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THE_VARIATIONAL THEORY OF HIGHER-ORDER

LINEAR DIFFERENTIAL EQUATIONS |

—

Yasuo Teranishi

§1. Introduction
In his paper [2], [3], ©D.A. Hejhal investigated the variational theory
of linear polynomic functions. In this paper we are concerned with the

variational theory of higher-order differential equations. To be more

precise, consider a compact Riemann surface having genus g > 1. As is
& TR
well known, we can choose a projective coordinate covering UL, = (Ua’ Za)'
-

Fix this coordinate covering of X. We shall be concerned with linear
ordinary differential operators of order n defined in each projective

coordinate open set Ua

_ 4 " n d \n-2
(1.1) L a(Pa]Za) N (dza) * i (z)Pn,a(Za)(EE;)

where coefficients P (z ),---,P (z ) are holomorphic in U .
a a a o

Differential operators {Ln a(Palza)} are called a semi-canonical form if

P, .(z) =0 for all a.
l,q: Q

J N
jLet X € HI(X,'O}) be a complex line bundle on X. Differential operators

{L (p ]z )} are called A-related if in each intersection U. N U
n,a” a: al o1 B

dz 1

B, -
(1.2) Ln,acpalza)y - (dza) luB(z) Ln,B(pBIZB)AaB(ZB?y'

Wwe shall prove an analogous theorem of the Laguerre-Forsyth's basic differen-
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tial invariants.

-
-/

Theorem 1.1 Let {Ln (Palza)} belx-related semi-canonical form, then
Q

(8, ,(z.)) Fr@l 8™)  (m=2,3,---,n)

where ¢ (z ) 1is holomorphic function in U defined by :
M, a a.
L ™2k (m-2) tm! (2m-k-2) ! d .k
Omal®) T2 kfo(‘l) (m-k-1) I (m-k) ! (2m-3) 'k! (dza) Prk, o (o)

- 3y . 4

' PO A T - -

Prdo® SN

Conversely for given sm(z) € Cﬂi} Qme)) (m=2,3,---,n), we can define

differential polynomials of {8&(2)}

P cee P .
PZ,a(Za)’ S,a(za)’ , (Za}

And differential overators {L a(palza)} are a \-related semi-canonical

n,
form.

If o (z ),-+-,0 (z ) are n linearly independent holomorphic solutions
-, "laa n,o  at

of the A-related semi-canonical differential equation L (P lz)y =0
the n,a o' a.
and ¢+ is any element of SL(n, @) thenf;éctor valued holomorphic function
A~y

t
cga(ga) = (wi 0L(Zq),o--,(o

(z )) satisfies in each intersection U n U_

» n.(!.: \\(IA, a B
(1.3) ©(z) =0 (c z +d ) "o(z).

aa aB” aB B afB B B
for some DGB € SL(n, C), and the composition w& =g o @a satisfies a

) /(', , _
relation of the form (1.1) with p. replated by p'_ =g o p _ o© 0'1.
aB: : “aB aB.

Therefore the mapping b& and w& are considered as describing equivalent
flat vector bundles of rank n on X.

There is a natural one to one correspondence between the cohomology set

HI(X, SL(n, €)) and the quotient spnace .ﬁéh'(nl(X), SL(n, ©)/SL(n, @),



where SL(n, C) acts on Hgmi(ﬂl(X), SL{(n, €)) by inner automorphisms.
The homomorphism obtained from a A-related semi-canonical equation is called

a monodromy representation. The fundamental group fH(X) is described

canonically as a group with 2g generators 01,---,0g;f1,---,12 and the
commutator relation [ol,ri]-.'[og,tg] = 1.
Introducing the complex variety
20
1.4 N = X, ,oee, X , Y, oeeY e , ©)°° Y ]-e-[X LY = 1},
(1.4) tx, o N g € st O [ [X),Y,] [g g] }

the mapping which associates to an element o ¢ Homl(ni(X), SL{n, €)) the
P

noint (@ﬁ@}),°'-kg(d%), o(f?),---r@jlén) € N 1identifies :Hom](:l(X),

SL(n,&Q) with the comnlex analytic variety N and the cohomology set

Hl(x, SL(n,\Ez) with the quotient space V = N/SL(n,VEl where SL(n, Q),
acts on N by inner automorphisms. (See Gunning [5]). The tangent space
to the variety V at a point corresponding to the monodromy representation
o+ of a'A-related semi-canonical differential equation is identified with

1, L : .
the cohomology group H (g{(X), Ado'g) of the group':;H(X) with coeffi-

cients in the space of n x n matrices of trace zero under the group re-

& 1]
presentation Ad p:

By Theorem 1.1, we can introduce a complex analytic mapping between the
n o nd
vector space ® (X, O{x ) and.the variety N: the tangent space to the
m=2"

image at a monodromy representation p}j€ N 1is identified with the space

-

of the period classes of the Prym differentials [ (X, Q}’O(Ad p)). We
oA

C

shall introduce the transvectants which are known in the classical invariant

thecory and using them describe the period classes of the Prym differentials



(The variational formula).

The formulas also suggest a close relationship with Eichler cohomology groups.
Many formulas in this paper can be found in Hejhal ([2],[3]) under the rest-
riction 2 < n < 6 and we shall eliminate this restriction using invariant
theoretic method.

The author wishes to express his hearty thanks to Professors H. Morikawa

and H. Popp for their kind advices and encouragements.



52. The basic differential equations and the monodromy representation,

Let X be a compact Reimann surface of genus g > 1.

o

Since the genus of X is greater than one, as is well known we can find a

coordinate covering U] = {(Ua’ za)} such that the coordinate transformations

of this coordinate covering are projective linear transformations

(
a BzB*b 8 IauB baB
(2.1 R T ‘ €sL(2, ©) in U NU
" TaB"B TaB c d
aB  aB

g

Such a coordinate coveringlyi, is called a projective coordinate covering
of X.
We denote by La(n) the set of all the homogeneous monic linear differen-
tial operators of degree n defined in a projective coordinate open set

d \n

® o d
(2-2) Lya(PalZe) = @ ¢ E (PP o (20) (G
= a -2=1 a

n-2

... . n
where coefficients Pl,a(za)’ ,Pn’a(za) are holomorphic on Ua and (2)
is the binomial coefficient.

We denote by Ln(P{z] the collection of local differential operators
.3 , (P =
(2.3) L Pl = @ e lz ),

and denote by JZ(n) the set of all Ln(Plz).

For a given complex line bundle X' F Hl(X, 0%}, we associate an element
Ln(Plz) € L(n) which satisfies the following transformation relation in
UOE il UB
dzB n 1
= (— - p A .
(2.4) Ly a(Pal2dy = (G Age(zg) ™ Ly o (Plzgdh gzl

a



Definition 2.1. Differential operators Ln(Flz) satisfying the relation

(2.4) is called a_g?related differential operator.

Definition 2.2. Differential operators L (P]z) € L(n) 1is called a semi-
o — n

canonical form if Pl a(za) =0 for all «a.

b4

Lemma 2. L Let X € Hl(X, Gf) be a complpx line bundle on X, and Ln(Plz)

be a Arrelated differential operator. Then

dz dz

a, -1 -1

-1_d
)P () Ay

d n-1 o
)=—r _(z_ )+ ) )
dzB aB B 2 dzB: dzs

2z }.

(2.5) p (z) o

= (——
1 d
,a a zB

For the proof, see ([1], Lemma 3.5).

Pronosition 2.1. Let ;})€ HI(X, G}) be a complex line bundle on X, and

e

Ln(Plz) be a }?related semi-canonical form. Then

[degres| (V) = (n-1)(g-1).

Proof. From Lemma 2.1, haB‘ satisfies the differential equation
| dz
-1 d n-1.""ay-1_d .2 _
AaB(ZB)dzBXQB(ZB) 2 ‘dze) (dzB) 24, 0

The solutions of this equation are given by

8
Aas(z ) = (e €0).

B n-1/2 aB;
(QZa(dzB) /

e

Since the transition function of the canonical line bundle is defined by

dza -1 2
KaB(ZB) = (EEE = (CGBZB + dae) in Ua n Us,
and
degtKaB = 2(g-1),



~I

it follows that

aeg\(;;é) = (n-1)(g-1). Q.E.D.

We shall now prove an analogous theorem of the Laguerre-Forsyth's basic

differential invariants.

Theorem 2.1. lLet ”ﬁﬁ,= (Ua’ za) be a projective coordinate covering of X,
X € HI(X, G}) be a complex line bundle of X, and let Ln(P[z) be a A=
related semi-canonical form. In each projective coordinate open set Uw

we introduce holomorphic functions eﬁ a(za) (m=2,3,---,n) by :
S

k (m-2) 'm! (2m-k-2)! d .k
LD oD k) T(2m-3) T (dza) Pk, (%) -

: -1
(2.6) em’g(zg) =3
Then
I VL.
(efm’?(z’a)) € ‘__I;(IJZV, ({x/))

where (> is the canonical line bundle of X.

Conversely if local holomorphic functions em u(za) represent an element

s’

of (X, O%g?)) (m=2,3,---,n), then there is a complex line bundle X\ €

HI(X,‘O?) and, if we put

)
(2.7) p §Z )= ) (2-1)!(2m-1)!

d . ¢
=2 ™ (mfl)!(m+1—1)! (dza)

-m
6 z
m,a( q}’

the semi-canonical form Ln(Plz) defined in each projective coordinate open

set Ud} by

d .n
(2.8) Ln’a(Palza) = (EE;) + .

(z ) (3"t

( 2,0 o “dz
a

2

n
2) P

H ot

is a A-related semi-canonical form.



To prove Theorem 2.1, we need some lemmas

a b

Lemma 2.2. Let [ ] € SL(2, €©), then we have ;

c d

az+b
cz+d

(1) () "((cz+ )™ nEEDy)

p.m My
(-1) (p [w] c* (cz+d)

_ ): -w- 7m+p((d)m Dh)(i;:g)
p=0
and
(1) (05 ——)"((cz+d) ""h(2))
d(iiﬂ)
m (w)
- 1 (D0 G Plend) P P,
p=0 P m-p ’
where
W(w+l)eee(w+2=-1) if 2 >0
(2.9) wl, =
: 1 if ¢ =20
and
(W(w=1)+++(w-2+1) if 2>0
(2.10) (w)z =
1 if 2 = 0.

s

/
Proof. For the proof of (ii), see ([1] Lemma ).

Let us prove by (i) by induction on m. It is obvious for m = O.

Assume (i) for m and let us prove (i) for m + 1. Since ad - bc =1

d az+b, _ -2.d az+b
dz h(cz+d) = (cz+d) (5? h) (cz+d)

and



d . m+1 -w, _az+b
(770 (ez+d) "hi 5

)

az+b
cz+d))

h) (

a, M p.m [w]m p -w-2m+p__d .m- P
a;( E (-1) (p) [w] ¢ (CZ+d) ((E;)
p=0 m-p

m p,m [w]m p-w-2m-1 m-p
z (-0 ( ) W] (p-w-2m)cP* (Cz+d) (7 ) h) (

p=0 m-p

az+b
cz+d

)

"

P p-w-2m-2 __d . m-n+l az+b
cP(cz+d) (GH" T

)

(w]

m m
( 1) (( ) [W] - (p-l) [w]m—p+1

(p-1-w-2m))

[
i~ 3

2m-2 1 b
L Plezs )P 2 (" Ty (221D

¢ (ezrd) VI ™ iy @20y L )™ ™ (ezed) T IR EED

By a simple calculation, we find

(w] (w] (W]
(m) o m ( m —————E——(p-l-w-Zm) - (m+1) m+]

p° Wl p p-1) Wl pe1 I T P

Hence we have

az+b
cz+d

D™ (czed) M (EESD

m+1 . wl .,
-t 0P h T;T—T—l— cPez+d)
p=0 m+l-p

-w-2(m+1)+n,_ d m+1-p uZ+b)

(™ P

cz+*’’

This completes the proof. Q.E.D.
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Lemma 2.5. Let X be a compact Riemann surface of genus g > 1, let

UL = {U, z} be a projective coordinate covering of X such that the
a’ o

transition functions are given by

a z_ +b a b )

; - BB aB a8 aB) o SL(2, @),
a c z +d
aB B8 aB c d

aB af

and let X € HI(X, Qx) be a complex line bundle on X.
Then linear differential operators Ln(Plz) is a )-related semi-canonical

form if and only if coefficients {Pm a(za)} satisfy in each Ua nu

n, 8

(2.11) P. (2) =(c .z +d )% (2)

) 2,8°°8 aB B aB 2,a"a
and for m = 3,4,---,n,
(2.12) P (2) = (c .z.+d ) 2™p  (z) +

: m,B" B aB"B aB m,a " a

m-2 pom ) o p
¢ EDPE @) e2) - op) el (e pzgrd IR (2 ).

aBZB o«

>

p=1

! -
.Proof. Ln(Piz) is a A" 1-‘related semi-canonical form if and only if in

each U N U
a B
d

Z
_ a\n -1
Ln’B(PBIZB)y = (dZB) AaeLn’a(Palza)kaBy.

Since aaBdaB-baBCaBA= 1, we have
dza _ 1
dz

and by Proposition 2.1,

AQB(ZB) = (ca8284-da
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where e 8 is a complex number.
a

By virtue of Lemma 2.2, we have

d .n y _ n+l d .n
(dza) (c 2z +d )n—l ) (CaBFB+daB? (dzg) Y
aB B af
and denoting
(a)l = a(a-1)---(a-2+1),
It follows that
n d . 2 y
‘ﬁ(l)Pn—l,gﬁza)(dz ) (c 2z +d )n-l
aB B8 B’
n-2 L (n-1)
_ n P2 2 p -p-n+22+1_d .2-p
= I (,)P ) (D" Qe ¢ (¢ z +d ) ) ')
20 27 n-L,0" o p=0 P (n-l)z_p aB” aB B aB dzB‘

comparing the coefficient of Ca%e)zy, we obtain the desired result.
B
Q.E.D.

-
‘Lemma 2.4 Let F(z) be any polynomial whose degree is less than n. Then

n
(2.13) : -D*MF@) = o.
2=0 .

Proof. For a non negative integer m less than n, we introduce the
)

polynomial Fm(z) by

F () = Go"-n)"

n
z

DA LD s (e 2T
2=0

Since Fm(l) = 0, it follows that



n
: DPMe@-D) - (2-mel) = 0.
L
2=0
We can now conclude (2.13) by induction on the degree of F(z). Q.E.D.
Proof of Theorem 2.1 By virtue of Lemma 2.3, we have
o d o2 -2(m+g)
—~ \*p =
(dzs) n,s %8 = (Cap%57%s) ~
m-2 2 [2m-p]
p+q My L ‘L p*q p+q._d \2-q
o DYDY e P e Lzvd )T T (2
p=0 q=0 p a’ [2m-p], . "aB "TaB"8. aB dzg”  mopia e
m 1 if p=20
where { '} = n
t(p)(m-l)---(m-p) if p> 0.
Therefore we have ;
(2.14) O, (%)
5 M-2 m-2-2 g _ [2m-22-p]
= (egprgrdg) T I T T GOPYMH QA e P
a pad 2:0 p=0 q=0 p q L p Z‘q P
ez +d IPTAE) % (z )
aB B aB’ dZBJ m-p-2,a " a’
where
A _ l(_l)Q (m-2)!m! (2m-2-2)!
m, L 2 (m-2-1) ! (m-2) ! (Zm-3)!g!

By a straightforward calculation we obtain ;

.. -2m, d s " \
the coefficient of (CaBZB+da$) Cazg) Pt(Za) in em(ZB)
m-t [m-g+t]
_ _ m-s-4 m-2 L L
= 1)CGB(CQBZB+daB)) zis{m-l-t}(l—s) [m-1+t]SAm,l



m-t
m

- . -s- 2 (2m-2-2)!
- ((-I)CaB(CaBZB dae)) c(m,s,t)gis(—l) (2-s) ! (m-2-t) ! (m-2+t+s-1)!

where c¢(m,s,t) 1s a constant depending sololy on m,s,t.

Since
RPN (2m-2-2) !
=5 (2-s)!(m-2-t)! (m-g+t+s-1)!
1 ; (-l)l(a) (2s+2a+2t-2-2)!
al =0 .’ (2s+a+2t-¢-1)!

where a = m-t-s,

and since (2s+2a+2t-¢-2)!/(2s+a+2t-2-1)! 1is a polynomial F(&) of degree

a-1 with respect to ¢, we have

m-t (2m-2-2) !

2‘ -
Y.ES -1) (2-s)!(m-2-t)! (m-2+t+s-1)! .

21 a L .a
EEIRASONSLIOR

By virtue of Lemma 2.4, if a > 0 then it follows that

a
1 2. .a
ar T (-1 (Z)F(Q) = 0.
T =0
This means that the coefficient of (c _z_+d )-Zm(_g_)sp Jz ) (m > t+s)
aB 8 aB dzB t,a” a’
in eﬁ,B(zB) is zero.

We can now conclude

2m :
em’a(za) = (CaBZB+da8) em,B(zB)'

Conversely if we put,

0. (2-1)!(2m-1)! _ d .g-m
) @D T (mez-1)1 (dza) ®n.a

P a(za) -

L, (za)'

H o=

m=2
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We can verify that {em 0L(Zm)} € rx, O(Km)) are given by the semi-canonical

»

form defined by (2.8) is Ar-related if and only if the equation (2.14) holds.
But we have shown that in the equation (2.14) there are no terms with p+q > O,

hence the right hand side of (2.14) is equal to

-2m
+d . =- .
(CaBZS (a8) em,a(za) emsB(ZB)

This completes the proof. Q.E.D.

‘Theorem 2.2 Let X be a compact Riemann surface of genus g > 1 and for

= . R
a projective coordinate covering U/ = {U , z }, let {g' (z )} g(r(qp,&(gm))
- a’ .a; ,a . a o -

(m=2,3,.. n). In each coordinate open set U , consider the differential
Qa:

equation

(2.15) ny . ; M. 1" =0
dz | -» 2 L0l dza ‘

L

where (P (z )} are defined by
L,a a

b4

g, (2-1)!(2m-1)!

L
i} d
Pral?l) = mfz(m’(m-l)l(m+z-1)z (d;a

) 3] (za).

Selecting n linearly independent holomorphic solutions 0, Ol(za)'-'tDn Ol(zu):
of the differential equation (2.15), introduce the vector-valued functions
in each coordinate open set Ual-as follows

(z)

l,a

© (z) =

.ccl‘Q
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Then in each intersection Ua_ﬂ UB there 1s a unique matrix DaB € SL(n, ©)

such that te——SEtm—E—S0och o
aB
(2.16) © (z) =0 (c 2,4 ) 0 (2,)
o a aB” aB B aB B B

deto (z) 1o (z.),, ()" o (z)] =
a

where cOl is a non zero constant.

Conversely if holomorphic vector valued functions {¢£[za)} defined in each

projective open set Ua satisfy (2.16), then (Bm a(za)} defined by (2.6)

is an element of <T(u, @{gm)).
. ~

iProof. By Theorem 2.1, the semi-canonical form Ln(Plz) is a A-related

differential operator. Therefore if ml 0l(zm),---;io (z) are n

n,a o linearly

independent solutions of the differential equation (2.15), XB awl a(za),---,

AB,an,u(za) are linearly independent solutions of (2.15) in U87 Hence

there is anon singular n x n matrix Pug and hoa(za)} satisfy in Ua nu

8

1-n
wa(za) - paB(caBzB+daB) wB(ZB)'

Since Ln(P|z) is a semi-canonical form, the Wronskian of functions

z z MG i . i is con-
wl;a( a)’@Z,a( a)’ ,On,a(za) is constant Hence the matrix paB

tained in SL(n, €). The converse is obvious from Theorem 2.1. Q.E.D.

N\ e
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5. The transvectant

In this paragraph we shall introduce differential operators called the
transvectants. The transvectant is the one of basic methods to create new
covariants from given covariants and is known since 15-th century in the
classical invariant theory, we shall now generalize the classical trans-
vectants.

Let UL = (Ua’ za) be a projective coordinate covering of a Riemann

surface X such that the coordinate transition functions are given by

a_,z,+b {a , b
d‘z._EE_E:EEE , with o, = 8" "aBl ¢ 5p(2, T).
Cag?8 %8/ ¢ c A

af’ qu
Let P be a point in X, and consider in various neighborhoods Ua of

the point n, x n, matrix valued holomorphic functions fd(za) such that,

if the point p is contained in Uaiﬂ.UB,{fa(za)} satisfy ;

-m

. _ 1
(3.1) fa(za) = (caBzB+ daB) AanB(ZB)

where m_. 1is a integer and Aa

1 € GL(n, ¢).

B8

Similarly let {ga(za)} be ng x n2 matrix valued holomorphic functions

such that,in a neighborhood Ua~n UB of p,{ga(za)} satisfy
_m7
. = d -
(3.2) 8,(z) = (e g2g + d 0) "B g8a(2g)

. . -
where m, 1s a integer and BdB € GL(nz,_@z.

‘Definition 3.1  Denoting (m)r ke {0,1,2,..-} by

(m(m-1) +-- (m-<+1) if k > 0
(m) =

K

1 if k =0,

assume (m,) (m,) # 0. Then the r-th transvectant <«f (z )}, g (z )>r of
1'r  2°r o @ a a



f (z) and g (z ) 1is defined as follows
a a a a

L. 1
-D7C)
0 L (ml)g(m )

r
<fa(za),ga(za)> (za) = s

L

o~

d % d \n-2 ¢t

() fa(la)(a;—Q ga(za)’
a S a

where t( ) stands for the transposed matrix.

" Proposition 3.1 Supnose matrix valued functions f (z ), g (z satisfy
Propositi ol a( o) Da( o) y

(3.1), (3.2) and if (ml)r(mz)r # 0, then the r-th transvectants <fa(za),

T . . . .
g (z )> satisfy the following transformation relation
o«

T 2r—(m1+m2) rt
(3.3) <f (z ), 8,(z)> = (anzBﬂ‘daB) Aa8'<f8(28)’g8(28)> Ba&-

Proof. By virtue of (ii) in Lemma 2.2, we have

1 d .2
E(H;_) fa(za)
(ml) a
. d [ 2-p
2e-m) % ) (d—zs-s "8 2 -p
= A d -1 c* d ,
uB(CaBZB+ a8? pEO( ) (p) (ml)z-p a8 Cas?s” “3)
and
1 d .2
(77" 8 (z)
(m )2 dzu a a
2 ' P g (z,)
200my 2 Nay o BT "
= B : -
a8 g8 e pfo( D) CRIN 8 (Cag®s*%ap’
Hence, putting
d . 2-p
[(*  ar Y o (dze T [ S%g P
M(f, g) = z (-1) (2‘)( T (-D7C) (m.) l,c z +d }
tz=0 p=0 p 17 ¢-p aB B aB
d ,r-¢-qt
r-1 () 8g(zg) c q)
q,r-2, B8 aB ]
L D0 ) Tm c .z +d ’
q=0 E 2’r-2-q ag“8" aB’
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we obtain

r 2r-(m1+m2) .
f =
< Ol(za),ga(zab (ca828+da8) Aagl M(f,g) Ba&'

We shall show that

r
N =
M(f,g) <f8(zB), gB(zB)f .

Putting g¢-p = j, r-2-q =%k and p+q = s, denote a(j,k,s) by

d .j d \kt
. (dZB} fBﬁ;B)(dzB) 8g(2g) s s
a(j,k,s) = the coefficient of (-1) (m') CRRIT (C —d )
15120 8”8 ag’
in M(f, g).
Then we find
-Dfrt if s =0
a(j,k,s) = )
0 if s> 0.
This shows
r
1 = . .E.D.
M(f, g) <f§(zg), gB(ZB}? Q.E.D
By virtue of (ii) in lemma 2.2, the following proposition is clear.
[~
Proposition 3.2 If matrix valued holomorphic functions {fa(za)} satisfy

the relation (3.1) in each Ua‘ﬂ UQ, then matrix valued functions

a M1 )
EE; fa(%g) satisfy in Ua n UB;
m_ +1 m,+2 m, +1
- d .1 1 d 1
.4 = z ——
(3.4) (d;a) fq(za) (c,p%g*dyg) Ag e CNE



§4. The Eichler cohomology groups

We shall review some basic facts and definitions about Eichler cohomology

groups associated to the given projective structure on the Riemann surface

lLet Uﬂ = {Ua’

the coordinate transition functions are given by

a} be a projective coordinate covering of X such that

™

a z_ +b a b ]
, = aB B afl af aB. c SL(2,>¢) in Ua nu

a c z_+d B
af B of CaB daB

and let X\:f HI(X, Gx) be a complex line bundle defined by transition

functions

4.1 A, (z

aB - )

8) = CupZatdup

For any integer n 2 0 consider the subsheaf Pn(A-n) c O(A-D) consisting

of holémorphic sections of A " which -are polynomials of degree

IA

n.

If pc€ U is a point of X and f € O(XTH)D is a germ of section at p,

a .'; ’Y

then f 1is represented by a holomorphic function fa(za), and in Ua n UB

{£f (z )} are related by
(64 .(E!_.’

£a(zg) = (c

n
aBZB+daB) fa(zaz'

-

By Proposition 3.1, we have an exact sequence of sheaves

n+1

d 2

(4.2) 0+ !;(AT“) o™ o™y 50 for any n 2 0.

From this exact sequence 4.2, we obtain for any integer n 2z 0 an exact

sequence of complex vector spaces

* *
"y %o, oMy > o,

NN

0-rx, o™ H ™) Sonlix, ey

y

X.



where f(—)* stands for the dual vector space to T(-).
The groups HI(X, Pn(k_n)) are the Eichler cohomology groups of the

Riemann surface X.



35. The monodromy representations.

We shall investigate flat vector bundles comming from monodromy
representations of the fundamental group of X.

Let {¢h(za)} be the holomorphic vector functions satisfying (2.16) in

U nU_, and denote the Wronskian matrix of ;Q(z ) by F (z ):
o 35 . o a a
d d .n-1
(5.1) F(z) = lo(z), E:“’a(za)’ g ez )l

If p 1in a point of Ua N U - there is a holomorphic vector valued func-

8\:
tion @EB(P) such that,
2 = € b
(5.2) FaP)2(P) = o oF o(p) for p €U, NU,
n-1 ‘
Xae (zB)
n-3 *
- >\OLB (ZB)
5. ¢! = .
(5.3) ag(Zg) o . ®
1-n
L Yag (%8))

Thus {Qns(p)} are considered cocycles as describing a holomorphic
vector bundle ¢, and flat vector bundles {paﬂ} are analytically equiva-
lent to @i

T . s t W - * * 1
Y = L -“) Z in
}\? introduce vector valued funct.lons () (Z ) ((D , 1 (Z ) > ’n( ? )

each coordinate open set (Ua’za) by

1 _ o -1
(5.4) ©® (za) = the n-th row of Fu(za) .

. . . . .
{wa(za)} satisfy in each intersection Ua n QB

(5.5) @8 (zg) = At (2g) (o) (z,)-



N
[RS]

Let
8, 5(2) = (8, ; oz} (121 s dim m(x,o{Kz))
63,3(2) = {es’j,a(za)} (1 =j = dim r(X,&(x>))
0,3 (2) = {8, (2)) (1 =k £ dim [(X,0(5)) )

2
L7

be a basis of the complex vector space E(X,O(KZ)) G oo B (X,O(K?))’

N
n ;
and let (eé(z),--'ef(z)) be a point in the vector space & T(X,O(gw)).
o0 m=2
We shall introduce local coordinate {...$£2),‘..’tgo)’.’_’tén),._.} at
_ _ no.o
the point (82(2),--3§ﬁ(z)) in & TIX,Mx )) by
m=2-"
U €5 NI ) BTN . 0 e Y
(5.6) {oee,t™, A A P> 48,(2,1),85(2,1), - +584(2,1) }
where tgm) (2Zmsn) are complex numbers such that !tgm)| are small
enough, and
| dinf (X,00™) o
_em(z,t) = em(z) + ~ 251 tZ eﬁ,l (2 2m 2 n).

Let {wh(za’t)} (resp. wh(za)) be vector valued holomorphic functions

corresponding to the point (éz(z,t),--Ben(z,t)) (resp.(ez(z),-->ag(z))

n

in the vector space ‘%Z{{X;Qéﬁg)) by Theorem 2.2. Then in each inter-
m=2~
section ua\n 96?vector valued hblomorphic functions {wa(za{})} satisfy;
5.7) @ (z,t) = (c amgrd ) Mo ()0 (z,,t)
a a’ aB B "aB aB B 7B
o (z,)] o =@,z
where paB(t) < SL(n{F), and o B(t)ltzo = 0.5



It is easy to verify that paB(t) varies complex analytically with

the choice of the parameter t = (---tgm)

cee).

We consider semi-canonical forms La(Pu(za,t)]z )
.

(z )
Koy

n
d \n n d ,n-¢
Y (= - (= —_
(5.8) La(la-“a’t)zaJ (dz )+ (2)p2,a(za?t)(dz g
01 =2 _ o
ava n m
corresponding to an element (eé(z,t),---,eﬁ(z,t)) € & TI(X,8k-:)), where
m=2'..‘
szggza,t) are defined by
(5.9 p (0 -z (HUDIEEDL den (o
' L, o af . Zo'm’ (m-1) ' (m+g-1) 1dz - Mm,o, o . Mj Mj,q
j m=2 ot
and
(5.10) em(z,t) :{E%(z) + Ztmjeﬁj(z) for m=2,3,o-?n.

In each coordinate neighborhood U.<JL with local coordinate =z ., select a
' &,

4

point Pa’ and consider the differential equations

(5.11) La(Pa(Zg,t)xfa)Y(Za;t) =0

under the initial conditions;

l‘;;’ ¢ .

Where p 1is a point in Ua and Fa t(zd? is the Wronskian matrix of the
differential equation (5.11).

If de and W both are chosen sufficiently small, there are unique hol-

omorphic solutions 'wd(za,t) satisfying (5.7).

By an easy calculation, we can verify that the vector valued functions
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—jLﬂpf(z ,t)] N satisfy the non-linear differential equations:
Btmj‘u; o t=0
(5.12) oy s s (Y GGy
: dz e, d- y
a =2 :
n
i (2-1)!(2m-1)! ~d .g-m d \n-g_ _
G D D T T 0 el @D Y 7O

Definition 5.1. Letiﬁiﬁ{(Ud,za)} be a projective coordinate covering

——

of a compact Riemann surface X, let {qa(za)} < T(qu@{p?)) (m=2,3,+-3n)
l .

and let {¢h(za)} be vector valued holomorphic functions satisfying the

relation (2.16) in each U n U&

We define the matrix valued holomorphic differential 1-forms eiw’q]‘z
M

in each coordinate open set U&g as follows

N

- lv,ql -
(5.13) Ba (;a) =

: )(l,gj }%,E;TQI{;.(df )" Yo (2.) (G5 M (2,) “ox(z )dz .
£=m o a’ '

‘Lemma 5.1. If p 1is a point of U n U

nxn matrix valued holomorphic

B’
hIlﬁgtms {e[w’q](z )} satisfy in U n UB
ol (2 (p))= 4 (6,50 [w’q}(zscp))

[~

Proof Denoting the vector valued holomorphic function Aa(za) by

—
" _ (2-1)!'(2m-1)! , d .n-2 d . 2-m
Aa(za) - 25 ( )( )(m 1) ! (m+g- 1)'(dz ) wa(za)(dza qa(za).

A straightforward computation shows that

_ (-t ,n-m
Aa(za) - (m)(m-l)! @a(°a)’ qu(zq}




R}
a4

n-m .
where < > stands for n-m-th transvectant.

b

By a property of the transvection, {Aa(za)} satisfy in Ua:ﬂ UB

n+l
Aa(;a) = oas(ca828+da8) AB(ZB}.

Applying the relation (5.5), it follows that
A )0 (2) =0« (2K (z) 0 (2 )0 "
o a ot a OQB aB g7 TRYTR7 BB T aB”
This completes the proof.

:Lemma 5.2. Let p be a non negative integer, then

] —
——

n-1

xerl)elen-l) -y @
) 2=0
where
(x) _ o X(x=1)e-e(x=-2+1)
I 2!
;Proof. Putting
—
. n-1 L. p+2, ptn+x
Fo) = £ (-1 (PPN
=0
and
_ Xx(x+1)-+-(x+n-1)
Gn(x) = =

Fu(x) and Gn(x) are polynomials of degree n.

We shall prove by induction on n;
F (x) =G (x).
n n

If n=1, the assertion is obvious. For any polynomial p(x),
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we define the difference operator Ap Dby A4p(x) = p(x)-p(x-1).

Since A(k;X) - (k;fix), we have

AFn(x) = Fn_l(x), and AGn(x) =G (x).

n-1

By the induction's hypothesis, A(Fn(x)-Gn(x)) = 0.
Therefore Fn(x)—Gn(x) must be a constant.
Since

n
Fn(0) = n—l!(z__z_o(-l)z(‘,j))(p+1)(p+2)---(p+n) =0 and G (0) =0,

the proof is thereby concluded.
3
:The following lemma is an immediate consequence of Lemma 5.3.

sy

1
. :
H

‘Lemma 5.3. Let n and m be positive integers and let p be a non

—

negative integer, then

Zn
1;:‘ (_1)(1) - m(m+1)...(m4-n_1)
g=g (Pre+1)(p*ra+2)---(p+ra+m)  (p+1)(p+2)---(p+n+m)

Definition 5.2. Let ?@ = {(Um,zq?} be a projective coordinate covering

of a compact Riemann surface X, let {qujza)} S T(@L@(Kf))(m=2,3,o--n)
and let ﬁg&(za)} be vector valued holomorphic functions satisfying the

relation (2.16) in each UOl nu Wwe define the matrix valued holomorphic

CBJ
differential 1-forms {*eiw’q](ia)} by

(5.14) *eiw,q](za) )
n 2. (-1 (2m-1)! d ,2-m d .n_ . .t
Zim(z)(m (m-1) T (m+2-1)1! [(dzh) ((g;;) oz ) (Dm(zm))]q(l(zm?dzmT



Moreover we introduce the matrix valued holomorphic functions {Bm a(za)}
, /

in each Uu as follows

n 2-m
k-1,n,,2, (2-1)!(2m-1)!
B (z)= T (-0 )
m,a' a g=m+l k=1 27 'k’ (m-1) ! (m+g-1)!
L d (2-m-K d k-1 d .n-¢ . _ t
G e ) G () e (2) sz )
a a a
35929§£§ion 5.1. In each intersection Uq n UB) the following relations
fold
: [@al, [ea],
* z = A *
(1) % P%z ) = ad(p g o2
(ii) e[fD»Cl] _ *6[(0q] = dB
» o a M, o
‘Proof. First of all, we shall prove
(5.15) sgleale; y -
) a
2
- -1)! -1)! -
(_l)n m(2m-1)!((n-1}!) _ 0.(z ) 0% (2 ) n My .
a o a a a

(n+m-1)1 ((m-1)1)

By virtue of Lemma 5.3, it follows that

v

2, n-m-k 1

n-m-K
<
2=0

. (n-k-1)!(k+m-1)!
(m-1) ! {(n+m-1)!

Hence we have;

M om-1) tn!

(5.106) z )= I
k

a7

* [‘b’q]
Qd ( -0 (m-1)!m! :

DRk ek L (P o™
a

(‘1) ( I3 )(2+k+m)(2+k+m+1) ...(g+k+2m—1)

m-k t o d k.,
wa(Zq) ((a;;) (Da(za))dzOl



—

On the other hand’the n-m-th transvectant for vector valued functions

dr,

oa(za) and uh(za) is given by

n-m o
(5.17) <o (z),05(z )" " = ——— 1 -0 (k-1 (mek-1) -

((n-1)1)° k=0
n-m,  d ,n-m-k t.d .k
@) e ) () @z

comparing (5.16) and (5.17), we obtain (5.15).

By a property of the transvectant, we conclude

Lalo,q] AN eal®,ql,
ea (fg? - Ad(paB) 68 (ZB)'

By a direct computation, one can verify the part (ii). Q.E.D.

We denote by Adod the flat vector bundle over X defined by the

transition functions Kﬁbpd acting on the space of nxn matrices of

B
trace zero.

o

If we normarize the vector valued function wh(za) so that the Wronskian

{

matrix Fa(za) of ¢h(za) is equal to the unit matrix at a point p in

u from (5.17)(resp. (5.13)) it follows that

a’
T 0! )y 20 (resp. T wlal, 4y 2oy,
Tt o a T a ¥

Therefore matrix valued holomorphic 1-form *eiw’q] (resp. eiw’q]) is

a Prym differential contained in the space _ﬁlng}O(Aaop)).

lo,85.]
Lemma 5.4. Let {6Ol -

(Z&)} be matrix valued holomorphic differential

z

1-forms in each coordinate open set (Ua’zd) by (5.13), and after passing
to a refinement of the covering Ui;if necessary, select holomorphic

. . . XN
matrix valued functions Ga(za) E;GU such that
[s A0
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]

(Za) and Ga(pa) = 0 where

[p,8

- - mj
dG_(z ) =3

p_ 1s a point in Ua'

Q

Then the following variational formulas hold in each Uu 5

(5.18) —a‘ti—j(oa(za,t) leoo = S,(2 0 (2 )

Proof. Since the vector valued functions —Ji—w (z ,t)] satisfy the

ot . Ta o’ t=0

differential equation (5.11) in Ua’ an easy calculation shows

Z
3 _ ar -
T Ol oo - (‘Sé'%[“”smj“'%(za)- Q.E.D.
a

We shall consider the complex variety V = N/SL(n,C);
.

! = 4 oo e oo = Zg : e e =
N = X, KLY Y ) € SL, D) B IIX LY T, e XY T = 1)

.
where [ ,. ] stands fot the commutation and SL(n,L) acts on N by the
Wy
. AN
inner automorphismys.
By Theorem 2.2, any element of & (X, 8(x )) defines a flat vector
m=2‘L-‘

bundle {p .} on X.
aB’.

We define the complex analytic mapping
n m
(5.19) 0: &rX, &x)) - V
‘ m=2* w v

Kin

- K

(8, ==98y) ———  (p(oy), 3p(05) e (1), 50 (1,) “mod SL(n,C)

where ( p; denotes the representation associated with the flat vector bundle

\
defeined by the transition functions {Daé}'
-/

N ,J;v
Theorem 5.1. Let {Ua,za} be a projective coordinate covering of a



Riemann surface X, and let {p,B(t)} be cocycles defined by (5.7), then
a

the following variational formulas hold in each intersection Uol N u,;

B’

-1 3 S | v L _
(t) atmjoae(t”t:o'Ad("ae)ca(za’ GB(‘S)

paB

—

= j = dimp(X, @(S?))

: - _ ,n-1
?foof. Since ma(za,t) = AaB o} 8(t)(pa(zs,t), we have
3 n- 1a
atmjwa(za’t) le=0 = Ag ot .(t) le=09p(2g)
n-1 3
Nag fas 3t 987V leso.

By Lemma 5.2, it follows that

b
n-L -1 3 _ -1
Ao pa8~8tmj o9 le=0 ‘?asca(za)pas“ps(zg),
and
5t P2y )|, 4 = G (z)0,(z,).
m) . t=0 BB "B B
Hence we can conclude
-1 3 -
et ﬁ"as'c 0%z = (Ad(o18)G, (2)-6,(2,))0,(z -
This completes the proof. Q.E.D.

We shall investigate the differential equation (5.11) in a small
Lo
neighborhood of the origin¢ in the parameter space t (see (5.06)).

-

(Eﬁﬂm? 5.5. Let X(z), Y(z) be vector valued functions defined as follows

} . .
-

X(Z) = Z(n_‘l—a) , Y(Z) - ( 1) Z(a)



(a) _ 2°
where a=0,1,2,-++-,n-1 and z =37
We introduce the n»n matrix valued function Mn m(z) by
’I
n-m
M z) = <X(z Y >
ML R (2) = X(@), Y(@)
n-m

where < , > stands for the n-m-th transvectant.

Then we obtain;

(1) the maximum degree of components in Mn n(z) is equal to 2(m-1)
i 2(k-1)

S z hS = . -~
(2) Tr(ﬂn,i(~), dn,k(W)) ¢k (2-wW)

where &,

ik is the Kroneker delta and Cx is a non zero rational constunt

dependent sololy on (i,n).

Proof. From definitions the following properties hold

(1) XDy = (czed) A (2)
(ii) Y(izig) = (czed)' P CA;}Y(Z)

where d=(2 3) € 5L(2,¢j and o - A0 is the n-fﬁ~symmetric representation
(80 V]
of SL(2,C).
Vi

By virtue fol Proposition 3.1. we have

. az+b, _ S2(m=1) 41 x
”n,m(cz+d) = (cz+d) Ad(AU)dn’m(z).
. . - _.1p - =01
In particular,putting 01—(0 1) (p ty%?, a5 (_l 0)
we have .
-1
= | A = A -
(5.20) Jn’m(z+p) Ao.dn,m(z)Ag,
1 1
and
-2(@n-1) -1
5.2 A - = M .
(5.21) ln,m( 1/2) z A0 ”n,m(z)égﬁ

2 2



(7]
N

It follows from (5.20) that the maximum degree d of components in the

matrix Mn m(z) is not greater than 2(m-1). If d < 2(m-1), again by

(5.20) we have Mn m(O)=O. Since a straightforward computation shows that

b

the (n,n-m+1) component in the matrix Mn n(z) is not zero, the maximum

Xl

degree of components in the matrix Mq m(z) is equal to 2(m-1).

ity

From (5.20), (5.21), for any non zero complex numbers z,w we have

A v = ] N ) - A .
Tr(Mn’i(z),ln k(\)) Fr([n,l(z w),Jn,k(O))

2

_-2(m-1) -2(k-1)

Tr(Mn,i(-l/Z),Mn’k(-l/w)) = Tr(Mn,i(z)’Mn,k(w))

W

Tr(r\zn’i(z;;),zqn,km)) = TrM 5 1/2),M ) (-1/W))

Hence we conclude;

Tr(Mn,i (Z) rMn,k(W)) = Ck 6i;k(z_w)2(k‘l)

where Ck is a constant.

We shall show that the constant Sy 1s not zero.

By a direct computation the (p,q) component Mn m(z)p q in the matrix
M (z) 1is given as follows;
n,m
n -m_n, 2
"In,m(z)p,q = LD

2=m

(e-1)1(2m-1)! (2+q-p—1)z(m+q-p—1)
(m-1) ! (m+2-1)! q-1

where we denote for any integer ¢

Zl
' £ >0
()

z =

0 L =0



(92}
[62]

Since the degree of the (p,q) component in the matrix Mn n(z) is m-1
if and only if p=q, the coefficient of Zm"lwm_1 in the polynomial
Tr(Mn,m(z),Mn’m(w)) of 2 variables =z,w 1is equal to
n n
2-m, n, 2. (2-1)!(2m-1)! 2-1..2
Z(Z(—l) ()() T |(-))
p=1 g=m (m-1)!(m+g-1) 1
Since
n g-m,n, % (2-1)!(2m-1)!
L-D7 (G ) ,
2=m (m-1)!(m+g-1)!
-m
_ (2m-1)! 1
- (m)(m D 25 (-1) ( )(2+m)(2+m+1) -+ (2+2m-1)
- ( )(2m ! (n-1)!
(m-1)! (n+m-1)!
.. m-1 m-1 . 3 .
the coefficient of 2z w in the polynomial Tr(Mn m(z),Mn m(w)) is
not zero. This means that the constant Cx i1s not zero. Q.E.D.

Let us introduce vector valued holomorphic functions Xa(za), Ya(za),

M "(Za) in each projective coordinate open set (Ud,za) by

n,m,o

Xa(za) = X(%g), Ya(zg) = Y(Z&) and Mn,m

{Xa(za)} correspond to semi-canonical form

L
n,a o

and Ya(zq) = X;(Z&Q.

~

By virtue of Proposition 5.1

(5.22) (Mn m,aﬁza)em,a

»

and

(p lz) = (

for any element

(2,)) € FiE, Adgo)

,a(za) - Mn m(Za)

>

2(2g) € LB 8),



2(m-1)-

5.233 Tr(M z M W =c ¢,
(5.25] (ln,m,a a)’ n,ﬁ,a( ql) m-m, 4

(2g = ¥o)

Definition 5.3. The G€-linear mapping Bﬁ from the complex vector space

of‘holomorphic m-differentials p(x, Q(Km)) to the vector space

rx, OI’O(Adop))/dr(X,O(Adop)) is defined oy
. 4 . \

29 ' 2
By rex, o™y > rx, 650 (adp))/dr(x, o(ade))
(6, (20} = {Hn’m’a(za)em,a(za)}/ﬁod dar(x, 9(Ad;0))

Exhggxggls.z. Let o be the complex analytic mapping defined by (5.19);
.\%*‘—*' B

:r) n

S e e X, 8(0)) >V
‘ m=2

and let p be the n-th symmetric tensor representation of the fundamental

group (X). Then the mapping fé} is non-singular at the origing

(0,--40) € $P(X O(K )) and the ta angent space to the lmage at the point
2o, A

Q
o € V can be identified with the (nz-l)(g-l)-dimmen;ional subspace of
- v
Hl(X Adop) consisting of the period classes of the Prym differentials

r(x, O (Adop))

[N

A
Propf. By;Lirtue of Lemma 5.1 and Theorem 5.1, the tangent vector

W) 2 ()] € H (X, Adp))
Pag 35 o t=0 » AP
- - : - - \'
in equal to the period class of the Prym differential {Jn m( EI) o a(za)}

b

27

up to a non-zero constant. By (5.23) and recalling {Qmj a}(l;];dlmE(X,O(K?))

i . N
is a basis of (X, O(KT)), we can conclude that the image in HI(X, Adop)

A

of the mapping on the tangent space induced by the mapping o 3r(X, O(SW))
2 . .

+ V is the space of period classes of the Prym differentials [(X, 27

OI’O(AJ0 )). Since it follows from the Riemann-Roch theorem that

T



wi
(93]

n

L 2
dim & [(X, 8(x™)) = (n“-1)(g-1)
m=2
and
Ll 1,0, . " 2
dim I (X, & " (Adp)/8r (X, &{Adge)) = (n"-1)(g-1).
The mapping O is non-singular. This completes the proof.. 7 Q.t.D.

. g r, Ol’O(AdUa))
. = A e . . A I o A
g8y Theorem 5.2, the mapping %Bﬁ : f{fx, 6€x/)) (X, 0(Ad o)

\
N
~

is an isomorphism. Hence b§ following diagram holds: 7
5?}ﬁ¢>
no m 1 -(m-1) m
0+ &T(X, 6(<M) e (X, P (M) > ef(x, 0 > 0
_ - 2(m-1) e
m=2"™"
A G:Bm d %BI’;‘
Tex, o8 0ad o)) - rx, 8020 (ad )
e .0 : . 0
]* >0

l - 4
0 > EE sy T Mo?)  Far s )

where low sequences are exact and [ ]* stands for the dual vector space.
1 -1(m-1) 1 . .
Hgnce two vector spaces ®&H (X, Pz(m_l)(K; )) and H (X, Adopa are

canonically isomorphic. (See[4],[6])
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