections,
™ i§ locally a complete intersection. Hence by fhe theory of duality of
coherent sheaves in the analytic category ([17]); we have the following
proposition and from it we infer the following theorem in the same way as

in [4].
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Proposition 3. Let g : X 5 S be a family of stable curves of genus

g over S. Then there is a canonical invertible sheaf wX/S on X such
that :
i} for all morphism f : T » S, Wy & T/T is canonically isomorphic to
S
£ 3 .

ii) if S 1is one point, let p : X > X be the normalization of X,

X

Pttt in, Yys ottt yn, the points of X such that the zi = f(xi) = f(yi),

1 <1i<n, are the double points of X. Then wX/S is the sheaf of meromorphic

l-forms n on X regular on X eicept for simple poles at the x's and
y's and with Res (n) + Res. (n) =0 ;
i Y3

iii) if S 1is one point, and F is a coherent sheaf on X, then

Homox(F, wX/S

).

14

HomC(chx, F), O

If S is one point, we denote w simply by w Note that if X

X/S X'

is a smooth curve, Wy is nothing but the usual sheaf of holomorphic one
forms on X.

Corollary. is a ldcally free OS-Module of rank g, where OS

«“x/s

denotes the sheaf of holomorphic functions on S. For each s € S there

. -1
are a neighbourhood U of S and g sections wis ttt wg in T(r (), wX/S

such that for each t in U the restrictions (wi]t, i=1, ¢+, g, of

wx );

w's to the fibre Xt = vnl(tl form a basis of T(X
t

t)

Proof. By the conditions i) and iii) of Proposition 3 we have

)
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0 0 o
H (X 2 H X ™ :
(Xes oy gl Y FH X0 ) ¥ Homy (0, 5wy ),
, s s X S s
. s
= HomC(H (Xs, 0x ). C).
s
Hence dimcﬂocxs, mX/SIX ) = g always. By the theorems of Grauert ([5]) the
s ) .
conclusion follows. q.e.d.

(3.3) To construct the moduli space of stable curves we shall make use
of Hilbert moduli space. The starting point is the following theorem.

Theorem. Let ¢ : X > S be a family of stable curves of genus g.

en

Then i
w X/S ) is a

en . .
X/s is relatively very ample if n> 3 and r_(w
locally free sheaf on S of rank (2n-1)(g-1).
Taking n = 3, we can realize any family of stable curves as a family
. 5g-6 . . .
of curves in P with Hilbert polynomial :

Pg(n) = (6n-1) (g-1).

Further there is an analytic subspace

P
: g
Hilb
Hg c Hil Psg-6
p
of all tricanonically embedded stable curves where Hilb gg 6 is the Hilbert
P

moduli space in pSg-6 with Hilbert polynomial Pg. Over Hg there is a
family ® : Zg > Hg of stable curves of genus g with a tricanonical

5g-6 which has the following universal properties :

embedding Z - H x P
g g ‘
(3.3.1) let m: XS be a family of stable curves of genus g with

546 -
the relative projective embedding i : X » P g6 S over S such that the
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inverse by i of the line bundle determined by the hyperplane of PSg'6 is

mx/sas. Then there exists a canonical holomorphic map f : § » Hg such

that X is isomorphic to S XH(Zg over S and the embeddings into PSg-G xS

8
are compatible with f. This f is uniquely determined by this property.
p
Note that by virtue of GAGA [22] Hilb gg 6 is the analytic space
P

as#ociated with the algebfaic Hilbert scheme.

On Hé acts thé reductive group PGL(5g-6). Since for every point
x € Hg the stabilizer of x ‘is finite, by the theorems of Sesh;dri [24]
we see that the quotient space Sg = Hg/PGL(Sg—6) eiists‘and it is quasi-
projective [9], [16]. In fact it is projective and it is a coarse moduli
space of stable curves of genus‘ g.

(3.4) On the structure of 3g and Zg, with the approiimation theorem
of Artin [1], we infer the following theorem after Deligne and Mumford ([4]
Th. 1.6).

Theorem. Hg is smooth and the discriminant of ® is reduced with only
normal crossings.

More precisely; let x bea point in H.g and C be the stable curve

4 Then there are a

in Zg lying over x with the double points Zy5 e, 2z

“ N . N
neighbourhood U of x in Hg which is isomorphic to an open set in C
with local coordinates (tl, see tN], and a neighbourhood Vi of zi in

Zg which is isomorphic to an analytic subset defined by the equation :



uv, -t, =290
ii i

: . N+2 | e : ' )
in an open set in C with local coordinates (pi, Vs t., **°, tNl' such

1’
that the structure morphism o : Vi + U 1is induced from the projection :

CN+2 o ‘ cN
v Ny ‘ e w )
(ui’ Vi’ tl’ e » tN) —_ﬁ Ctll e 1 tN)

through these isomorphisms.

.39
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§4. Periods of stable curves.

In this section we study the period map of the family o : Zg > Hg,
especially its behaviour near the points corresponding to singular stable
curves. For this purpose we shall study the.homology group of stable
curves and the monodromy of .

A) Period maps of families of smooth curves.

(4.1) Let Hg° be the biggest open subset of Hg over which o is
smooth, i.e. the complement of the discriminant D of ¢. Denote the inverse
image m-1(Hg°) by Zg°. For simplicity we write H° and Z° instead of
Hg° and Zg° in this section. As we have remarked before in (3.2), the

sheaf ¢ _o is the sheaf of germs of holomorphic relative one forms on Z°.

z°/u°
Then o : Z2° +H is a topological fibre bundle whose fibre is a compact
surface of genus g. Hence we have the following lemma.
Definition 7. Let C be a compact topological surface. A free basis

{al, s o Bys =0 s sg} of . Hl(C, Z) is called a canonical basis if

the intersection numbers of the a's and the g's are the following :

1 if i=j
(C!., B-) =
vt 0 if i#j,
(ai, aj) = (Bi) Bj) = 0 for 1’ J = 1, e g_

Lemma 10, For each point x in H° there exist a neighbourhood U

of H and 2g cycles a sev ag, 81, see Bg on m-l(U) such that

1’

for each y in U the restrictions (a.) , (8.) of o, and B, to the
_ 1y 1Y 1 )



fibre Cy = m-l(y) form a canonical basis of Hl(Cy’ Z).

(4.2) Let 7 : X > S be a smooth family of non-singular curves of
genus g and Sg the Siegel upper-half plane of degree g.

For eéch s ¢ S choose a neighbourhood U of s, g 1linearly independent
sections

-1
s ug of r(x "(U), wy S), and 2g cycles a,, s*¢ , a ,

/ 1’ g
. s -1
g8 oo Bg whose restrictions (ai)t, (sj)t to Xt = ¢ (t) for every

1,

t in U form a canonical basis of Hl(xt, Z). (This is possible by the
corollary of Proposition 3 and Lemma 10.)
Then we shall define T ‘on U by
™

T :y——mm"S5
: g

m™
w w .
-1
t— (w) YU (w,),)
(B )y &'t " (a) it
where (f(a.) ij)t), and (f(e ) (wz)t) are considered as square matrices
i't k't

of degree g.

Since Xt is non-singular and the (mi)t form a basis of the vector
space of holomorphic 1-forms on Xt’ Tﬂ(t) belongs to Sg by virtue of
Riemann's equality and inequality.

Definition 8. We call this multiple-valued map T : S > Sg the period
map of the family .

The matrix Qt = (lg, Tﬂ(t)) is usually calléd the period matrix of

Xt where 1g is the identity matrix of degree g. Also the matrix Tw(t)

itself is often called the period matrix of Xt' In this article we use
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mainly the latter terminology.
The multiple-valuedness of T comes from the freedom of choice of
T

canonical bases. In fact let (g, g) and (d', g') be two canonical bases.

If we express (a', g8') with (4, 8) 1in the form :

! =
J
-
then M = (A B} is contained in Sp(g, Z) where A = (A,)), B = (B,.)
“C D)l p g’ ij s ij ’

C-= (Cij) and D = (Dij) are ﬁatrices of degree g, and the value T!'
of T“(t) defined with (o', g') 1is eipressed with the value ‘T of T“(t)
defined with (o, B) as
T' = M.T = (AT + B)(CT + D)'l.
Hence values of TTT differ only by the action of Sp(g, Z) on Sg.

When we are given a family of stable curves ¢ : X + S which is smooth
over an open dense subset S°, there arises a problem on the behaviour of
the period map of 7 near S - s°. Sincevthe family o : Zg > H is
universal (3.3), we have‘only to study the period map T = Tm of w:2Z »H.

B) Homology group of stable curves.

(4.3) For later use we shall make a precise sfudy on the.homology group
of stable curves.

Let C be a stable curve with the double points Zys 0t s 2 Denote

dn

by f : C » C the normalization of C and by X,, *** , X

1 d) Yl: b yd



,n.' ’C

the points of. C with f(xilﬂ= f(Yil =z l1<is<d. Let C1 ‘ -

(resp. El’ ves arl be the irreducible components of C (resp. C) where
corresponds to Ej for each j. The genus g' of C is the sum of the
genus g, of éj’ 1<jsr.

For each Cj choose a canonical basis a§+1, cee a3+g5, 83+1,

8~ i= g of the first homolo roup H 5.. Z) of C,. Then
j+g. G " .gk) g7 group 1C i’ ) J
J <] .
, v r o
= @
H1(C, Z) j-ll—{l(Cj, Z)

and the whole a's and g's form a canonical basis of Hl(é, 2)
(4.4) To study H1(C, Z) we shall associate a graph T with C as

follows (cf. [4])
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C.
J

>

i) the set of vertices of T 1is the set TV of irreducible components

of C ;

ii) the set of edges of T 1is the set Fe of the double points of

C;

iii) the extremities of an edge 2, € Fe are the irreducible components

on which 24 lies.
This graph is connected by the condition i) in Definition 6.

Then we have :

Lemma 11. The first homology group Hl(F, Z) of T 1is a free abelian

group of rank d - r + 1. Further we can choose a free basis Yoo Tt Y

such that

d-r+l

i) if z, € re has only one extremity, then zi is one of v's (with

1



orientation) and no other vy than z, passes through 2; 3
ii) if we assume moreover that the graph T can be embedded into the
sphere 52 (or equivalently into the Euclidian plane Rz), then for each

zi € Fe, a) there is no y passing through zi, or b) there is only one

vy passing through z,, OF c) there are only two y's passing through z,
with opposite directions.
Proof. The first claim is easy to prove.

Let z_, ees , Z, be the edges of r with only one ektremity and put

1,
y. =2,,1i=1, ««. , e, with a fixed orientation. Consider the graph r,

obtained by deleting these z's. Then we have easily that

e
H (r, 2) = H (T, Z)e(ia_alzyi).

Hence if we choose a free basis of Hl(ro, Z), then together with Yy above

they form a free basis of Hl(r, Z) satisfying the condition i).

Now further we assume that T can be embedded into Sz. This is
equivalent to assume that r, is embedded into 82. Take a point « in
S2 outside r.» Then the embedding of I, gives a partition of 82 into
celles, Al, cee Ak and A where A contains the point «. These
celles are naturally oriented by the orientation of SZ. Let Ys be the
boundary of Ai, 1 <i <k, Then it is easy to see that these Yy form a
basis of Hl(Fo, Z) satisfying the condition ii).

Definition 8. A stable curve is called a planar stable curve if the
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graph associated with it can be embedded in the sphgre S2 (ox gquivalently,
in the plane).

(4.5) Now we embed this graph T into C so that

i) tﬁe image of Ci € rv ié a simple point < in the irreducible
component Ci H

ji) the image of 2, €T, with extremities C

K’ Cz is a path with

extremities ¢

K S which lies on C and C2 and passes through zg

k
once, and through no other z's.

With this embedding and the normalization f : C - C, we have a

homomorphism :
¢ ché, Z) @ H (r, 2) » H (C, 7).

Proposition 4. The homomorphism ¢ is an isomorphism of groups.
Hereafter we identify them through ¢.

Proof. We shall prove the lemma by induction on the number r of the
components of C. In case of r =1 the proof is clear. In the general.
case take an ifreducible component such that the curve C' obtained by
deleting this component remains connected. We assume for eiample that the
component Cr is a such one.

Denote by ér and C' the respective normalization of Cr and C'.
Note that C is a disjoint union of ér and 6';

Denote by Pr and T' the intersections of Cr and C' with the
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embedded T respectivelyf Then rr and T' are respectively homotopic
to the graph of Cr and C', and r.n r' = Cr n C' is a finite set of
points.

Hence by the theorem of Mayer-Vietorius we obtain the following commutative
diagram where the horizontal sequences are exact.

H (Cr) ® Hl(C') H_(C)

1
{0} =H(r nT")— ® —~ & —H(( nr")—H(r)eH ("
1 r . T 0" r 0
Hl(Fr) ® Hl(P ) HI(T)
| Iy Ly v o
{0} =

Hl(Cr nC') » Hl(Cr) ® Hl(C') -+ Hl(C) > HOCCr nC"Y » HOCCr) ® Ho(c')

Evidently ¢ and y' are isomorphic and ¢' 1is also by the induction
hypothesis. Hence the isomorphy Qf ¢ follows by virtue of the five lemma.

q.e.d.

C) The monodromy of families of stable curves.

(4.6) In this paragraph C) we consider only a family =« : X > D of
stable curves of genus g over a disc D = {t ¢ C ; |t| < e} which is smooth
on D' =D - {0}. We shall denote by Xt the fibre w-l(t) over t.

At each double point 2z of XO’ there is a neighbourhood U of z
which is isomorphic to a closed analytic subset defined by the equation
xy - tn = 0 in an open set in C3 = {(X, Y, t)}' containing the origin (cf. (3.4)).
Hence replacing z by a series of (n - 1) projective lines, we obtain a

non-singular model X of X. Denote by m the canonical map from X to

- D, Note that in the preceding discussion in B) we did not use the condition
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iii) of Definition 6, hence all .results.in B) hold also for.the curve

R |
xo =1 (0).

For the fibre iO = C we shall use the same notations aé in (4.3). By
the remark above, in particular; we can choose a basis ~{&1; see ; ég'; Bl’
e, 800 Yl; Yg’,,} of H (C, Z) such that the a;;k; th+k; 1<ks g,
form a canonical basis of Hi(ﬁj; Z) and the *k; 1 <kc< g", form a basis
of Hl(F, Z) satisfying the conditions in Lemma 11:

Take a point to in D'. For simplicity we assume to = 1. Then we
have :

Lemma 12, a) There are families of cycles al(t), cos s ag(t), Bl(t),
e, sgct); 0sts1,in H(X,Z) such that

i) they vary continuously ;

ii) for each 0 < t <1 they form a canonical basis of Hl(Xt, Z) ;

iii) a5+k(t) (resp. 85+k(t))’ 1<ks gj, tends to 05+k (resp. 53+k)
if t tends to 0 :

iv) Bg'+kCt), 1<k<g", tends to v, if t tends to 0 ;

k

V) ag'+k(t), 1 <kc< g", tends to a cycle homologous to zero if t

tends to 0.
b) For each double point z in C = iO there is a small open

neighbourhood of zi which is homeomorphic to a join of two discs meeting

1
S. z,

is a family of non-zero cycles Gi(tl, 0 <ts< 1, (called the 11

t . Take th 8 f f th di . Then th
at z, ake the boundary 6. of one o ese discs e vere (I><:)



vanishing cycles associated with zil which tends to di when. t tends to

0.

For the proof see [3] Lects.4 and.S for example;

As an important corollary of Lemmé 11 we have :

Lemma 13. i) Each Gi(t] can be e;pressed as a linear combinationvof
a8 15K < g

ii) Further if C is planar (Note that X_ is planar if and only if

0

xo is planar.), then ai(t) is homologous to zero, or td',+j(t), or

dg'+j(t) - ag,+k(t) with 1 < j’ k < gn.
Proof. i) If we e‘XP'-"GSS Gi(t) in the form

g . g
§,(t) = T a .a.(t) + ©b, B, (t)
| } 1 521 1)) j=1 13]
in Hl(xt’ Z), then we have

= = = - i '
, = (6i, ©.) =0, 1<jsg',
- (5i, 0) =0, g'<jsg,

by Lemma 12 and the condition i) of Lemma 11.
.ii) Assume moreover that C 1is planar. Then by Lemma 11, for each

z, imn C only one of the following three cases occurs :

[

a) there is no Yy passing through Zs 3

b) there is only one Yj passing through Z,

c) there are two cycles Yj’ Yk passing through z, once with different
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orientations. Since a, .. = (§,, v,), the conclusion follows.
. 1,8'+) 1 J

(4.7) Take a circle T rounding the origin once counterclockwise with
base point 1. For a cycle c¢ in H1(X1' Z) we denote by cr the transform
of ¢ along r. This operation induces an automorphism of HI(XI, Z)
called the monodromy or the Picard-Lefschetz transformation of r. Then by

the theorem of Picard-Lefschetz we have
: d
e+ 1 (5,(1), €5, (1),
i=1
Let A be the d x g matrix with the (i, j)-th coefficient (Gi(l), Bj(l)).

r
c

Then by the above formula we obtain

(4.7.1) =+ amtactey, o.

Proposition 5. The monodromy of = is ekpressed in the form
1 B

g t
0 lg) s B = AA, 1 = the identity matrix of degree g,
by using the basis {31(1), ses sg(l), al(l), e, ag(l)}.

Here B>= (g g ] where B0 is a positive definite symmetric matrix
of degree g". °

Moreover if io = C 1is planar, then Bo is contained in the principal
cone C° 1.7).

Proof. The first part is clear from the argument above eicept for the
claim that detBo # 0. Since the si(l)'s generate the subgroup generated by

dg'+1(1), see &g(l), rank A = g". The formula : rank tAA = rank A shows

that det Bo # o;
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Denoting by a, the i-th row vector of A, we have

B=13 ta.a..
X ii
* t i
If C is planar, then Lemma 13 ii) shows that aiai = (A" ) is a matrix
3

of one of the following types-:
i
a) A =0, 1s1,xks¢g;
1K

b) there is a j with g' < j < g such that

i 1 if =«
A =

e (0 otherwise ;

"
L

¢) there are j, k with g' < j, k < g such that

0 otherwise.

k =j or k,
if (v, k) = (G, X)) or (k, j),
\

. . i i . . .
Therefore each minor matrix A" = (A" ) | is contained in C ,
wgt <1, k<g o

hence B = 1 A" also. q.e.d.
)

D) The behaviour of the period map near the discriminant.

-]

(4.8) Now we go back to study the period map T of o : 7° > H.
Take a point x in Hg and let C = w_l(i) be the stable curve in 2

over k with the double points zl, vee zd. Then by Theorem (3.4) there

is a coordinate neighbourhood U = {(t;, **+ , t\) ; ltil < e} with the

centre x such that each z, has a neighbourhood biholomorphic to an

analytic subset defined by the equation : Xiyi - ti = 0 of an open set in

2
CN = {(xi, yi, tl’ see tN)}. Hence the discriminant D is the union



d
u {(t) e U ; t:.1 = 0} in U. Its complement U - D n U 1is isomorphic to
i=1

(D')d x DN—d where D = {t ¢ C ; |t| < e} and D' =D - {0}, and the

fundamental group of U -D n U is Zrle-n-led where Iy is the homotopy

‘class of a circle rounding the divisor ‘{ti = 0} once counterclockwise.

Choose a basis of H (C, 2) as in (4.6). Take a point x = (tlcl), ..

, tN(I)) with ti # 0 in U sufficiently near to k such that there is a

canonical basis of the first homology group Hl(Cl, Z) of the non-singular

curve C1 = m_l(il) such as in Lemma 12, Then the monodromy of Hl(cl’ Z)

alo i
ng Fi is

where Bi = (bi’ ) is a non-negative symmetric integral matrix of rank
1K

at most 1 with bi’ =0 for s g' or « s g' (Proposition 5).

S

Hence the analytic continuation T(rit) of T(t) along ri is subject to
(4.8.1) T(Pit) = Mi-T(t) = T(t) + Bi'

Hence the matrix-valued function :

d log t.

(4.8.2) S(t) = T(t) - = 5;7ffi-Bi
i=1

is a single-valued function on U - D n U, Our main result in this section
is :

Theorem 2. The function S(t) (4.8.2) is bounded on U - D n U. Hence
it can be extended to a holomorphic function on U by virtue of Riemann's

removable singularity theorem.

]
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Proof. Since a holomorphic function defined ekcept on an analytic subset
of codimension two can be extended, we have only to prove the case that C
has only one double point by virtue of Theorem (3.4).

Even if C has a double point, the monodromy can be trivial. In this
case T(t) is already single-valued and is a map into a bounded demain Sg’
hence theAconclgsion follows.

Now we suppose that the monodromy is non-trivial. Then by Propositon 5

0 0)

we may assume B = ( o [, n>0 (in fact n = 1), Let Sij(t) (resp.
J

0
\
Tij(t)) denote the (i,j)-coefficient of S(t) (resp. T(t)). Then by the

same argument as above, for all (i,j) but (g,g), Sij(t) = Tij(t) is

bounded.
n log t
So we must prove that Sgg(t) = ng(t) - —§;7f7r—- is holomorphic on

1

e(t) = eip(Zn/:T ng(t)) is bounded on U, hence can be extended to a

holomorphic function on U. As e(t) does not vanish eicept on t1 =0,

= m ’ ' = - L
we have e(t) tl eo(t) where eo(O) # 0, so S'(t) ng(t) ey log tl

is single-valued and holomorphic on a neighbourhood of x. If m # n, then
S'(t) cannot be single-valued. This shows that m =n and S'(t) = Sgg(t)

is holomérphic at t1 = 0. | q.e.d.

.92

t. = 0 also. This method of proof is due to Mayer ([3]). Since Ingg(t) >0,
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§5. The canonical map frqm the moduli space of stable curves to the Satake
compactification;

In this section we shall prove the following theorem.

Theorem 3, Let 7 : X > S be a family of stable curves of genus g.
Denote by Sg* = Sp(g, Z)\sg: ”Then there is a canonical holomorphic map

T*:S§——> S§*= y .S * (cf. (2.2))
" g'sg
sending s ¢ S to the period matrix of the non-singular model of Xs = W-l(s).
Proof. By (3.3.1) there is a functorial map f : S > Hg such that X
is isomorphic to S x Z . Hence we have only to prove the map T; *:H -8 *
Hg g ‘ g g g

is holomorphic, On the points in Hg - D whose fibres are smooth curves,

this map is nothing but the composition of the canonical surjection Sg > Sg*

and the period map T we have defined in (4.2). Hence it is holomorphic.
The question being local, we consider a point xeDc Hg and a

neighbourhood U of k in Theorem (3.4). Let C = ﬁ-l(x) be the stable

curve lying over x whose normalization C has a genus g' =g - g". By

virtue of Hartogs' theorem we have only to prove that T; * is holomorphic
g

on a neighbourhood of x ina generic line through x, i.e., a line which
cuts D transversally.
Denote by f a local parameter of a neighbourhood L of x in a

line {(&11, see aNr) s [t] < e} By assumption.

T*:’r'u;kI : L ———> S *
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is holomorphic except at ¢ = 0. Hence it is sufficient to show that T*
is continuous at T = 0,

First of all we shall consider the period map T = TIL {0}: L-{0} - Sg.

By Theorem 2, T(}] can be e%pressed in the form

: logt [0 0Y :
TG) = 3. /7 lko B) + S()

where Bo is a positive definite symmetric matrix of degree g" and S(f)
is holomorphic on the whole L. Let T' be the g' principal matrix

(T..)

. of T which is hence holomorphic on the whole L. Then by
1j71<1,j<g! ,

the definition of the topology of Satake compactification (2.3), we have
Im’ * - 4
11mT . OT (r) = T'(0) mod Sp(g', Z).
Hence we have only to prove the following.
Proposition 6, T'(0) is the period matrix of the non-singular model
C of C.

Proof. Let Cl’ ver Cr be the irreducible components of C. Then

-~

C is a disjoint union of the normalizations Cj of Cj’ 1<j<r, with

genus gj. Take such a basis A{al, see ag', By *** , B ., Y., *tt, Y }

1’ g 1 gn
of Hl(C, Z) as in (4.6).

On the other hand let us consider the dualizing sheaf w_, on C (3.2).

C

Then we can choose a basis of TI(C, w.) including holomorphic forms w-

o j+k’
l1<j<r,1<ks=<g, 5 = I gy such that for each j, the restrictions
j 2< .
on Cj of R 1<kz< gj, form a basis of P(Cj, wa.) and they vanish

J

identically on the other Ek's. Further by a suitable change of basis we



may assume that

1, i =k
[ o wy., =
4.1 9% Lo, 14k,
Since w0, /H is a locally free sheaf of rank g, we can extend these
g g S | '
sections to wk(t), 1<ks<g, in (e (U), 07 14 ) where U is a
: ' g g
neighbourhood of x in Hg.
By Lemma 12 there is a path T from kl in Un Hg° to x such that

there is a family of canonical bases of Hl(Ct’ Z) with Ct = m-l(t), terTl
satisfying the conditions in Lemma 12. In particular for each 1 <1i < g",

1 <k<g' wehave

i = [ . =0
U e, o (8) = 1o o
g+l i
since Gi is homologous to zero.
Hence we have
= '
Tij(o) fﬂ.w" l1<i, j<g',
i
that is,
( 3
Ql 0
! =
T'(0) ‘92
(0 U
where Q, = (fB~ mt+k)'lsi, kng is the period matrix of éj'
j*i

Remark, Since D is a closed analytic subset in H_  with only normal

crossings, the eitendability of T* : H °58* to T*:H +S* follows
o g g o g g

also directly from the theorem of Kobayashi-Ochiai ([10]) in the theory of .

hyperbolic analysis.,



§6., The canonical map from the moduli space of stable curves to the Igusa
monoidal transform.

(ﬁ;i) Now we are ready to prove the first main theorem of this article.

Theorem 4, Let 7 : X+ S be a family of stable curves of éenusA g;
Denote by ég* the Igusa monoidél transform of the Sgtake compactification
5;* (Definition 5 in (2;6)); Then the canonical map E;* :S+>S * can
be lifted to a holomorphic map i‘w* : S > §g*. 2w S

From this theorem we obtain the following important S ’E/////h ‘f
corollary. m S *

‘ g

Corollary. Let Mg and Sg be the coarse moduli space of non-singular
curves and stable curves of genus g respectively. Then there is a holomorphic
map j : Sg - §g* which is an ektension of thevinjection i Mg -> Sg*.

Proof. Clear since Sg = Hg/PGL(Sg-6) and T;* is PGL(5g-6)-invariant.

(6.2) Proof of Theorem 4. By the same reason as in the proof of
Theorem 3, we have only to prove the theo?em for the family mg : Zg - Hg‘

On Sg* the morphism p is isomorphic, hence T,* can be defined and

©
g .

Since the question is local, we shall consider a point x in D and

holomorphic on Hg -D=H

take a neighbourhood U satisfying the condition in (3.4). We shall use
the same notations in (3.4).

By Theorem 2 the period map T on U - D H U 1is subject to
- d Idg”t5
T(t) = I oA Ay S(t)

i=1




where Ai is a non-negative matrii of degree g ~whose (i,j)-coefficient
is zero if i < g' or j < g' and S(t) is a holomorphic function on the
whole U,
Take a ramified covering c : V ='{(sl, cee sﬁ)} + U defined by
sending s, to t, = s,n, l<ic<d,andto t, =s_,d<is< N, The
i i i i i
ramification locus of ¢ is E = c-l(pl. Then the composite map T1 = Toc

is subject to

_ . . i
(6.2.1) Tl(s) = I e nAi + Sl(s)

where Sl(s) = Soc 1is holomorphic on V. Denote nAi by Bi' Then the
composite map :
F e T sV L E - RPN
T1 pn 'I‘1 V-E— Sg(n) Sg (n)

satisfies the commutative diagram :

N

. AT* -

U-bny —> S * <8 *,
g g
Since these analytic spaces are normal, it suffices to prove that Tl* can

be extended to a holomorphic map from V to Sg*(n] for an n. Moreover

since §g*(n) is the normalization of the monoidal transform Sg*(n); we

have only_to proye_that Tl* can be extended to a map from V .to ég*(n).
Let T* : U~ 5;* be the extension of T* in Theoreﬁ 3: Then it is

easy to see that there is a holomorphic map E;* : V- Sé* satisfying the
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commutative diagram :

..... 'Ti*' :
v . 5§ *(m)
18 S
¢ l - l ‘fl,n
. * —
U L > S *
o .8
where ?& n is defined in (2.7).
1

Put y = ?;*(i),.and let £, oo, fs be a system of generators of the

0
ideal Iy(n) 6f cusp forms at y. We may assume that they are holomorphic
in a neighbourhood W of y. Then the monoidal transform ég*(n) over W
is a strict transform of the ihage by the map defined by

Wn Sg*(n)u-v——l——? W x Ps

v

z — G, () ¢ e £,(2)).

Taking a smallér neighbourhood of i if necessary, we may assume that
T;*(V) c W. Hence in order to prove the existence o% an extension %1* '
-+ ég*(n) of Tl*’ it is sufficient to prove that the image of V - E by
the map % :V-E~ PS defined by sending. z to (fo(z) Tosse fs(z))
is bounded. In fact we shall prove the following claim :

(*) V - E 1is covered by a finite union of subsets Vi such that for
each i there is a unique point § in Ps with limz N i, 2 e Vi%(z) =,§-

(6.3) The proof of the claim (*) is done in a few steps.

Write the period map T1 :V-E-~ Sg as

o ' " A

v Tl (s) T1 (s)

Tl(s] = It :
LTlnlcs) Tlncs) j

. 58
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where Tl"'(s) is a g' x g" matrix, or simply as (Tl', Tl"', Tl").

Then by (6.2.1) Tl'(s) and Tl"'(s) is holomorphic on the whole V

and
- d log_si
6.3.1) Tl"(s) = .z ST Bi" + Sln(s)
i=1
d
where B,'" is non-negative, B" = g B," is (strictly) positive and Sl"(s)
i=1

is holomorphic on V. The imaginary part of Tl"(s) is hence

d -logls,]|
(6.3.2) Im Tl"(s) = I -

B " " .
. i + Im S1 (s)
i=1

27

Write also t € S as

)

(& T

where ¢ is a g' x g" matrix, or simply as t = (t', z, t'). Then

! = Tl'(s) (resp. z = Tl'"(s)) moves a bounded set K, in Sg' (resp.

1
K in the vector space Z of g' x g" matrices) when s moves in V.

12
(6.4) Now we shall use Theorem (2.8) in the full ektent. Moreover as
you will see soon, our method of proof depends heavily on the method
developped by Igusa in [8]. We shall use thé same notations as in (2.4).
Lemma 14. (cf. [8] Lemma 9) Let ¢ be a half-integer positive matrix
in Y* and consider a holomorphic function ec(T'f z) on Kl x Z satisfying
the functional equation (2.4.3). Then there are positive constants y, C
in R such that for (t', ) € K1 X K12 and u e GL(g, Z)(n) we have

[ec(r', ;tu)l < Ceip(utr(tuou)).



Proof. Let Z be the set of points t'm+ n in Z where ' ¢ Kl’

and m and n are real ' x g" matrices with coefficients in [0,n].
4 g

Then Z is compact. For every ¢ ¢ Z, u ¢ GL(g, Z)(n) and =<' ¢ K1 write

t s .
zu in the form ¢ + t'm+n with ¢ ¢ Z and with m,n = 0 mod.n.
(-} -}

Put Re(L  (z, z)) = tImgIm(r')-llm; after Igusa [8]. Then by (2.4.3) we
T

~ have
t
e (', z )|
g
= Iec(r', z_)|exp(-(2n/n)tr(o Re(LT,(co. z.))))
t
x exPC(Zv/n)tr(ou(Re(LT,(c, z))) u)).
Since K, and K are compact, there are positive constants C, u with

1 12

lea(r', z ) |exp(-(2n/n)tr(o Re(L (2, £ )))) <C for «' ek, g €2

and with (2q/n)Re(L (g, z)) < ulg for ' ¢ K1 and 7 ¢ K12' Hence we
T

have
t - t
[eo(r', z u)| < Cexp(utr( uou)). q.e.d.

(6.5) Let Cc , 1 <k <p, be a finite family of non-degenerate central
k } )
cones whose union C is convex and contains C(Bl", see Bd") and which

contain the C 's with o ¢ M(B") n Yg° (c£. (1.4) and (1.5)). We can choose
such a family by virtue of Theorem 1 in §1.

For each Oy only a finite number of u in GL(g, Z) satisfy FG n
k

Ft # ¢. Hence for a sufficiently large n no such an element but the
ugu

identity is contained in GL(g, Z)(n). That is, tr((tucu -0)y) > 0 for

y € FG and T # u e GL(g, Z)(n). We may also assume n 2 3, We shall fix such
g
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an n from now on,

Take an arbitrary positive number y and let § be a sufficiently
large positive number with &B" > E%-(ﬁ + u)lg where ﬁ is the number in
Lemma 14.

When s moves in V, Im Sl"(s) moves a bounded set K2 in the vector
space of real matrices of degree g. By the assumption above B" 1is contained
in the interior of C. Hence fér a sufficiently large ¢, K2 + ¢B" is
co;tained ip the interior of C.

Then we have :

Lemma 15. If [si|< eip(-Zn(s + ¢)), then ImTl"(s) - §B" ¢ C. Furthef

suppose that ImTl"(s) - §B" ¢ C for g =o¢ Then the series
g

o
H CT1 (s)) e(-(1/n) tr(oTl"(s))
[e)
=z o (T,'(s), T," (s)we((1/mtr((Cuou -o)T,"(s)))
o 1 1

u
can be dominated by a series

Cz: eip(- vtr(tuou))
where u runs over GL(g? Z)(n) and v > 0.
Moreover HG(TI(s))e(-(l/n)tr(ch”(s))) converges to eo(Tl'(O), Tl"'(O))
if s > 0,
Proof. Put <t' = Tl'(s), r = Tl"'(s),s = Im Slﬁ(s) and 8, = -(1/2w)log[si|.

Then we have

Im Tl"(s) - &B"

r 6,B, - §B" + B
ii

- - 1" "
z (5i 8 e)Bi + (eB" + B) € C.
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since Gi -8 -¢>0 and er f B ¢ C.
If we suppose thét Im Tl"(§1 f §B" ¢ Ca c F&, then we ﬁave
tr(Cuou - q) (- 3 aiB'i", - §B" + g) = 0.
Hence we have
lo G, e (/mtr(Cuou - élTl"c§11|
= [0 G"s g W) exp(-@n/m)tr((Cuou - o) (5 6,B," + 8))
< const, ekp(ﬁtr(tuou))eip(—(Zn/n)tr((tuou - 0)8B")
< const. ekp(- vtr(tuou)).
Hence the first conclusion follows.
On the other hand with the estimation obtained above we have

o, g wet/mtr(Cuou - )T (s))]

IGOCI', ctu)le%p(-(2w/n)tr((tucu -0) (I 5,B," + 8))

< const. eip(ﬁtr(tucu))eXp(-(Zw/n)tr((tucu - 0)(Z ciBi" + B))

A

const, eip(-vtr(tuou))exp(—(ZW/n)tr((tudu -0)(Z GiBi" + B8 - 8pM).
By the condition on n above this tends to zero for s - 0 unless
u=1 . Together with the first claim the conclusion follows.
Lemma 16. The assumption is the same as Lemma 15. For any half-integer
positive-definite matrix o' the series
H,, (T, (s))e(-cl/n)tr(qu"Cs))l
is dominated by a series
cz: exp(fv'tr(tuq'ui).

u _ R
The proof is similar to that of the first part of Lemma 15.
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(6.6) Now we shall finish the proof of Theorem 4.
Shrinking U if necessary, we may assume that [si[ < eip(fzn(§'+ €))
on V. Put

= . [ 1" - 1" Ty
Vi {s € V';Im Tl;(S) §B'" € Cci}.

Then by assumption V =y Vi and on Vi the estimates in Lemmas 15 and 16
hold.
Since n 2 3, by the theorem in the theory of the theta function, for

a function eoc(%', z) defined nedr (Tl'(O), Tl"'(O)) we have éco(Tl'(O),
i i

-]
Tl"'(O)) # 0. Let Hc () be the Fourier-Jacobi series with the above
i .

ec°. Then by Lemmas 15 and 16 for every Hc'(r) the function
i

BICIQILICAC)
= Ho((Tl(s))e(~(1/n)tr(oiTl"(s)))
° " _1
< O, @ DA/ ET, ()
converges if s - 0. This proves the claim (*) in (6.2) together with

Theorem (2.4), hence the proof of Theorem 4 is complete.



§7. The image by j of points corresponding to pianar stable curves.

(7.1) Let j : Sg > ég* be the canonical extension of 1 : Mg > Sg*
obtained in Corollary of Theorem 4.

Recall the set §g° of points which are limits of points on Sg* with
representatives in Sg whose imaginary parts of normal coordinates are
bounded above (2.5). We have considered it as a subset of ég* but we can
also consider it as a subset of §g* since §g° is normal by virtue of
Theorem (2.5) and Proposition 2 in (2.7).

Let x be a point in Hg corresponding to a planar stable curve with
virtual genus g' = g - g". Then by virtue of Proposition‘S in (4.7) the

period map T near x 1is subject to

d log t,
0
T = T o b } * 800

i=1 ( i

where Bi" is contained in the principal cone C , i.e. the normal coordinates
o
of Bi" are non-positive, and S(ﬁ) is holomorphic on a neighbourhood of

x. Hence the normal coordinates of ImT"(t) are bounded above near x where

T(t) = rT'(t) Tm(t)}

\t’[’"'(t) T"(t))
with T"(t) € S

g Together with Theorem (2.5) and Proposition 2 we have

obtained the following theorem.
Theorem 5. Every point in Sg corresponding to a planar stable curve

is mapped into Sg° by j. In particular the image point has at most

quotient singularity,
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In this case exist the limits

! = lim Tr(t) = T'(x),

T t >0
= 14 " = T .
4 11mt 40 ™I(t) = T"'(x),

and '
0 if B" .. #0 fora k,
E.. = lim e(-T"(t)..) = k,1j
ij t-+0 ij " .
le(-T (x)ij) otherwise
where T"(‘t)ij (resp. Bﬁ'ij) denotes the (i,j) coefficient of the normal
)

coordinates of T'"(t) (resp. BE). We call (=<', g, £) the generalized
period matrii of the stable curve corresponding to % (cf. (8.2) and (8.4)).
(7.2) Remark. The simplest eiample of non-planar stable curve is a union

of 6 non-singular rational curves with genus 4 such as Fig. 1.

Fig. 1 Fig. 2

The graph of this curve is Fig. 2. This is known to be the simplest
graph without embedding into plane.

By j the point corresponding to this curve is mapped to the point

4 1 -2 =2
) 1 4 -2
11mt .o /-1t 2 2 4 mod.Sp(4, Z)

1
L-2 -2 1 4]



-~

in §,*. The integral matrix above is equal to e

+ e
4 12,345 = 34,125

notation [8] which is not conjugate to any points in c,.

in Igusa's
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§8. The case of irreducible stable curves.

In this section we shall study the generalized period matrices of
irreducible stable curves. In the moduli space Sg of stable curves of
genus g those points which correspond to irreducible stable curves form an
open subset Ug' Using the results on the period matrices of irreducible
stable curves,we shall show finally that the canonical map j : Sg - Sg*
is injective on Ug'

(8.1) Let C be an irreducible stable curve of genus g with the
double points Zl’ see ; zg". Let
£:C~>C be the normalization of
C and ii’ Yio d= 1, eee, g",
the points in C with fcﬁci) = £y,) = z,.
The genus of C is then g' =g - g".

Choose a canonical basis
I L

of Hl(é, Z) and let 'dg'+i’ i=1, ¢e0 , g",

be small circles in C . rounding y, once counterclockwise and Bg

'+i’

i=1, .+« , g", paths from X, to yi meeting ag'+i once but without

meeting any other a's and R's. Then the homology classes of the images of

IR Qg., 51, cer Bg" Bg'+1’ e Bg by £ (which we denote by

the same letters) form a canonical basis of Hl(C, Z). Hence H1(C, Z) has

rank 2g' + g'" = 2g - g".
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Next we shall choose a special basis of r(C,‘wc). Let ml}’ e, wg"
be g' independent holomorphié forms in €, that is; they form a basis of
rC, up)-

Lemma 17. Let D be a smooth curve of genus g and {x,y} a pair of
two distinct points in D. Then there is a meromorphic form w on D which
is holomorphic eicept on x and y and which has simple poles at x and Y.

Proof. Let wD(x +y) be fhe sheaf of meromorphic forms on D except
for simple poles at x and y. Then we claim that

dimmr(D, wD(x +y)) - dimmF(D, wp) = 1> 0,
If a form  has a simple pole at i, then « must have a simple pole also
at y by virtue of the equality : Resxm + Resyw = 0. Hence the lemma
follows from the above claim.

If g is greater than 1, we have dimmF(D, mD)'= g, and degQD =2g - 2,

On the other hand by the theorem of Riemann-Roch we have

dimEF(D, mD(x +Yy))

-dim T (D, O (-x-y)) + degwcci +y) +1 - g

~

0+2g+1-g=g+1,

The other cases are similar. q.e.d.

Hence for each pair (xi, yi) we can choose a meromorphic form wg'+i'

in T(C, mé(xi + yi)) with Resy‘w' . =1, Then ml', e, w0 T, mg'+1',

g'+i g

*++ , w_ ' defined above are clearly linearly independent, hence form a basis
g

of T(C, mC] .
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(8.2) Let A', B', C' and D' be the matrices defined by

A

-
-
oW .
-
[}

t
(fa.wj )isj = 1: e , 8

O ow.'). . s
i . Bi J '

1, = 1: ces , 8

Cl

. 1]
(fa.wg'+j )4

1

,» D! = (f w
]
Bi

g'+j "1 =1, eev ,

Since A' is non-degenerate, we put Al (aij"). Put
g'
w,= £a."w',l<sjisg',
I e
and
g'

= .'-zak"C.'w',lsjsg".
g'+j L 2y 'k
k,2=1

Ogr+j

Then mj’ 1 <j<g', forma basis of r(é, mé) and wg'+j is holomorphic

except for simple poles at X, and Y5 and has its residue 1 at Yie

Hence we can replace the basis ‘{wl', coe wg'} of r(C, wc) by ‘{wl, cee

mg}.- If we denote by B and D the matrices

(feimj)isj = 1: ety g'i and (f w

g ) '
1

g'+j’i
j=1,

respectively, then we have B = B'A'-1 and D = D' - B'A'-IC'. Hence we
P

1}
-
-
L]
L ]
.
-

L]

.

.

.
OQ‘UQ

-

have obtained

Lemma 18. We can choose a basis '(wl, see mg} of T(C. mc) such that

i) Wis ttt W are everywhere holomorphic on C and form a basis of

P(a, w&) H

ii) for each i, 1 <i< g", w is holomorphic except for simple

g'+i

poles at x; and Y5 and has residue 1 at Y s

69
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» 1 if io=j
111) faimj - {0 if i # j.
(m) _ ..(n) . (n) _
For later use we put E = (Eij lsi<j<ghsl with Eij = e((1/n)s w '+j)’

g'+i
(n)
ij

Remark., i) This basis is determined uniquely.

l1si<jsg" and E,.° =0, j=g"+1.

ii) We have an extension of Riemann's equality :

fsiwj = fsjwi, i,j = 1, LA Y g’ eXCept for i = j = g'+1’ LI N g.

In case of i, j < g' this is the usual Riemann's equality on .6. The
other cases are known‘to be the law of interchange of argument and parameter
(cf. [29] s16).

(8.3) Let ei (resp. éi) be the unit vector in C% (resp. in Cg')

whose i-th coefficient is 1 and the others are 0. Let eg+i (resp. e

)

g'+i

. ( B
be the i-th column vector of the matrix|tD] (resp. B). Then the generalized
L=

Jacobian variety of C 1is defined to be the group variety

Zg'.,.gn
(8.3.1) J) =ct : ze,,
i=1

and the Jacobian variety of C to be the torus

2g!

~ ] -~

(8.3.2) Jey =c '/ sz Ze, .
i=1

There is a canonical holomorphic group epimorphism J(C) - J(C), whose kernel
is a product of g" copies of the multiplicative group C*.
: " ~
(8.3.3) 0 — (% — J@©) — JE©) — 0 (exact).

-~ "
That is, J(C) is a group extension of J(C) by (C*)g . Hence J(O)
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defines an extension class e iﬁ Ext(J(E), (C*)g") = Ext(J(E), (C*))g".

On the other hand it is known (e.g. [23]) that there is a canonical
isomorphism :

8.3.4)  Ext(J(G), ¢ S pic (@) > (0.

Proposifion 7. Let [di] deﬁote the points in J(E) corresponding to
the column vectors di’ i=1, eee , g", 0of D in Cg' respectively. Then
through the isomorphism (8.3.4) the ektension class e of (8.3.3) in

IR g" . - g"
Ext(J(C), (C*)® ) corresponds to ([dl], e, [dg"]) in J(C)° .

Proof. First of all we shall eipress the (inverse) isomorphism (8.3.4)
explicitely. Denote by Z the additive group g Zéi in c®,

Take a vector d = (di) in Cg'. Then we can define a homomorphism
fd VAR C* by sending éi to 1 for 1<1is<g' and to e(di-g') for
g' < i< 2g'. By this homomorphism, define the action of Z on C* x Cg'

by

z : C* x Cg' — C* x Cg'
w w
(@, 1) — (£;(2)a, ¢ + 2)
for z ¢ Z. Hence we obtain a principal C*-bundle :
0 — o —> crxcBjz — Bz =30 — 0 (exact).
By corresponding d to the ektension class of thié C*-bundle, we get a
homomorphism : Cg' - Ext(J(a), C*). (Clearly fhis correspondence is additive.).

-~

Moreover if d is contained in Z, i.e. d =7t niei with ni € Z, then



by the isomorphism :

1] ~ ]
C* X Cg — C* X Cg
w \uzg.
(a, z.) — (e(: n.z,)a, z,)
1 N 1
j=g'+1

transforms the G-action above into the trivial one on C*. (We use the

fact that the period matrix (ég ., éZg') is symmetric.) Hence the

'+1’
extension class corresponding to d in Z is trivial, i.e. the homomorphism
~ [ . ~
above factors through i : J(C) = Cg /Z > Ext(J(C), C*). This map i gives

the inverse of (8.3.4).

Now we are ready to prove the Proposition 7. If we take a quotient of
g"

N * "
c® by the subgroup Z1 = 1 Ze ey’ then this is isomorphic to c® (C*)g
i=1
by corresponding (;1, cee ;g) mod Z1 to (;1, cer Cg" e(;g'+1), een
Zgl+g'l
e(;g)). Through the canonical isomorphism I Zei/Z1 + Z, an action of

' 1) i=1
Z on C® «x (C*)g is induced canonically as

" ' "
—_— Cg x (C*)g

1]
z : c& x (cv)®
w w

(z, al, b ag”) — (z+z, fd (z)al: cr fd (Z)ag")

1 g"
for z € Z, and with the action we have J(C) 5 Cgf X (C*)g"/Z, hence the
conclusion follows. _ q.e.d.

We can define a canonical embedding of é into J(é). Fix a point q

~

in C. Then the embedding i : C > J(C) 1is defined by
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8.3.5) i:C — J(©
w w
_ ¢ ©p
p — (fimls M) qug') mod Z.
Since the cycle Bg'+i is the image of a path from xi to yi where

*i and Yy correspond to a double point z, in C, and since the i-th

column vector d, of D 1is equal to (/. w.).
1 g'+iJJ=1,oon,g

[4,] = i0y) - iCx).

,» we have

Together with Proposition 7 we have obtained the following theorem.

Theorem 6, Let C be an irreducible stable curve of genus g with the
double points zi’ i=1, «o0 , g". Let C be the normalization of C
with genus g' = g - g'", and ii’ Yy the points in € corresponding to
Z; . Denote by i the canonical embedding of C into the Jacobian variety
(8.3.5). Then the generalized Jacobian variety of C 1is an extension of
J(ﬁ) by (C*)g" whose e%tension class corresponds to (i(yl) - i(xl), see
i(yg") - i(kg")) in J(E)g" through the isomorphism (8.3.4).

Remark. The extension class above in J(é)g" is determined up to
changing factors and the isomorphisms of J(é) as a principally polarized
abelian variety.

(8.4) Now we are ready to prove the main result in this section.

Theorem 7. The canonical map j : Sg > ég* is injective on the open

set Ug of points corresponding to irreducible stable curves.

The rest of this section is devoted to the proof of this theorem.
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Take a point x in U corresponding to an irreducible stable curve
g

C. Choose a coordinate neighbourhood U of x with centre x satisfying
(3.4). In the same way as (6.2) take a ramified covering V of U. Here
we may assume n = 3; If we define the period map T = (T', T'"', T'") of
the canonical family of stable curves on V Sy using the canonical basis of

Hl(C, Z) and that of Tr(C, mc) introduced in (8.2) and (8.3), then T is

subject to
g" log s,

1
(8.4.1) T(S) = ifl m-SEg'+i + S(S)

where Ej is the matrix with the (j,j) coefficient 1 and 0 otherwise,
and S(s) 1is holomorphic on the whole V (cf. Proof of Proposition 5.).

Moreover by Lemma 12 in (4.6) we have T'(0) = A, T"'(0) = D and 1lim
(3) (3)

s >0

e((1/3)(-T"(s)) = E We denote E simply by E.

Then as we have seen in the proof of Theorem 4, this period map T

induces a holomorphic map

A ~

T : V

Moreover by Theorem (2.5) the image p = T*(0) is a simple point in ég*(S)
and a system of local coordinates with centre p is given by

(t' - A,z -D, & -E).
With this system of coordinates, %* is ekpressed in the form

T* : V ——— S *(3)
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The point p being simple, we can identify ég*(ﬁ) with égf(S) near p.
Now let *1 and %2 be two points in Hg corresponding to irreducible
stable curves with 5(x1] - 5(&2) where J = jop : Hg - Sg N §g*. For each
is= 1, 2 we can make the argument above and we shall use the same notations
but with subscript or superscript i. Then we have p, = M-p2 for an element
M in Sp(g, Z) by Proposition 2. We shall give an ekplicit form of M
and its action.
Since Ekpl) = Ekpz) is contained in the image of the Siegel operator

-~ p—

¢ :S *>S * where §.= pj :H »8S* > Sg*, M can be expressed in the

g' g g g
form
(A' 0 B! B, '
A1 U B2 B3
c! ¢ D' D1
o 0o o Tt
A* B!
where M!' = LC' D'] € Sp(g', Z), U e GL(g", Z) and these matrises satisfy

PR . [ t - r o ! =
the equalltles Al D Bz C'+ VU Dl = O, A]. B B2 A' + U Bl 0 and

(Alth R UtBS) - (thAl . BStU) - 0.

The action of M on Sg is written explicitly as «t = (f', z, f")
+ Met = M'et', (-(M'e1")(C'z + Dl) + (A'z + Bl))tU, MeT)" = (-(Alt' + Utc + Bz)
x (C'z + Dl) + (Alc + Ut + BS))tU). Note that (M-r)” = Uf"tU + a function
of (', 7).

Then the assumption : P, = M-pé implies that the imaginary part of the
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diagonal elements of (M.t)'" tends to infinity when the diagonal elements
. . - ' -~ .. : . - . ‘ 't
of Imr tends to infinity by (8.4.1). Hence observing that (Met)" = Ur" U

LI N

’ ie“(g")) )

for a permutation n of g" elements where e is the unit vector with

+ a function of (¢!, z), we have vty = lg"’ ie. U= (te

i-th coefficient 1 and 0 otherwise.

Hence if we replace the canonical basis of Hl(éz, Z) by M‘{acz), 8(2)},
change the index of zi(z) to z (i)(Z) and for every i with i-th column
T
vector of U, -e _ _, change x (2) and vy (2), then we may assume
m(i) m(i) m(i)
that M'=1 and U=1 .
g

Let us sum up our results obtained up to now.
(8.4.2) For an appropriate choice of the canonical basis of Hl(Cz, Z)

we may assume that p, = M-p2 where M is subject to

™) (1 0 0 n)
tm 1 tn s

M=10 0 1 -

L0 0 0 1

where m and n are integral g' x g'" matrices and s is an integral
" " : s t t t s s
g" x g" matrix with mn + s = nm + s, The action on Sg by M is
' : t
written as 1t = (t', z, ') > Met = (v', gz + m+n, MeT)" = 1" + mt'm

+(tmc + tcm) + (tmn + ts)). Hence from the condition p1 = M-p2 we have

**) A1 = A2 = A,
D1 = D2 + Am + n, | |
t t t t t
Uy, = (B .e(1/3) Cmam + (D, + "Dym) + (Cnn + 75)) ).
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If we define J(Ci) and J(Eil with the basis of Hl(ci’ Z) above as (8.3.1)
and (8.3.2), then from the ébove eﬁuality we can identify J(El) and J(éz),
and the extension classes of JCCI) and J(Cz) are the same through this
identification. (End of (8.4.2)).

Hence the following is the claim which should be proved.

1) 1)

(8.4.3) Let C be a non-singular curve of genus g' and (kj , yj )

i=1,2,3=1, «¢eo , g'", 2g" pairs of distinct elements in C such that

(k.ci), yjci)) # (ik(i), yk(i)) for j # k. Denote by C

J
. (1)

curve obtained by identifying xj

(resp. CZ) the
(2))

1

with yjcl) (resp. kj(z) with yj

L]

which is an irreducible stable curve of genus g = g' + g" with the double

points zj(l) (resp. zjcz)), j =1, ««+ , g", each of which corresponds to

c (1 1 2

xj( ), yj( ) (resp. xjcz), yj( )) respectively. For each i =1, 2 choose

a canonical families of l-cycles in Ci and a basis of I'(Ci, wC ) such as
i

(8.1) and (8.2), and define the matrices Ai’ Di’ and Ei' If for an element
M of Sp(g, Z) of the form (*) in (8.4.2) the above matrices are subject to
(**) in (8.4.2), then C1 and C2 -are isomorphic.

(8.5) We shall prove (8.4.3) by dividing it into the following four cases
according to the properties of C. In every case if C 1itself is non-singular,
then Theorem 7 is the usual theorem of Torelli. Hence we assume that C has
at least one double point, i.e. g" > 0.

A) The case that C is a non-hypereiliptic curve with g' > 2,

The theorem follows from the following proposition and the last claim of
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(8.4.2).

Proposition 9: Lét C bé aﬁ ifrédﬁcible Stable curve of genus g whose
normalization is a non-hyperelliptic curve‘with genus g' > 2. Then C is
uﬂiquely determined by its genéralized Jacobian variety J(C).

Proof. By Torelli's theorem the non-singular model C is uniquely
determined. Let 1 : C > J(E) be the canonical embedding (8.3.5). Denote
by Zss 1 <1ic< g", the double points of C and by ki’ Ys the corresponding
points in é. Then by Theorem 6 the set of elements i(yi) - i(xi), i=1, «o0,
g'", 1is uniquely determined by J(C) wup to isomorphisms of J(é). Hence the
proposition follows from the following lemma.

Lemma 19, Let C be a non-hyperelliptic curve and J(C)‘ the Jacobian
variety of C. Define a canonical embedding i : C » J(C) as (8.3.5). Then
the morphism C x C - J(C) defined by sending (i, y) to i(i) -i(y) is
injective outside the diagonal of C x C,

Proof, Let (xi, yl) and (xz, y2) be two pairs of distinct points
in C with i(scl) - iy = i(&cz) - i(y,). Then we have

i(x)) + 10y = i(x) + ily).

Hence by virtue of Abel's theorem the divisor 21 + y. 1is linearly equivalent

2

to X, * Y- Assume that X, # Xz ty- Then the above claim implies
that dimCHO(C, O(x1 + yz)) > 0. Hence C has a non-empty linear system of

degree 2; i.e. C 1is hyperelliptic. This contradicts with the assumption.

q.e.d.
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B) The case that C is a hyperelliptic curve with g' > 1.
The proof of Lemma 19 shows in fact the following.

Lemma 19bis. Let C be a non-singular curve and J(C) the Jacobian
variety of C. Define a canonical embedding i : C + J(C) as (8.3.5). For
two distinct pairs of distinct elements (il, yl) and (kz, y2) in C, the
equality : i(xl) - i(yl) = i(iz) - i(yz) does hold if and only if the curve
C is hyperelliptic and 1(X1) = y2 and 1(i2) = y1 by the involution
of C.

(We have proved only the '"only if" part but the "if'" part is clear.)

Now we shall prove (8.4.3) in case of a hyperelliptic C by the induction

on g".
In case of g'" = 1, we have i(ylcl)) - i(xl(l)) = i(ylcz)) - i(xlcz))
in J(é) by (8.4.2)., If {Xl(l), ylcl)} = {chz), ylcz)}, then there is

nothing to prove. If they are different, then Lemma 19blS shows that by the

involution 1 of C the set {chl), ylcl)} is mapped to {xl(z), yl(z)}.

Hence this involution induces an isomorphism between C., and C_.

1 2
'In case of g" = 2, we have
1, ™) -1, Wy 10, - 16, 140, 2
1 D,y Mo @y Dy e ii1 2 0 P,y Wyl @
1 1 1 1 1 1 1

2 -~
yi( )}) for i =1, 2 with the involution 1 of C, then clearly C1 and

C, are isomorphic. Hence we shall assumé that :{({chz), ylcz)}) = {x (1), ylclj}

2
. ) ), o (@ (2)
and {x2 , Y } = {x2 s Y, 1.

1

2 In order to prove the assertion, we
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must strengthen the assumption (8.4.3). We add two more assumptions :

(8.4.3)b15 in the family of l-cycles on C, &1(1] = & CZI, 8

(O
) )

and w = w, for 1 <i <g'; in the form of M we assume moreover
1

Let us show that these assumptions can be satisfied. First of all note

that if we take the same d_(l) = &.(2), B.cl) = B.Cz) and w.(l) = w.(Z)J
i i i i i i ’

1 <is<g' then we have A1 = A2. When we consider the form M, M' nmust

be subject to M'-A2 = Al' Since there is an automorphism of C which

induces M', we may assume M' = 1g by identifying C_ = 6 and 6' = E

1 2

through this isomorphism (Here we used the condition that C 1is hyperelliptic.
In general cases we can reduce M' = #l in the same way.). The other

reduction of the form of M in (8.4.2) does not concern with &i's and 3i's

a _ @ ey (2)

for 1 si=<g', Hence we may assume the oy = s By = 8 and
U.(l) = w.(z) for 1 <1i=<g',
i i
. . . w _, @
Moreover if a column vector mj of m is not zero, i.e. dj = dj
(1)

+ Amj # djcz) where dj(l) is the j-th column vector of Di’ then yj

#y. D mactir y W oy B ang g Wy - 4,1, then we have

J J J J J -
i(x.(l)) = i(x.( )); hence x,(l) = x,CZ) and d,(l) = d.(z). Hence we can

J J J J ’ J J
move a, = d.(l) = d.(z) to d.' so that a,' is homologous to d. in

i i i i A 1 i

b (1) . ¢ oy By

Hl(C - {yj }, Z) and homologous to a, + mijag‘fj in Hl(C {yj }, 2).
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Then replacing o by Qi', we can assume that

mj = 0. Repeating this process for j =1, «¢o ,

g'", we can assume that m = 0, Hence we can add

S

the assumption (8.4.3)°%% to (8.4.3).

Now we shall go back to the proof of (8.4.3). Define multiple valued

~

holomorphic functions vi(z) on C as

- z 1, . _
Vi(z) = e(f mg,+l )s 1= 1: 2.

This function is a so-called multiplicative function, i.e. there is a character
X; "1(6) + C* of the fundamental group of C such that, for every closed
path 1 with base point 2z, the analytic continuation vi(rz) of viCZ)

along T 1is subject to

v, (r2) = x, (IrDv, (2)
where [r] is the homotopy class of T.

Note that the character X3 is determined by the values xi([aj]) and

x;([8;1), 1 <j <g'. Since x; (Lo 1) = e(fa.wg.+1(1)

i
- (1), _ _ (1) . .
= e(feng'+1 ) = e((Di)jl) = e((d1 )j), together with the assumption

that dlcl) =d

) =1, and xiC[Bj])

(2)

, .
. mod.z8  (cf. (8.4.2)(**) and (8.4.3)°%), these characters

coincide. Hence the ratio f(z) = vl(z)/vz(z) is a (single-valued) meromorphic

function on C. Moreover by the very definition vi(z) has a simple pole at

*1(1) and a simple zero at yl(l) and it has neither poles nor zeros outside.
Hence f(z) has simple poles at xlcl) and y1(2) and simple zeros at ylc;)
and x 2 and it has neither poles nor zeros outside. Considering f to

1
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= 1 S .
be a holomorphic map from C to P, we see that this map is of degree 2
by the above observation, hence the non-trivial covering transformation of

~

this covering f gives the involution | of C.

3 (1) . (1) e
On the other hand we have ((Ei)lz) = vi(yz )/vi(x2 ) by definition

and c(51)12)3 - ((32)12)3 by (8.4.2)(**) and (8.4.3)°%°. Hence we have

v, 0, (1)) v, 0, (2’)

vl(xz(l)) vz(xz(z)) .

Since xzcl) = xz(z) and yz(l) = yz(z) by assumption, we have

1), _ (1) 1y, _ . (1) (1), _ (1)

| £, ) = v by vy, ) = v () T v, (k) s £(x,7 7,

i.e. 1(y2(1)) = iz(l). Hence the involution 1 induces an isomorphism between
C1 and C2.

In case of g" > 2 the proof is similar, hence we shall omit it.
C) The case that C is an elliptic curve, i.e.g' = 1.
The proof is similar to the case B). In this case we may also assume
bis
(8.4.3) by the same reason as before.
In this case J(C) is isomorphic to C by the canonical embedding i

(8.3.5), hence we identify them. The proof is done by induction on g".

w _ .a_. @ _®

In case of g'" =1, by Theorem 6 we have Y] X =Y =X .
Hence the translation by &1(2) - il(l) maps il(l) to 21(2) and yl(l)
to yl(z), which induces an isomorphism between C1 and CZ.

In case of g'" = 2, we also have the equalities : yi(l) - ii(l) = yi(z)
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-xi for i =1, 2, By translation we may assuhe that xz(l) = x2(2) =0

Put vi(z) = e(fzmz(i)

), i =1, 2. Then they are multiple-valued holomorphic
functions with characters Xy : ﬂl(é) + C* such that for any closed path T
with base point 2z the analytic continuation vi(rz) of v(z) along T
is subject to
v, (rz) = x,; ([rv, (2)
where [r] is the homotopy class of T in ﬂl(é). The only pole of vi(z)

. (1)

is a simple pole at X

(1)
Yy,

and the only zero of vi(z) is a simple zero at

If the assumptions in (8.4.3) and (8.4.3)bls are satisfied; by the same
argument as the case B), f(z) = vl(z)/vz(z) is a meromorphic function on é,

and considered as a holomorphic map from C to Pl, it gives a two fold covering

with f(xl(l)) = f(ylgz)) = =, f(ylcl)) = f(xl(z)) = 0 and moreover f(y) = £(0)
since ((El)lz)3 = ((52)12)3 Hence the non-trivial covering transformation
induces the isomorphism between C1 and Cz.

To prove the case g'" = 3 we note first of all that the above covering

transformation 1 is given explicitly as

(Note that kl(l) +y ) = x ) + ylcl).) That is, if (512

(1.3 (2).3
1 1 )

)= By
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then
L Mm@ @
X, - X = X, - X
or
SN @ @,
Xt mXp = sy )
2
Therefore if (Eijcl))3 = (Eij( ))3 for 1<1i, j<3,1i#3j (we put
Eji = Eij if i< j for the sake of convenience), then for each (i, j)

we have one of the following equalities :

a . m (2) (2)

CAij) xj - X, = xj - X, o
(1) 1 _ (2) (2)
(Bij) xj = xi = = CYJ- = yi ‘)'

Clearly if (Aij) and (Ajk) hold, then (Aik) holds, and if (Bij) and
(Bjk) hold, then (Bik) holds., Hence for all (i, j) either (Aij) or

(Bij) does hold. If the equalities (Aij) hold for all (i, j), then the

W @

translation of C2 by x1 1

induces an isomorphism between C2

and C1 ; if the equalities (Bij) hold for all (i, j), then the involution

above of C2 induces an isomorphism between C2 and Cl'

In case of g" > 3 the proof is the same as the case of g" = 3.
Remark (Ueno). We can also give these functions appeared above explicitly.
First of all we shall give the form of w's ekplicitly. For simplicity we

assume that g" =1 and write x and y instead of x, and yl. The

1

-~

curve C is given as an elliptic curve C/Z + Zt with Imt > 0. We shall

denote by z a uniformizing parameter of C, i.e. a coordinate of C above.
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Put ml' = dz and “2' = (1/27/~D) (g(z - ¥) - ¢(z - x))dz where z(z) is

the so-called zeta function of an elliptic curve defined as

Sy Lo Ty
(z)=—+ z . ( - + + -
2 (m,m # (0,0) - o

Then it is easy to see that wz' is a meromorphic form on C with simple

).

poles at x and y and with Resywz' = 1.

Define o, ‘5‘2’ B;» B, as in (8.1).

Then we have :
fowgt =L, g _Bz/@az
a1 :
fazwl' =0, \
IBle' T ’ al b

and by using the equality r(z) =0'(2)/g(z) where o(z) is the O-function

defined as
Tz z 1 z 2
o(z) =z1 a- Jexp( + = ( ))
mn) 4 0,00 " e 2 meen
and using the quasi-periodicity of o(z), i.e. the formula
. +m+n
oz +mrem) = (DT [exp((2nn, + 2m ) (2 + T+ T ))]o(2)
where n = z(1/2) and n, = z(t/2), we have
Yll N
t = -
falwz 2“_/:1'— (X Y))
! =
fa w, 1,
2 n
[owyt e e (x - y)
Bl 2 2m/-1

. 1 .- )
! = - - t 3
1T 9t uy =y, Tr,/-:T.(x y)wl , then with fhe Legendre

Hence if we put



T - n, = m/=1/2 we can see that they-form the basis introduced

relation : n 2

1

in Lemma 18, and we have fB wy, =Y - ;.
1

Then the multiplicative function we have introduced above is written

explicitly as

v(z) = e(fzwz)
...n .
= exp /T Fu,' - == (x - Yo, ")
=‘§%§-{}§%— exp(2n (v - 0)2),

Hence Eij3 is given eiplicitly as

3 o(yi - yj)c(xi - x,)

E.. =
ij o(yi - xj)cfxi - yj)

eXP(antyi - xi)(yj - xj)).
About the formulae used above we refer the reader to [7] 2.
Abschnitt, 1. Kapital for example.

D) The case that C 1is rational, i.e. g' = 0,

Then clearly g'" =g > 1, The form of M in (8.4.2)(*) is very simply

with an integral symmetric matrix s of degree g and only the matrix E
appears.

First of all we shall give W, and E eiplicitly. Let C be a stable
curve obtained by identifying Xi and yi, 1 <ic<g, in a projective line
E'= Pl. Denote by zi the double point corresponding to’ Xi and Yy
Let z be an inhomogeneous coordinate of é. Then the meromorphic forms :

1 1 |

= - : i < ' basis of T i
w, = o ( T-y, z-x Jdz, 1 < i < g, form a basis o (c, wC) in

- 86



87

Lemma 18, and by integrating them we have

f s ’TI . (y. f_yj)(xij— xJ
8, " 2n/-1 " x, -y 0y, - x)
hence
3. (y. -.yj)Cx - X,)
ij (xl - yj)(yl -x,) .
By (8.4.2) we have (Eij(l))3 = (Eij(Z))S for all 1< 1i< j < g. Hence

it is sufficient to prove that

(*) the family of values (EijS) determines the isomorphism

l1si<jsg

class of C uniquely.
We use the induction on g.

In case of g = 2, we may assume that X, = 0, y, =° and Y, = 1 by

changing z with a projective linear transformation. Then with the equality
above we have )
s (-1 -x)

E2 "0 -De - x,)

=X2.

Hence the claim (*) is true for g = 2.

In case of g = 3, we may also assume that x, = 0, yl = o and Y, = 1

as above. Then we have

3 N
Ejp = %
3
13 = %y
s -y, - %)

23 (1 - x)(x, - ¥,)

E

E

Solving these equations, we have the unique solution for x

- @) 1)

of solutions (x3 ) ¥g ), 1i=1, 2, for (ks, YS)' However a linear

2 “and two pairs
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}.

transformation p : z > iz/z preserves the sets '{xl, yl} and‘{iz, yé

. . g - - . o
t = = ! = = t
If we put x3 oy ) xz/y3 and Ys p(x_) xz/xs, then it is easy to

3

see that the transformation (x ) ~» (xS', ys') sends a set of solution

3’ Y3

for (*3’ ys) to another. By an elementary calculation we can see that

Xy = xs' if and only if the above pairs of solutions coincide. Hence the

isomorphism class of C is uniquely determined by the data, E123, E133 and
3

Ezs L[]

In case of g > 3 the proof is similar, hence we omit it.

Thus we have proved (8.4.2) in every case A), B), C) and D), hence the
proof of Theorem 7 is now complete,

(8.6) Remark. Assume that g > 2, Let NV be the union of divisors
Ni’ 1 <1< [g/2] whose general points correspond to stable curves with two
non-singular irreducible components Cj’ j=1, 2, with genus i and g - i
meeting at one point. Then j 1is not injective on N. In fact by the upper
semicontinuity of the dimension of fibres, we have only to prove it for general
points £ on Ni' Henge the image by j 1is contained in Sg*, so it is
sufficient to show that 3- is not injective. Let C be the corresponding

stable curve with the irreducible components C1 »and CZ. Let k, y be

the points on C1 and C2 respectively which coincide on C. Since g > 2,

we have g - i > 1, i.e. the automorphism group of C2 is finite. On the

Neb)

2 . .
other hand if two such curves and C( ) are isomorphic, then it

1) and C @) which maps ycl) to ycz).'

induces an isomorphism between C2 5
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(In case of i = g/2 we may need to change factors.) Hence the curves C
with different y's are not isomorphic in general. However, their generalized
Jacobians are both J(C) = J(Cl) X J(Cz), hence the images by 3- coincide.

This proves the assertion,

It is naturally expected that j is injective outside of N, but we have

no proof,
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§9. In case of g = 2.

(9.1) 1In this section we shall prove the following theorem.

Theorem 8. In case of g = 2 the canonical morphism j : S » S *
(Corollary of Theorem 4) is an isomorphism.

Since these two varieties are normal and complete and since j is birational,
we have only to prove that j has no fibres with positive dimension by
virtue of Zariski's main theorem.

(9.2) The ekplicit structure of §2* (or §2*(n)) is known ([8], [18]).
In fact this was the first compactification of Sz* constructed by Satake
(ibid.).

So we must study the structure of the moduli space S2 of stable.curves
of genus 2,

Proposition 10. Every stable curve of genus two is of one of the following
types. Any curves of the same type are homeomorphic to each other. Those

points in S_ which correspond to each type of stable curves form a locally

2
closed algebraic subset in Sz, hence making them strata, we can define a
stratification in Sz.
Type The corresponding stable curve rank HI(C, Z) Stratum
I a non-singular curve of genus 2 4 _ M
11 a join of two non-singular elliptic = 4 N

curves meeting at one point

transversally.
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IIIa) an elliptic curve with an 3 B

ordinary double point.

ITI a join of a non-singular elliptic 3 B
curve and a ratioﬁal curve with
an ordinary double point meeting
at one point transversally.

v a rational curve with two 2 c
ordinary double points.

1v a join of two rational curves 2 C

b) b)

with an ordinary double point
meeting at one point transversally.

\s a join of two non-singular rational 2 D
curves meeting at three points transversally.

The proof is straightforward, and we omit it (cf. [14] or [15]).

It is also easy to see that the holomorphic map §-= pej : S2 > Sz* -> §é*

- * * * * B B *
82 U S1 u S0 maps M and N to S2 » By and b) to S1 and Ca)’
*
Cb) and D to SO"

(9.3) Now we shall prove Theorem 8 by reductio ad absurdum. Assume

~

-1 ‘o . .
that for a point n in Sz* the fibre F = j "(n) has a positive dimension.

The open set U, in Theorem 7 is a union of strata M, Ba and Ca

) )’

Hence by virtue of Theorem 7 no generic points in F correspond to stable

curves of types I, IIT _, and IVa

a) )
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It is easy to see that the isomorphism classes of curves of types Ivb)

and V are unique, i.e., C and D consist of only one point respectively.

b)

Hence the generic point of F 1is contained in N or Bb)'

First assume that the generic point £ is in N, Let C be a stable

curve corresponding to ¢. Then C is a union of two elliptid curves C1

and Cz. By translation on each component we may assume that the origins of

C1 and C2 meet together. Hence C is determined uniquely by C1 and Cz.

On the other hand since n is in Sz*, we can identify j and E- near n.

Therefore n corresponds to the isomorphism class of J(C) = J(Cl) x J(Cz).

Clearly it determines C1 and C2’ hence C. Hence the assumption is impossible.

Now assume that the generic point & of F 1is in Bb)'

Let C be a stable curve corresponding to &.

Then C is a union of an elliptic curve C1 and

a rational curve C2 with one double point.

Since only one point in C1 is specified and

only three points in the normalization of C2 are specified, the isomorphism

class of C 1is determined only by that of Cl.’ On the other hand since

J(a) = Cl, n corresponds to the isomorphism class of C1 in Sl*, hence

€ 1is uniquely determined by n, which again contradicts the assumption.
q.e.d. of Theorem 8.

(9.4) We shall also give the eiplicit correspondence of j 1in case of

g = 2 with the generalized period matrices (7.1). The proof is already done
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or easy, so we omit it. We shall use the notations in (8.2).
A) The case of type I. g' =2, g" = 0. In this case j maps the

isomorphism class of C to the residue class of the period matrix QC of
3 *
C in S2 .

B) The case of type II. g' =2, g'" =0, Let C be a stable curve with

the irreducible components C1 and CZ' Let %1 and %2 be the respective

periods of C. and C_,. Then j maps the point in S_ corresponding to

1 2 2

0 ]
3 *
) mod.Sp(2,Z) in S2 .

C to [
0

C) The case of type IIIa g'=1, g"=1. Let C be a stable curve

)
of type IIIa with normalization C which is an elliptic curve with period

)

t. Let i, y be the points in C corresponding to the unique double point

of C. Then j maps the point in S_ corresponding to C to the point

2
(A, D, E) = (1, ¥ - x, 0) mod.Sp(2.Z).

D) The case of type III =1, g" =1, Let C be a stable curve

L
b))’ &

It is a union of an elliptic curve C, with period Tt and

of type III 1

b) "’

a rational curve with a double point. Then j maps the point in 82

(t; 0, 0) mod.Sp(2, Z).

corresponding to C to the point (A, D, E)

E) The case of type IVa g' =0, g" =2, Let C be a stable curve

)

with the double points z_, and z_. Denote by X Yy the

of type IVa 1 2

)

points in the normalization C of C corresponding to ii. With a uniformizing

parameter z in C, we may assume z(xlj =0, z(yl) = o and szz) =1,



Then j maps the point in S correéponding to C to the point E = (Elz’

2
513’ 523) = (z(xz), 0, 0) mod.Sp(g, Z).

F) The case of type IVb). g' =0, g" = 2. As we have remarked in the

proof of Theorem 8, the isomorphism class of the curves of type IVb) is

unique. The point in S2 corresponding to it is mapped by j to the point

E..) = (1, 0, 0) mod.Sp(2, Z).

E= (Bjps Eigs By

G) The case of type V. g' =20, g" = 2. The isomorphism class of curves
of type V is also unique, and the point in S2 corresponding to it is mapped

by j to the point E = (E E ) = (0, 0, 0) mod.Sp(2, Z).

12’ E13’ 23

94
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