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Some reSults in the theory of vector bundles

'v'Bivroshi UMEMURA S
~ We have several defxnltlons of the posxtlvxty Of a vectot bundle,
:differentxable deflnltxons, an algebro geometrlc defin1t1on, a topologlcal o
3, - definition etc. In §1 we review the definitions and the relations between -

‘-r' " them. 'Eor a line bundle all the definitions are equivalent_end-eye;y one

agrees that they are reasonable. For a vector bundle, however, the definitions

- - are not necessarily eqoivalent. One of the main results of thig‘paper is the

. Q' \ . .-N'. . ' .’
»eqpivalence of the deflnltlons over a complete non- 51ngu1ar curve. The proof is

r .

given in §2. We proved this over'an e111pt1c curve in Umemura [18].' In;this'

case the proof was based on Atiyah's classification. To pfovewthe equivalence
. '\‘,- . . .

over a curve of genus 2 2, the fundamentaillemme}is ;,A stablekbondle of
- ' lpositive degree is positive in thebsense of Nakano. The toolbueed;to Prove'
| this lemma is the theory of etabledbundiee due to:Neresinhanfend Seshadfi 
[11] '-they establish a correspondence between stable bundles and certain =
L }:ypes of irreducible unitary repreSentations of a»Fuchoien group.,v
}S.t "VAv We also discuse the H-stability of fenemoto“fron two'pointe of view. -
| In 53 we prove that over an abelxan surface‘ a ruled sur¢ace.cr a hyperelllptlc

. 5 o o .
;'urface H~stab1e bundle of rank 2 WIth c1-4c2 2 0 c1 > D,-cz >0 '15 positive

in the sense of Nakano. We ask in general T Isa stablé‘bundle7of:fenk Zvover:i'

»

¢ surfece with positive Chern class ample? This is the analogue of the iemma-l

. that ve mentioned above. But this is false unless 'J-4c? 2" 0 even over

.4
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"sn abelian surface. Hence H-Stability is not‘very comfortable in this case.

In $4, we deal with vani‘s_hing theorems. The first theorem is well

known as the index theorem. In fact an algebraic ptbof is known. The second .
theorem (4.2) is a generalization of the Kodéira vanishing theorem and ‘Mumford'é

result [8]. We also remark that a vanishing theorem of.Griffiths is p:oved~

easily by the standard argument using _cohomoiogical.idimension_ and the spectral

sequence of de Rham cohomology. A e LR

In §5 we study H(E) and g-(E) for a vectorAbundle E; “In"general " H(E)
and 9'(5) are toc; small. So we ‘have tg find a goqd fan.\ily“;)f ve.ctor
pgndles E such that H(E) and ?(E) reflect propertiesv."(_)fv E Over an
elliptic curve, if E is stable, H(E) and g(E) are nice and give the
Hei.se.nberg group. So:‘-it is quite natur‘al‘ to a_sk if H.(E)v and vl}(E) give
sufficient information concerning E 'fof an H?sgabie bt;nd_le E over an

- = 0.
c1 - 4;2 Here
A < 0 1is unpleasant. ' ‘ '

abelian surface. Unfortunately the answer is no unless

again the H-stability with ci - 4c
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. =31 Preliminaries LT

*7{1.1) Let V be a non-singular projective algebraic variety of dimension

= definéd over the complex number field €. Let E be a holomorphic vector

~bundle of rank r defined over ‘V. Let {Ua} be an oﬁen covetihg of V

.

' —such that E is trivial on each U . Let ga - be the transition matrix of

E 1.0; two elements x x 13 and x x EB with x eU aU
~ ‘a ‘ Y - |

. . B r
g’ %o 8¢ € are

v

-identified if and only if ge (X)Ea = £ . o o
u- . - . o .‘~

8

A hermitian metric on E 1is, by definition, a sét of é’-maps ha

é

£vom U to the space of positive definite hermitian matrices of degree r
a 3

" " so that D =D'+ D",

such that g (z)h (z)g (z) =h (z) forany zeU nU.
' Ba a  Ba B v a. B
(] . . N
A (C -) connection on E is a set of 1-forms 8, on Uc such that

ki

. ’ <-1 '.1 ot .
= - . h = . It
ec guB(QB uaB)gaB on Uu.n UB where waB gaBdgaB , is sasy to séi,_v

‘that a connection defines a C-linear map D : E~» Q;(E) by putting

. D(p) =dp +8Ap B

for a local section ¢ on each U . Similarly we can define two operators :
- a a S _ ;

D' tE— nl(E) . o },'»? fi'h
. |  > vi -
’;‘ é F; Y % A,Pa’
o ' 1
D" : E—— 2 (E)

‘?0*__._'_) *’""f’;

-
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D induces én opérator from ﬁP(E) to ﬂP’I(E) By the following formula

DG, §) = dag + (-1)Pa A Dg,

where )\ 1is a local section of ﬁp and ¢ is a local section of E. We

R

.denote this operator also by D. Dz, is called the curvature fbrm of the _

_connection @ = {ec}.' B RTIERC .
- Let h = {hu} be a hermitian metric on E.° Then by an éasy'calcﬁlation, f

we see that: {h;ld'ha} defines a connection on E. Let &9 } be the

.

céurvature form of the connection h 1d'h . More exp11c1te1y @ﬂ = dg
: » a a

9 a0 =-hldtah -hlah anTlah . Wepue .
.o e a a a a a a a .

B . - - fi " w.: |
®e(") - = h‘:‘g:{;’spe nn IR
‘ 1<p,t,0sT CT R
» ‘1si,j<n o
. t : r t sl
_whel‘e E = (E PR LIN E ) € C , N = (n . n ) € ¢ @__ ( T
1 T 1’
T ‘ : isi,jsn _
: ‘ 6:1jdzi‘ d;j)iSp cs;' and Zisvty 2 is.a local coordinate system on V (we '

-

drop the index q when no cofusion is possible). Co '_'Q.
WNe say that a vector bundle E is positive (resp. negétivg) and denote

it by E>0 (resp E < 0) if there exists a hermitian‘metric h on' E

such that () ( ) is p051t1ve (resp. negatlve) deflnlte any p01nt P ‘

of vV forany ¢ # 0.

" A vector bundle E is non-negatlve (resp non-pos1t1ve) and we

"~ denote it by Ex0 (resp E < 0) 1f there ex1st5 a hermltlan metric

h such that ( ) is non-ne atxve (non- 051t1ve) at any olnt P of _
g P P L

"V for any efo o

' Femark (1.2) Let P be a p01nt of V D& éﬁdosﬁng i fréme,‘we may



- (S . it -

issume d'h(P) = 0 and' h(P) = I. Then the curvature.farm.af. P is equéi
to -d'd"h. - s

. ) 'y S st

Remark (1.3) Let {(h } be a metric on E. If we put 79 =Th "£7¢

a ) a at 7"
| -ﬁith 3 l"‘t(fi see, £) ; ¢r von each U x Gr then ?’ is a well defined :
| 1 r R S la * D
function. Let P be a point of Uc' We normalize h at P as in Remark

+

(1.2). Then the Levi form of ? at P x g 1is equal to

[ 2's ' ‘
gr.h B 2s
T : {_ Eszt.’. T ? ht gsEt
. 1gs,tsr azlaz1 1<s,t<r 9z a;' -
. 1l n S
: : -0
2 4 2's ’ ’
3 h : 9 h
' t s—t t _s—t
n. ‘ . L —— & & e I — & &
| 1ss,t<r ?znazl 1<s,tsr azn'azn -
v 0 . \ ‘ b J

‘Hence # negative eigenvalues of &De( ) at P=n - # negative eigenvalues

of the Levi form 6f ﬁp at P R . "

RN

- -

Definition (1.4) A vector bundle E is positive (fesp} ﬁon—negative) in

.~ the sense of Nakano if there exists a hermitian metric h_ on E such that

t h:®;i,j_ E(D; )e(o,]) e
1<p,t,0<T , _ T

- 1<i,js<n
1s.positive (resp. non-hegative) at any point for any non-zero yé;tor
L C.d D AR - I
(D, _)'f'] € q:nr‘

e Lemma (1.5) If a vector bundle is positive in the sense of Nakano, then it

.

R T positive.l The converse holds if either T = 1 or n=1. .

" Proof. Trivial from the definition.



Remark (1.6). A positive vectar bundle is not positiﬁeiin the sense of

" Nakano in general. ‘ i e

_ Lemma (1.7) Let E be a vector bundle on V. Let h be a hermitian metric
en E. Then h induces a natural hermltaln metrlc h on E _ We have

v
@) = -t&D where @ (resp.@D) is the curvature form of h (resp. h).

. - v
proof. Let {hc} define a metric on E. Then {thcl} = {ha} is a metric

v
on E. In fact. s
° t—— .
gaahagsa h8 '
: Slt-le-l -l N -
. a8 a Ba 8 o
: R A 2
8 8ga 8" L
' v T t -1
Let 6 be the connection of { ha }. Then
-1 t -1 S ;‘ ;" 'v;“
. 7 B
) . -d'th°th-1
Cu tatam :
= -,te. I
Hex#ce ®D ;= 06;. | S o B \ . - l‘g.--'.‘ L

Exmaple (1. 8) Pro;ectlve space P We put U_'='[(x ,'x1 °-;; x ) e P [

, 4x1 } 0} fbr 0 <i s n. The tran51t10n functlon gJ of 0( 1) _;s xi/&j'

s - f



b
-

§ ,  .: v , g R o,
If' we put hi a ]xolxi[ +[x1/xi[ +.,.+[x‘(;i]z, then h, = lx /le h 'lgjil h, .

3
' , : xo xl
Hence {h ,} defines a metric on 0(-1). If we put z_ = — 2z_ = — ,...,
. g S ‘ 1 Xy 2 x,
x x x '
z = -2:1-, z = 1+1 ooy 2 -2 , the connection and the curvature
b 8 x i+l x X ‘ o
i i . i
" form on U: are given by | Lo . . ' . ,
. Tz ez dz+e-=z dz ' L e ;
A ld'h 171 2 2 n n | o :¢f’ 'g

l'lzll +i22[ +-..+|z l

-(1+lz1[ +.f.+|zn| )(dxlédzl+---+dZnAdFrg*

® =

2 2
L 1-&]:1' +...+[zn‘

‘ > . o'o.'-- o ese e .
\»o (zldzl+ zndzn)(zldzl+ +zndzn)
\ -~

. Hence O(-l) is negative and 0(1) is positive.

- Example (1.9) An abelian variety. Let A = En/P be an abelian variety

' U S n
‘where T 1s a lattice in € . Since € is stein and 51mp1y connected,

: every line bundle is defined by an element of H (r, H (c )) i.e. by a
cocycle u +—) eu(z) for T with coefficients in Hp(m", O*n) :
(2) = e, (z+u')- e, (zj.' - ;‘

. u§u!

Let H be a hermitian form on ¢n such that E = ImH 1s integral on

.'_r. Let a: P -+ {% € G[[z[ = I} be a map such that a(u +u )=ein(u1,u2).

Cale)eals), uer. meg uff_,_'gncz) - Cf_(u) “"‘f’“’* ”“‘“ W asa

- cocycle for T with coefficients inu Ho(Gn, O*n). "Hence »{eu(;)} determines
. . . R .« s A ) '» Lo ’ (‘ . )
. & line bundle L(H, o). The theorem of Appell-Humbert says that any line



" bundle ori A is nﬁiquéiy déférminéd b)"- a pair,_ (H; d) , séti‘..sfying the
condition above. - C e |
S ey 4 . )  =nH(z,2)
4 Let L = L(H, o) be a line bundle on A. If we put {(z) = e .
cﬂ . . . s . n n
2 ¢T, then 50 (z) is a metric on the trivial line bundle € x € on C.
Let .e_u(z) be the cocycle defined by (H, ‘a), then we have U e
C : wH(z,u)+-H(u,u) 2 S
D plann | OGN Z gy, e
) In fact, ?(Z*U)Ieﬂﬂcz’u)+?l(u’u)l2 ’ - . "."‘. - -
. . A ‘ . f‘;. . ‘." -
-gH(z+u,z+u) ﬂH(z’u)?ﬂ(“’u) lz '- Co
= e e : .
' . | wH(z u)+!H(u u) z
b . e-uH(z,z)-nH(z,u)-nH(u,z)-nH(u,u)le_ dadFidnd B
Lt ) l‘mﬁﬂémmj
o e-:rH(z,z).QZRe(-nH(z,u))-wH(u,u)le Rl AN l
: - e-nﬂ(z,z)
® P(Z) o *
. .Hence P(z) = [eu(ﬂl P(uu) }.e. ?(2) defines gmetr;c on L(H, ). We
T calculate the curvature. o - T _

Td'P=-r( r h .zdz)P |
. 1si,jsn 1331 —

a"¢=-x( © h,,zdz)¥
 1si,jsn I Y )

@ape -afan( T by z,d7)
DR 1<i,j<n J
s s e T h dz Adz,
Caed,gen P

R scantti
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‘, ®- ?-z(-?d'df'f + ‘d'f/.\d")o)
et 8 B

. where H = (h )‘ o .",‘g-‘-_’.'

ij

" Proposition (1.10). Let E be a vector bundle. " If Ej:islpositive (reép.

non-negative,

Mekan<), then so is any quotient bundle F of E. : ..”

pfoof.' We prove the dual assertion. Let E be negative (resp. non-positive)
and F be a sub-vector bundle, then F is négativé (resp. non-positive) by
- considering the induced metric. The pfoof is similar for Nakano positive

bundles and for Nakano non-negative bundles. For the detailé see Griffiths

(4] p. 197.
Proposition (1.11) ‘Let E and E' be vector bundles
1) E>0 and F>0 ifand only if E®F > 0 _

(i]' E and F are positive in the sense of Nakano if and only if E® F

is positive in the sense of Nakano. ' A_ . .v",_-‘;‘: . .

(1) If E>0 and F20, then E ®F 0.

(1i)' If E is positive in the sense of Nakano and F is non-negative in

',the sense of Nékano, then E ® F. is positive in the sénse of'Nakano.
.o w av '
, proof (i) aad:é&&é:e:e easy consequeces of Prop051t10n (1 10) and the -

' defmltlong TK /ﬁ/vo'bf r1 h) "””M(‘VL

‘ f Let hE and hpy be metrlcs on E and on_ F respectlvely

s e L . AT . ~

" Tue pairing
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(EER xEOR. E_‘—"F cgt=¢

(aeb,c®d) 08— hE(a. c)hp(b. d)

. defineé a metricon E ® F Calculation shows that the curvature of héef'”'
Q OI + 1 O®F where r(resp s) is the rank cf E (resp F) (ii)

and (ii)' follow from what we have shown (See Grlffxths [4] P 209)

Definition (1.12) A vector bundle E is negafive in the sense of Grauert
if there exists a relatively compact and strongly pseudocon?ex neighbourhood

of the zero-section of E. A vector bundle is positive in the sense of Grauert
~ B ‘ . ’ ) . T
1f E is negative in the sense of Grauert. N
| - NE
A vector bundle E over V is said to be ample if, for any coherent

~

sheaf F on V, we have T R
. n " . ; A | RS
H'(V, S (E) e F) = 0 for sufficiently large n and i>ao.

Proposition (1.13). A vector bundle E is ample if and only if the
" tautological bundle isvample. - o f&

proof. 'See Hartshorne [5] p-69. _ IR ';f;m. ERR

'.Proposition (1.14). A vector bundlé E is bositive‘in the_sen;e of Grauert
. ’if gndvoﬁly if E is ample. ‘.' 4 ; “f353' if;”n.' »;. .;‘

proof If E_'is‘positive in\the sense 6f Créueft; fﬁ¢n  E _is amplé b} Grauert
o [5] p.544 Hilessacs 1. Lo )

. If E is ample then“E isbpogltlvé 15 the sense of Gfauerf by Hartshorne

[5] p.72 Proposition (3.5).

Ne recall a well known o ;z@; i
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ffoposition {1.15) A line bundle is positivé if'and‘ohiy if it is émple.

Proposition (1.16) A positive vector bundle E is ample.

proof We deduce the Proposition from Prdpositién (1.15) and from the direct

p(E)

AR

. ealculation of the curvature form of the metric on YO (1) induced by the
metric on E (See Griffiths [4]). - T R

Another proof. We shali show that E is'negative in the senSérof Grauert.
. X ) . V . .. .

.~ Consider the function ?7 on E defined as in Remark (1.3). Then {Q ¢ El

?(Q) < 1} 1is a relatively compact strongly'pseudocbnvex neighboﬁrhbod of

.the zero-section. Hence E is negative in the sense of Grauert. ‘It follows

‘.:\i.

that E is ample by Proposition (1.14).
L o ’\\‘

~
‘\

Y
s

Theorem (1.17) (Andreotti and Grauert [1], p.257) .'~' : ‘,fi  :‘ -
Let E be a vector bundle. If CDEC ) 1is non-degenerate at any point

~

P of V for any £ # 0, then the number i of the negatiVe eigen values of

~

'®;() is independent of P and £ if £ # 0 and we have
Hv, S"(E)) = 0 for sufficiently large m if i #q.

Sketch of the proof. First, Andreotti and Grauert show that there exists a
?filtration in Hg(E, OE) such that the assodiated graded module GHq(E, OE)
is isomorphic to @ Hiv, sTE)). Seconde@j, by Remark (1.3), considering
' . n20 cp A . IR o

the functions P and e with ¢ >> 0, we deduce that E is strongly
'(q+1)-pseudoconvek and strongly (n+r;q)—pseudoboncave. Hq(E, OE) ~is finite
_dimensional if q # i." Now the theorem follows frbm what we have‘seen.A For

‘the details see Andreotti and Grauert‘[lj. - (cf. Theorem (4.1.1), Theorem (4.2)

T e
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" and 'l_'heofem 4.3.1) : R o - L

(1.18) Let P = (f} and y=(y} be E valued differential forms. We

define the inner product of ¥Pand y by S

L.

. 0 :_ )
@ ¥ - f L R
)

This defines a positive definite hermitian metric on the space of E valued

differential forms. The adjoint operators of D and d" exist
. De—y &', d'«— 7;’

qv where ,ﬂ = 6";’ - *g A*;ﬂ’ §' = -*d"™ and §" = -td'.*.
[ a [+ ) a a \_\.

Then, (D"D'+D'D")§0u =®uﬁ:' We set O =D"f+D". An E valued form

is called harmonic if {OP= 0 or equivalently D"{¢= 0, #¢= o.

. H‘_‘_(V,QP(E)) = {(E valued harmonic (p, q) forms}.

Lemma (1.19) (Nakano). Let 50 be an E valued harmonic form. Then

_-T(AEA?.?) < 0. o |

| proof

R J:i- | N -" /:]_-. nkn .v .n- ’
Ry (1 f §) " 2 (A@DI+D'D 15}

==Ll
| - -»El-((--‘/fi‘a' +'d"»A‘)D}';’"/0) B

 since A"-d"A = -/18' (See Weil [19]).



-“_ i;_l (('/:TG'D'?. fp) + (d"AD'?; ?)) -

.- i;i((-/?is'o;a, 2)+(0"D'P, ¢))
i. - E ((-/jd'D?’ ¢) + (AD'f :))V
2 v e ? ¢

/-

| A-, -‘ %cacn?' ?)

= -2 Of 0p) 50

.13
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§2 Positive vector bundles over a compact Riemann surface

Lemma (2.1) Let V be a manifold or an algebraic variety defined over an

1 2

by El;

algebraically closed field k. Let E  and E, be vector bundles on V.
Let E; be the extension of EZ

Of'Ei ;.55 ->Ez + 0

determined by an element £ ¢ Hl(v; Hom(Ez, Eb)). Then E_= E _ for any

1 13 A3
0F Xk |
proof Consider the commutative diagram oL

{lid 3
O*El-fEM;-r E2->O’

o

~ where the vertical arrow on the left is the multiplication by.x .

-

Lemma (Z.Zj Let V be a non-singular projective algebraic variety defined

over (C. Let E1 and éz be vector bundles on V. If E1 and Eé afe

positive in the sense of Nakano, then an extension of Ez ‘by E1 is positive

in the sense of Nakano.

proof Let E be defined.by vV e Hl(V; Hom(Ez, El)). Take a sufficiently

fine open covering (Uu} of V so that the extension Ev is given by

. . ‘:b N . - ) . - . » ( ‘
® . a
pfzftchlng- EllU- EZIU and ElIU ® EZIU .on Ua nUB by I  Bal..
. . . a \ a ) B B . . R
N L L o1
.wherg aBa é P(Ua r\UB, Hbm(Ez, El)) and (xa, ya) é Elluc _Ezlua and |

. 4‘ ‘ ° - ‘- . . t. . d . » = .. .

, “(xs. Ys) € Ellus QEZIUB are iden v1f1‘¢. 1f(xc 'f.asa}'a,_)"a)‘ (x.s’. )’B) Then

the exteésipn FAV is defined by replacing‘ [I 'aaa
: . o 1

- . ... S
by I asa ._,S1ncevan
0 I '

~

\ - .
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~ extension is differentiablly trivial, there exists a < homomorphism b F
. ) o - a

Balu * E1ju
a a

on U U ;
a

for each @ such that a "=b -0
‘ - Ba a 8

B
- (I xaB%)
' 0 I

"By * By ——— E
a a ‘

. o E
1 2
Ljug ~ 2lY

Ty

| E —~
Elju ® Bzju id Ejju. ® E2ju
a a ] - B 8
Let H. and h_ be hermitian metrics on E. and E. such that their
E, E, - S U I o
curvature forms, . _v;ﬂ_i;i
| et TG N
' T »1 , SR
T R B Th g, " .
l¢p,t,0¢sr 1 1 X

1<i,j<n

and

1sp,t,0ss E, 3:Ez oij "2 2 L « E,
1<i,jsn .

AN

are positive definite. We set

fI -xb ] g
a.
b o]

J

1:{3

“{h ‘} defines a hermitian metric on E_ . If we set H (g) =
E. a _ AV A
h ’Gﬁ T..Qcp'i)gcc’J), then H () is a hermitian form at each point
var EAVUIJ AT - . . )

"P. of V. We fix a point P. Then there exists a number cp'> 0 “and an
. open neighbourhood Up of* P such that H1 is positive definite at any
point Q e'Up if |a] < cé}_ since HO is positive definite atf P. Since.

-

..

G
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.V 1is compact, there exists a number ¢ > 0 such that Hx is positive

16

definite at any point if |A] < €. Now the lemma follows from lemma (2.1).

Lemma (2.3) Let V be a non-singular projective algebraic variety defined

‘over €. Let E be a vecror bundle of rank r on V. Let {U }~ be an ) \
‘ . : .t,.~ - ° J

open covering of V such that Elu is trivial. Assume that the transition _

. . . {

a ) . . L : '

wmatrices g can be written in the form g =£f -U where £ = is a !
’ Ba , .. "Ba - Ba Ba Ba

Ascélor function and UBa is a uﬁitary matrix on ﬁc n UB.‘.If det E is

positive, then E 1is positive in the sense of Nakano. In.pa?ticular E is
positive and ample. R
proof Let {hc} be # hermitian metric on det E 'such*thaf iﬁs curvature

form is positive definite. From the definition |det g lzh =h on U nU_ -
5 - ' Ba' a B a B8

. 3 S ¥ | 1
ie |f |2r-h =h . Hence |f [2 h® = h'. Consider the matrix h' I .
Ba a 8 fa’' @ 8. e T

This is a positive definite hermitian metric on E|U . On the other hand,
: a ‘ ‘

- . N

- we have o ‘ ‘~,;’ - ) . :
1 | 1 'f
L Sl 4 - T : : ;
= f . . I of U : .
sﬂuhulrgsa Ba UBa hu T fa Ba :
2r t- . = ‘
jféal hc UBaUBa , T
1 o |
' 2 r ’ ’ ‘ “. "“.“’.
-"fsul thr L S
L p 1 ' .
. ‘hBIr.
i Hence {hrIr} defines a hermitién metric on E. Let C) be the curvature
: a ' o - " : L e
. » ‘ P _ o
‘fofm of {hq}. Then the cutvature form of {th } is given by i{DIr. Hence 7

a

.~ E 1is positive in the sense of Nakano. o T T e. d.
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. of elements invariant under the action of v.. Then PI(E(p)) is a vector bundle
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(2.4) We need some results of Narasimhan and Seshadri [11].

o Let S be a compact Riemann sufface’of éenu; g ;»2Q"£etl T be a
di;crete groub acting efféctivei}, properly and.hplombrpbically on the qﬁit_
disc T suﬁh that T/r = S and‘such thét the projection P :T+S is
un?amified except at only one péin; Xy ﬁpd”ramifieﬁ with ordgr. n #g Xy
Such a group =« alwa}svexists. Let. p': L GL(n ; @) ‘be a reéréseﬁt;tion.
ihen ‘r operates on thé triviai bén&le T x‘cﬂ_ by (v, v) = (y, p(x)v),

YeT, Ve c“, 'y er. We denote by E;(p}"this vectdr bundle carrying

the action of #. We denofe by P:(E(p)) the subsheaf of :P'(E(p)) consisfing
. : l :

. \ .
‘ \) ,
of rank n on S. We call Eu(p) the -bundle associated to p. The vector

P
cN .

-~ -

bundle PI(E(p)) is called the vector bund1e arisiﬁg from the representation

p of .
Let y. ¢ p-ltx ) and n be the isotropy.group of # at y_ . Let z
0 0 yo : , S 0
be a coordinate system around Yo such that the action of ny»' is multiplication
i o _ | o
by ;k where ¢ 1is'a primitive nth root of unity. Let Yo be the generator

of =« corresponding to multiplication By c.. Let t be a character of

0 o . ‘ ‘ S I

x . If r(yo) = ;s, 0<s<n, then the integer s is independent of s
0 . ' S .

-gnd’ z. The integer s 1is called the associated integer to t.

"A homomorphism .p tnw>U(n, €) is a représentation of type =, byli
definition, if for every y‘e "y ; ‘we have p(y) = T(Y)In.
Ce . 0 SRR Co
. A vector bundle E of rank r over a compact Riemann surface is

~ said to be sfable if..i_

i degree E degree F
-1ank E rank F
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for any quotient bundle F of E. »'.Ef“'.P'f;x:‘.7"f o {?;"

Theorem (2.4.1) (Narasimhan and Seshadri [11]) A vector bundle F of rank
n and degree -n < q S 0 over a compact Riemann surface of genus'z'z is
stable if and only if F is isomorphic to P} (E(p)) where p 1is an

irreducible unitary representation of type 1 and theyéssociated integer td )

T .‘L".' q.

Corollary (2.4.2). Let E be a stable vector bundle of rank r over a compact
Riemann surface R of genus 2 2, then there exists an open.caveriﬂg {Ua}
is trivial for each « and such that the transition

|U
@ \
matrices can be written in the form ; T

of\ R such that E

Scalor function x unitary matrix.
proof of the Corollary If the transi;ion matrices are of the desired form,.
so are the transition matrices of E ® L for any lidb bundle L on R. ‘Hence
we may assume -n < deg E < 0. ’In this case the corollafy is an easy‘

consequence of the Theorem and Narasimhan and Seshadri [11] Remark 6.2. p.550.

Lemma (2.5) A stable bundle of positive degree over a compact Riemann

surface of genus 2 2 is positive in the sense of Nakano.

proof. The Lemma is an easy consequence of Lemma (2.2) and Corollary (2.4.2).

-

Theored (2.6) Let R be a compact Riemann surface of genus' g. Let E be
" & vector bundle of rank r over R. Then the following are equivalent.

(i)' E is positive in the sense of Nakano. S  ‘5;if:{3ﬂ4uf'<'A'

. .

(ii) E is positi#e. T ;;' 11. 1;§."’ s fll‘ﬁ_.”'7' 



(iiii E is ample.

(iv) The degree of every quotient bundle of E (including E itself) is

poéitive.

proof.' The equivalence of (i) and tii) follows from Lemma_(l.S); fii)c=?tiii)~A

fbllows'from Proposition’(yglﬁ)..'Singe any quétient‘buhdle of an ample vector
bundle is ample, (iii) = (iv). Hence it_i: sufficient éo show thﬁﬁ tiv)=;$>
1). 'Le; ﬁ be a véctor bundle on R such thaénthe aegree‘of any quotient
bundle is positive. If g=0, E >is the éirect sum.éf linevbﬁ;dles. Hence
.the assertion follows from Proposition (1.11). If 'g‘= 1. ihé asé;rtion'

was proved in Umemura [18]. We may‘assume g 2 2. We proceed by induction
. - . “‘

~

on the rank r of E. A o | “Q_'

If r=1, the assertion (iv)r=y (i) fbllowsvfrom éropqsition (1.15)

-

and the Riemann-Roch theorem.

Now we assume that the assertion (iv) =) (i) 1is provéd for rank strictly
which is positive

less than r. Suppdse that E contains a subbundle El

v

in the sense of Nakano :

4

_Q‘.-»}'l-:l - E > Eé > 0.

Ez is‘positive Sy £he inductive hypofhesié sincé gyery quotient ﬁundle gf
Ez .hgs positive degreé. :Hencévby Lem@a'CZ.Z), E .is:posigive in the sénse
of‘Nakano; If E does.nbt contain'a subbﬁnd1e whichvis'positive.in the sense
'{of ﬁ#kaﬁé,'then'.ﬁ is'sfabie;‘ In faet,"Iet F be ﬁ.subbundle of E. We

prove that the degree "F i$ <0. We use induction on the rank s of F.
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ifl s - 1; then the degree F‘s 0 .siﬁée'othérwise‘ f‘ wéuid Se pééitivé in
fhé‘seﬁse of Nakano. Now we suppose that the degree of a suﬁbundle is s0 |
1f.1ts :ank is less than s. Leﬁ' F bea subgundle of rank s. By the
‘ihductive hypothesis every éugbundlé of F; £as degree < 0. Henée if the
degree of F were poSitive, every quotient bundle of F;twould be positive.
By the inductive hypothesi; F would be poSi?ivé in the sense of Nﬁkéno. _ 
Hence we may ;ssume E ’tq be stable. Sin;e fhé deg;ée of E is poSitive;

E 1s‘positive in the sense of Nakano by Lemma (3.5).’

Remark (2.7). Hartshorﬁe proved the equivalence of (iii) and (iv}'(cf.

Hartshorne [6]). .
QA

i
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$3 Some positive-vector bundles of rank 2 over an algebraic surface.

(3.1) We recall the results of Takemoto [14] and [15]. Let S be a non-
'singular projective surface defined over C. Let E be a vector bundle

of rank 2 over S. Let H be an ample line bundle over S. : '{ g

Definition (3.1.1) E is said to be H-stable'(resp H—sehi-stable) if for any

‘succesive blowing ups 7 : 8" +S and for any sub line bundle F of r* E,

we have . S T  ‘a . :‘,.
(det E, H)/2 > (F, 7*H)

N,

-~ (resp. >)
~ N :

,,cl .

where ( , ) denotes the intersection number. g B R

~

Proposition (3.1.2) An H-stable bundle is simple i.e. H (S, End(E)) = C.
. ‘ : .

Theorem (3.1.3) The set of all H-stable vector bundles of rank 2 with
fixed numerical Chern cléss.is bounded i.e. there exists a scheme"T of

finite type over € and a vector bundle E on T x § such that, for any

L)

H-stable vector bundle F of rank 2 with the‘fixed numeriéal Chern class,

* there exists a closed point.‘t e T with F = Ejth'

| Theorem (3.1.4) wLet Hl’ Hz be ample line bundles on S. Assume that S.-
. 1s relatively minimal and N(E) = ci - 4c2 2 0 .where ;i' is i-th Chern class
of E. Then E is Hi-stable if and only if‘ E is’ Hz—stable.
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- - Remark (3.1.5) If N(E) < O,VAthe H-Stability depends on ﬁhe'éhoicé of an
'ample line bundle H. Hence the H-stability does not seem very‘reasonable

unless N(E) 2 0 (See Takemoto [14]. See also Examp1é1(3.3)). By the Riemann-

Roch theorem, N(E) < 0 on an abelian surfacé and N(E) < -2 on Pz,

/
Proposition (3.1.6) Let G be a finite solvable group. Let G operate
on S holomorphically so that the projection w : Sv4 S/G is unraﬁified.
Let H be an ample line bundle on S/G;' Let E_ be an H-semi-stable

bundle on S/G. Then n*E is w*H-semi-stable. , f;‘-‘,ég
‘ . : ] ’

Definition (3.1.7) A non-sigular projective surface S is‘gaid télbe

hyﬁerelliptic if the first betti number of S 1is 2 and if there exist an
: , N

N : : _
elliptic curve A and a smooth morphism n : S + A such that every fibre

" is an elliptic curve.

N

-,

Theorem (3.2) Let S- be either an abelian variety of dimension 2,4a
‘geometrically ruled surface or a hyperellipticisurface. Lett E be a vector
bundle of rank 2 over S. Let H be an ample line bundle on S. If E is

H-stable with .N(E) 20 and c1 > 0, then E  is positive in the sense

of Nakano.

proof Case I. S = A is an abelian variety. In this case , we prove a |
~slightly more geﬁeral assertion : If E i; H-sémi:stablg with N(E) » O, and

62 0, then E is positive in the sense of Nakano. If E is sihple, .

then by 0da [12], there exists an isogeny p : A' = A of degree 2 and

. & line bgndle. L .?ﬁ A‘.Asuchktha§ p,L = E. We ﬁéve_ p-?’?- xzxerp b
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' .Ee Oda [12] where T; denotes translation by X. Sincév’p' is finite and

det p L is ahple by the Nakai criterion and the hypothesis, 'det(p*p;L)~
ample, Since L and Tx*L are numerically equivalent, det(p*p'L) is

v ‘ . o2 : - e2
numerically equivalent to L ~. It follows that L is ample by the
Nakai criterion hence L 4is ample or equivalently positive in the sense of

Nakano. The direct image p,L is positive in the sense of Nakano.

If E is not simple, then, by Takemoto [14], E is written in the

form E; ®@ M where E' is an ektension : . "Zf"'" «v;ﬂ
0 + 0+ E 0+ 0 oL
and M a line bundle on A. ' zfi:*'vf'f ‘::V\: ]

N

Hence 'c(E) = (1 +Mt)(1 + Mt). "
.1 ; Mozt . GMz)t?. o . HQ\,Y
( . _ o | Lo
From our hypothesis M‘2 is positive, hence amplé bylthe Nakéi criterion.
It fbllows that M is ample.' Since M is é line bundle, M ‘is positive in
fhe sense of Nakano by Proposition (l.iS). 'By Lemma (?.25 ~the extension

0+M->E'&M>M>0 is positive in the sense of Nakano. R

'

Case 11 ‘Geome;ricaliy Tuled surfaées._ Let .p : é = P(V)f; C bea

- geometrically ruled surféce over a curve C ‘of g;hus g. We know from

tﬁe hypéthesig and Takemoto [14] thét fhereve¥i§t # staBle vector bundle :
“Pv of rank 2 ove? C and~a'1ine bunélg L. on [P(Vj such th#t' E . L ® é*F,
.  '¥f. éi: 0; »;e hﬁ&e‘néthing to pfdve;jsineé fhe?e‘isvno §taB1§ bUﬂdl?_

 : of rank 2 on C.'j



If"g = 1, there e;ist an isogeny ¢ : C' -+ o of eliiptic curves and
& line bundle L' on C' such that ﬁ‘L' = F by Oda [12]. Consider the Z

. diagram : TP A

C' — !L-¢> 'C .

.- Since g 1is affine, we have p*F = ;;E;L'l Hence ;;(E;L5 ® ;;L) = E.
Let N be the kernel of n. Then W is a Galois covering of P(V) with

Galois group N. By Takemoto [15], we have TE= T*(S;L' ® ;;L) where

eN i
- g \

T_ denotes the operation of g on W. As in case I, we know

-
-

det(E;L' ® 1*L ® T;(E;L' @‘;;L)) is ample with e # g € N. On the other

hand, T;(§3L' ® 1*L) = T;(§3L') ® T;(FlL) = 53(T;L') ® m*L. Since

s
*® - -
TL' and L' are numerically equivalent, we proved that det(p*L' ® n*L ®

- - - - o2
T;(p*L' ® n*L)) is numerically equivalent to (p*L' ® n*L) . Hence

;;L' ® 1L is ample by the Nakai criterion and the direct image ;;(E;L' ®

;;L) = E is positive in the sense 6f Nakano. .
If g22, jthen by_Coroilary>(2.4;2) the traﬁsiéion mafricgs of F
can be written in the form : RSEATS A
Sc#lar function x gﬁitary ﬁéfrix.'
:Hén;e w*F' ana 'F*F ®L hgve the sém;'prépé;ty.'fo ﬁemmé 32.3), thé
‘;'; 'fheorem is proved for geoheftically»fﬁied'éurfgcesf'h' | |

P
PR



. Case iII ﬁyperelliptic suiface.: Iﬁ this”césé;'théfe existsuaﬁ.abeiian.'n
variety 'A and s finite abelian group G such that Q bpefates on A, A/G
is isomorphic to S and the projection n;lA/G + 8 is unramified. By

.Propoﬁitioh (3.1.6), #*E is n*H-semi-stable with N(n*E) = 0. By'what we
hﬁve proved in case I; «=*E is ﬁositive in the sense of Nékano;. Hence ] i

x,7*E 1is positive in the sense of Nakano. -Since E is a direct summand

of = w*E, E is positive in the sense of Nakano by Proposition (1.11). ’

s . ‘q.’e. do

Example (3.3) Let E,, E, be elliptic curves. Let M’ "be a line

1’ i
i = = "M o=
bundle of degree 1 on Ei’ i=1,2Z. We put A E1 x EZ, and piMi Mi
for i =1,2 where p, 1is the projection P, : A= E1 x Ez-+ Ei' We set
onl dnz 1 oml @mz : . o
Ll = M1 ® Mz . L2 = M1 ® M2 . We define a vecfor bundle E of

rank 2 by the exact sequence

0o~1 »E~+L =0

| ~Then

‘o(n_+m ) e(n_ +m_) o D oL
cI(E) = M1 ® Mz

CZ(E),g nzm1 + nm,.

1f ﬁl - ml. and nz i m2 are coprime, n1 > ml, né"< mé' and if'we take a

non-trivial extension, thén, by Takemoto [14] p.41, E is H-stable for a
certain'ample line bundle H on .A.>'But there exiSts.an ample line bundle

2

" H' such that E is not H'-stable. In fact we have c1 - 4c_< 0. It

[



is easy to see thﬁt c1 > 0, c2 > O, ci4- é2>> 0 if'aqd Sn;y if~jél + ﬁl >0,

..o, *m >0, nm +nm >0, 2nn_+nm +mn_+2mm_ >0, Hence if

2 2 21 12 12 12 12 12 |
- we take n, = 1000, n, =0, m =-l, my =1, then E is H-stable with
2 2 '
> > - - A i
c1' o, c2 0, c1 <, >.0 and c1 4c2 20, S1nce' L2 is not amp}g,

- B 1s not ample. In view of this example, it seems agreable to add

R

ci - 4c2 20 to the definition of a stable vector bundie (see Remark (3.175)).'

Remark (3.4} Theorem (3.2) is an analogue of Lemma (2.5). It is natural

to ask : _ o L e

Problem (3.4.1) Let S be a non-singular projectiﬁe surface defined over

€. Let H be an ample line bundle. Let E be a vector bundle of rank 2 on

S. Assume that E is ﬁ-stable with N(E) = ci - 4c2 20, c1 >0, c2 > 0.

~

‘Then is E ample?
\ .

(3.4.2) The answer my be negative in charactersitic’ p > 0, because in
characteristic p > 0, there exists a curve C of genus g 2 2 such
" that there exists a stable bundle of positive degree on C which is not

ample (cf. Hartshorne [61). ' :; e

L A
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14'vanishing theorems

(4.1) The following theorem is weil known. We prove it by our own methods.

Theorem (4.1.1) Let A be an abelian variety of dimension n_ defined

_over C. Let L= L(H, o) be a non-degenerate line bundle over A. Then,‘

aLs -

. Hi(A, L) =0 if i # #{negative eigen values of H}.
proof. Let T be the number of negative eigen values of H. We choose a
coordinate system (zl,oo-, zn) of the universal covering space‘ m“ of A
so that H is written in the fqilowing form : “i‘"f.y"”'
) .‘1 . ' . : . . .
'~ -Ir ’ 0 .. . \"

1 :

n-r+l ;n-r J .

\

We use the metric ?G;) defined in Example (1.9). Then the curvéture form

@ is given by ‘A . ' ,-§>' R

!

@ = -1l Az reeevdz adz ).

. . _. o _ .
-y (dzr+1Adzr+1 +......+ .dzn/\dzn),
' . . e n o at -
We define a kahler metric on € hence on A by w = TE £ dz ,adz_. Now
' C ' ' i=1

the theory of harmdhic integrals (1.18) is applied. _ _ S

A---Ad;;. is é (0,q)-form with coefficients

Pemma (4.1.?) If @»=»fb dzi , |
Vﬁ:in_'L,' then - e BN s Y‘;E:fl’
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n-r+l

= JI : : . - . N '. " o -
L =SOAY.P) 2 alrg- S (A P).
proof of the lemma We compare integrands. We may vavssume' that P= d;;. A *** A

: 1
dzi since the question is local. ek s L

~OAP = n((dzlAdzl +"'+_derdzr) aiwerer (dzﬂl/\dzrﬂh-_-*dznAdz‘n))

A d?i

Ae o-Ad;. .
) § 7 j'q

We use the following notation :

1= {il,---, iq}, N={1l,.¢, n}, w, = dzzAdzg.

) _ _ .

-n¥=nrc: dzi A"'/\dzi P
1 q

¢ N-{r+l,-+<,n}-1I

I d;, A---;'\d;il\ mg.
1 Q
L e N-{l,---,r}:-I

~

Hence .

B = e
= A@AY— Tk dzi A"'Adzi " nerel X dzi Assendz, o
’ 1 q 1 Q.
e N-{r+l,-+,n}-1 £ € N-(1,<-,r}-I

" The lemma follows from the inequality_'

#(N—{rflpn,ﬁ}-ﬂr nozel ¥ #{N-{1,¢e,1} - I}

. : 1 N n-r
.2 {n-(n-1) -S}— Y (n-r) = r-q - npel

- q. e. d.
. Let iﬂ beAharmonic form of type (0,q) with coefficients in L. Let

I TR .

B
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P=If; where T = {11."'; iq} <N and ?I = ¢ dz, A-..adz, and the

| . 1 11 ‘ iq
.summation is taken for all such 1I's. ' ' o
- T(AGA‘{, (/) by Lemma (1.19) : ‘ e
® - %]LU\@AZPI. E?}) . - .\. e
* ot . o T
since (dz.A---Adz, )A*(dZ.A e--adz. ) = O
o i . 3 1
e 1 1 .
if (‘11)"’, 1q}# {jln"‘: jq}) R '
= L~ -—-—(A®AP ‘F)
I : .
by lemma (4.1.2)
\\,A . ) » ~
: F’;((r'q' i 0 T

. iéfci-q- P )

-r+] .
n-r 1

= u(l‘"q - )('P ?).

n- r+1

Hence if r-q- nn-r >0 i.e r >q, we have HI(A, E) = 0. The line

-T+l
v ' -
bundle, L, dual to L(H, o) is given by L(-H, a 1) (cf. Mumford [91).

-Hence by SerreAduality we have Hq(A, L)y =0 for q>r. ‘This completes

. the proof " of the theorem. o “‘i‘, tf.;? i 'L;;,f . -q. e. d.

- Theorem (4 2) Let v be a prOJectlve non- 51ngu1ar var1ety deflned over (.

em

;Let L be a 11ne bundle on V such that L 1s generated by global

sections fbr large m. Lef‘  ?: V a-_W < Pu be a morphlsm defined by Lem.

. Y




 If dimW=gq, then HY(V, L) =0 for isq-l.
‘"~ proof Let H be a hyperplane section of PN. Then, L*" = p*H. Let h'
be a2 metric on H. Then h = h'e® is a metric on L‘m. The curvature form

’

@h of h 1is, by an ea'sy caléulation, given by

. where J  1is the Jacobian of ¢ and ®h' is the curvature form of h'.
S 1 : ‘ ) ‘ v \ '

Hence hz defines a metric on L and its curvature form is %@h Let

‘ é be the curvature form of 'L',l. We fix a k‘aﬁhler metric w on V. From

what we have seecn, at a point Q e V, we may assume that

@ = (4, 0], w@ =1

n'

and that the;e exists a point Q such 'that | Xi >_0, 1 51 < vq. ie a
point where J attains its maximal rank q Le‘t. S" bbe a non;-ze1;o harmonic
(0,p)-form with coefficients in L-l‘. Then f is non-zero on a dense open
set ip V. As in the éroof of Lemma (4.’1.2), the integrand'qf - %{A@{\f’,}o)
is non-négative at any point Q and there exists a point. Q where thé

: .1htegr$nd is posit»ive if p <q. Hen;:.e if p < q, we have;. - /—;.i:(l\@/\ ?,p
)_>‘O. On ;he other ﬁahd - %{A@AY,?’) <0 b‘y‘vLemma (1>.1‘9). Thi; is a

‘v>contraditioq. Hence _whe; P is nc‘in-zer‘o,“ P 2"‘q. - - o = q e. d? '

(4.3) Let V ‘be 'a ndﬁ-singular projective variety of dimensio‘n.."n defined

-




. LT . | -~

over €. Let E be a vector bundle of rank r < n. Let s be a section of
E. s 1is said to be a regular section if S = (ze V[s(z) = 0} is non-
singular and of éondimensiqn r. Griffiths [4] proved the following vanishing

theoren.

Theorem (4.3.1) If E is poéitive, r=2 and if E° Hés a regular seétion,

then HY(V, §) = 0 for i< n-2.

His proof depends oﬁ the generaiized Lefschetz tﬁéorém and‘the Hodge
decomposition. Inlfact he compared the cohomology groupbof i§"aﬁd S wifh
.coefficients in 2 by ﬁsing Morse theory. But to abtain the vanishing
theorem, we need only the gen;ralizea Lefsehétz'theorgm Qi?h coefficients
in €. We remark here that the generalized Lefschgf; theorem with
coefficients in € is proved by a stantdard techniqge using cohomological

dimension and de Rham cohomology.

-

Lemma (4.3.2) Let V be a non-singular projective vgriety bf.diménsion ‘n
~defined over €. Let E. be a-vecgor'bundle of rank r.S n. Let S bea
;ero locus of a regulér section‘s;‘If E is positive,. thén V- S is
r-coﬁplete. In particulaf ancd(V-S) s r -:1 where aﬁcd(v—é) denotes

the analytic cohbmological dimension of V - S tcf. Umemura [16]).

proof. Let h be a metric‘on E. Consider the function 50(2) = ts(z)h(z)s(z)

" on v - S. Since ¢(z) >0 on V - S, we can put ¢(z) = -log ?(z). We
- shall calcuiate'the'qui form of y¢(z) at a fixed pointx 0 in V - S.
We may assume that h(0) = I, 'd_'h(O)‘ =0, heﬁce we have @(0) = -d'd"h(0).

A Y

Then, by a direct calculation, -
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t-— b
1t 1 t3s s as
. o 4 s«Eij)s + ?2[( sa‘zi azi -5 5)(3_; azi)]]

It is suff1c1ent to show that the Levi form [;——!——i is positive definite

az

1%
S .. . 1 t— i—j e
on an n-r+1 dimensional subspace. Since 7 s, jsn n° 1is positive -

- ISi,js
~definite, it suffices to show that the form in n = (n ,---; nn) € "

‘ t— t-,
t—3 3 i
o (4.3.3). r [(Cs sf}i(—-—~5)- SS(-—'-—ﬂ] n" n’ . . L
, 3— 3z,°°0 , Lo o ; -
. 151i,jsn i zj zj i . [

. vanishes on an n-r+l1 dimensional subspace. Let s = t'(sl,"s-,---, s ).

Consider the equation G

3s 3s as | ¢ nh ()"
z
9 1 azz 9z '; R )
. 2 -t -1
is” 212 :
[ n' L]
321 : . .
> * '_ ° . : = l -
2 HER :
E—i 00 GCssCss e asr n sr 0 ' .
'} 4 32 . / L J
L: 1 n ‘O|_

for some A ¢ C.

Then the dimension of the vector space W = {n € Gnl(gi—io n = x-s(0).

3

for some A€ m} z.n-r+1. We show (4.3.3) vanishes on W. In fact we have

Al -

(8. - 2 = R =
= 0) s(0
" a's as i‘j 2 t— 2 o 3 i
(3_ azi)n .1A| ( 5(0)5(9)) ?-‘génée $4f3.§),; 0 .pn _Wi -

“3

The last assertion of the lemma follows from Andreotti and Grauert [1].

'if:,'q; e. d.



~ Theorem (4.3.4) Using the notation of lemma (4.3.2), the homomorphism 4
Bicv, cC) » Hi(S, €) 1is bijective for i < n-r-1 and injective for
proof. Consider the sepectral sequence of de Rham cohomology : "

el - s, afe R v -9 = -, 0.
Since ancd(V - S) 5 r-1, we have

IPq

T - 0 if q2Tr or p=2 n+l.

33

- o Ty . -
Hence Hi(V-S, €) =0 for i 2 n+r and consequently H (V, S ; €) = 0 for -

: "\ :
j $ n-r. The theorem follows from the exact sequence of cohomology

L
~s
N

sl -, s 0P, o -de 0!
~ pfoof of Theorem (4.3.1). The following argument is due to Griffithé [41.

.Let I be the ideal sheaf of S

o»I'f»qv-»os-vo.

We have the commutative diagram

Hi(v, Q) > Hi(S. C)
T . - K
i | o
»n;(vf ov) — H (i’ os)

B N

" Since the Hodge decomposition is functional.

wv,s;qc ~.
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v; By Theorem (4.3.4), we have Hi(v, I) =0 for isn - r;’ From now on
we suppose that the rank r of E is equaf to 2. Since s is regular,

we can construct an exact Koszul complex by using s H g

2

[ v
“ 0+ AME - E ~+I + 0 |

- By Kodaira vanishing theorem or Theorem (4.2), Hi(v, AZE) =0 for isn-1.

Hence 'Hi(v, E) =0 for i<n-r. o S L . q. e, d.
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SO s ?(E)' ‘and  H(E) | E

tS.i) Let H be a finite abelian group. Let k be an aigebtaicaly closed

field of characteristic p. We consider a central extension,

0 f-‘k* '+ G+ H -+ 0.

"y

Let x,y be elements of H We put e(x y) = :-1;‘1;; where %,

y ¢ G ‘lie over x, y. e(x,y) is an elememt of k* and is independ of

s

the choice of g and y Then e(x, y) is a skew-symmetric bilinear

)

pairing from H to k*. A subgroup ? of G is said to be a level

subgroup if ¥ n k* = {0} i.e. k is isomorphic to its image in H. Let K
. . . ‘\ ) .

be a subgroup of H such that the pairing e(x, y) 1is trivial on K, then
. . ' ' N

there exists a level subgroup ¥ lying over K. In fact in this case the
extension is commutative over K and in the category of commutative group
. Schemes over k, an‘extension of a finite group by k* is trivial.  If

the pairing is degenerate, there exists a subgroup K such that the pairing

2 g |
e is trivial on K and suih that |K|” > |H|. Hence there exits a level

~

subgroup k of order > ]H[ ._:-‘ ' : L wi-r}':'

Lemma (5.1.1) Let. H. be a fiuito.abeliau groué; uetv 0 > k* > G 3

H~+ 0 be a central extension of H. If G has.a,repreSenthtion of degree
"1 on wﬁich k* operafes.as thé uatural ohuraoter, theub‘§ 'is_isomorpuic to
k* x H. | |

‘proof. Let V be a }epresenfatiou of G of degree 1 on wﬁioh' k* operates

K Y



.;;’tpe natdrai qharACter; We.denoﬁé by U ﬁhe;operation of X eG ';n .Y:.

Let' k be maiimal ievel subgroup. Then there exists a charactér 'Xo ebHomfﬁ,k*)
;uch that U s = xotx)-s -fof any x ¢ £ and any ‘s ; V;k'Let Y € G, .
'géttiné x'ly-lxy = xy(x), X € K; xy(x) is an elemeﬁt of k'; xy : k ?;k*

is a character. Ik n(y) ¢ w(ﬁ)fA then <xy 'is not t;i?ial since K is
imaximai. It is sufficient toishowAtHat n(%) = H. Hence Qg‘ﬁaQe'to show that

‘xy is trivial for any y ¢ G. In fact, if x ¢ k, we have

/

R o UU e
'xo(x)uy s. Ux ys s

.U S
xy

. - u Y
xY(x)yx

y
xX)JU U es
X ) y &

Y U v [x) e
X (f)UyAxo(x) s

e INOLRE I

Hence xo(x) = xy(x)x0(x) and xy(x) =1, xy_ is'trivial.- q. e. d.
(5.2) Let A be an abelian varietry of dimension g defined over an algebraicaly

closed field k of characteristici p. Let E be"a vector bundle on A. We put

(a ¢ A|EXT’E where T :A~A }

H(E)
o X bxea

e ',"?(E) (@) 2 e HE and  prEITEL

kS
v
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. B S Lo e Tb'¢
i i "ol - *E =
. Let‘ (a, ?)f (b, ¥) eg(E) . Consider thle composxton’ Ta Y 50 E Ta,E
.'“t.ﬁv, t . B ° : . .""° ’ ‘
'l'. Tb E »Ta+bB' If we define (‘b‘, 'uy_) (a,?_) _»(a+b, Ta'q; F), ghen C;L(E)

is a group. We have an exact suquence

et

Let x=(a,f)e G(E). Then u_: 2, E) » HO(A, E) defined by U s e

'_ T:g(fgs)) is a representétion olf C}(Ej : :v_ ' '

| (5.2.1) If E=L is gf rank 1 and ampie, the struéture of'_?;([.) is

well known and ?(L) plays a very important role in the algébraic 'cheory of
theta functions. We _recall some basic properties of. z; (L) (forl the details
see Mumford [7]). Frox;x‘ now on, for simplicity we assume f};a; ch k=p ié zero.
However ali the régults hold in positive charactefisfic if wé avoid insep;_rable

isogenies.

ﬁ(L) is a finite subgroup of A. Since Aut L 2 k*, . we have the

exact suquence studied in (5.1) and (5.1.1) :

0 »-k* >Z(L) > H(L) » 0
By the Riemann-Roch theorem, there exists an intege'rr d’ such that
: 0 on g . . | B :
dim H'(X, L) =d-n~ for all n 21. Let A be the dual of A. We define
A(L)‘ : A +A by sending «x to Tx*LaL-l. Then we have
4% = |x()|” = degree A(L) = |H(L)]|.

,Give’nv.ﬁaulévell subéroup %cg(L)v, L descend‘s;to A/XK i.e. there

‘1 » AtE - Q(E) + H(E) » 0. o b

e st — 20



exists an invertible sheaf L' on A/K ‘such that p*L' = L where p is
the projective p : A ~ A/K. Conversely let K be a finite subgroup of A,

the descent date associated to L 1is éiven by a level subgroup lying over K.

-'Prop051t10n (5 2.2) There exist a subgroup K of H(L) énd an invertible
- sheaf L' on A/K such that x(L') a [H(L' ] = 1 and prL' = L where p

is the proJectlon A > A/K.

Theorem (5.2.3) HO(A, L) is the unique irfeducibel represéntation of

'q;(L) in which k* operates by its natural character. ‘ ft- S S
What is ;;(E) for a vector bundle E on A? )
, : ' . ' N

AN
b -

(5.2.4) Assume A 1is of dimension 1, an elliptic curve. Let E be an

ﬁmple irreducible vector bundle of rank r and of degree d, in Atiyah's

notation, E e‘E(;,bé). First we assume,tr; d are coprime. Then E is
stabie and in paticular, siuple I Ho(A, End(Ej) = k. Hencé we giﬁ the
’;exac_t sequence 0 -+ k* -»q_(E) - H(E) -~ 0 auc}l aylev‘el §ubgroup of
e;(E) corresponds fo a descen;‘dafe‘for E{ By Oda [12], tuere'euists an
isogeuy P :A"+A of degree& r and an émélé line buudlg L ofAdegree

.d on A’ sucﬁ_that E is isgmorphiu to the diréct.image p*ﬂ and the
intersection of Kér p and Ker A(L) is just Of .Moreover,. d = dim HO(A; E)
; diu HO(A' L).. Since fhe interséction of H(L) and Kef p‘>is 0, a non-

. tr1V1a1 translatlon by an element of H(L) 1nduces a non-zero element of

L H(E) Hence H(L) is a subgroup of H(E) We have IH(L)[ 2, hence

-|H(E)l 2 d There exists a level subgroup of order 2 d;‘ If we had

RSN

PRI
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[H(E)l > dz, then there would exists a level subgroup of order d’$ d.

Hence there would be an isogeny @: A+ A" of degree d' and a vector
’ ) .

bundle E' on A" such that p*E' = E. But we ﬁave d = x(A, E)

© d'x(A', E'). This is a contradiction. Hence H(E) = H(L) and gl(ﬁ)

is nothing but EZ(L) and the unique representation of iZ(E) is given by
' HPCA, E). There exists an isogeny y : A+ B and a vector bundle E" on

‘B such that x(E") =1 and E 1is isomorphic to the inverse image A¢*E".

(5.2.4.1) 1In other words the theory of q;(E) for a stable undle over an
elliptic curve is absorbed in the theory of the usual Heisenberg group and

its representation.

X

N

If r, d are not coprime, then H(E) is too small it is not useful to
consider q}(E). Say r =d =2, Then by Atiyah [2], E 1is isomorhpic to

Pz @ L where 'L 1is a line bundle of degree 1 and Fz is the non-trivial

extension uniquely determined up to isomorphism by the exact. sequence

is homogeneous : F =,Ta*F

2 2.
L~E=T@®*E =T *(F
e - X b4 ( 2 ®

0¢9+F2+0¢0 with T(A, Fz) £ 0. FZ

for any a ¢ A. Hence if x ¢ H(E), we have Fz

L) =T *F_, T *L = F_eT *L: -It follows that L = T *L. In fact consider .
x 2 x 2 x v D ‘

* the diagram

0 +T*L 2FoT*L +> T*L > 0.
S 2 x X

If L and Tx*L were not isqmorphic, then the'composite_ “2;?;11 :
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-—

| :“ L~ Tx’l. would be trivial since Ho(L-I_& Tx*L)' = 0. Hence ¥ °il

" would factor through Tx*L; And f’oil. would be injective. But this is

impossible since Ho(l..1 ® Tx*L) = 0.

" - " We proved that H(E) = H(L). On the other hand by (5.2.1),‘we have

2

lH(L)l =1 =1, HO(A, E) is two dimensional. Hence .H(E) is too samll.

This shows that the group q;(E) does not give sufficient information

concerning E for a general vector bundle E. We have to restrict ourselves

to a certain appropriate family of vector bundles. Over an elliptic curve,
as we have seen above, the family of stable vector bundles is nice. So

it is natural to ask if the group %}(E) has good properties for 'H-stéble

-

. A . . ‘.\ \d )
bundles over an abelian surface. Unortunately, the answer is no.

AN

- Example (5.2.5) Let A be an abelian surface. Let E be an ample vector

bundle of rank 2 over A. Let H be an ample line bundle on A. We

] " e
assume that E 1is H-stable.

(5.2.5.1) In the case ci - 4c_ 2 0 (This automaticaily is = 0), since E

2
is simple, there ekisf an.isogeny Al : A and Qn ample line bundle L on

A' such that E is isoﬁorphic to the direct image. ﬁ*L. By ;he sahe ‘ }j /
argument as in (5.2,4), we conclude that g(E) -is‘nothing‘ but the

Heisenberg group EZ(L), HO(A, E) :is.the unique répresenta;ibn 6f-€}(Ej

and that E aescends Fb‘ é'-‘with x(E') = i.;€;(E). is copsidered tolbe-

_ reasonable.

| {'Example (5.2.6) We use thé notation of Ekample (3.3). VWe substitute

e . -



g ﬁl - né = 0, m1 =], m2 = -1 and we consider a non-trivial extension :

" 0+0+E -~ MlpM;l + 0. Then E is H-stable for a cert;in‘amplé line

bundle H. Let L=M oM . Let q be a prime number. Tensoring

n 12 " ‘
L*?  with the exact sequence above, we get an exact sequence

. A . . |
"0 » ch - E@ch > M:(q +1)8M:Fq -1) +0.

e » ‘ | R
If n> 2, then E o Loq is ample and dim HOCE o L% = qznf(qn¢1)
(qQ-1) = 2.q""-1.
n

_ n _ ‘n
Let x ¢ H(E o qu ) i.e. Ee L°q = Tx*(E ® L®? ).

‘

n i n "

n ' n .
0o - Leq-——————z—e E@Leq‘ -————-E——~> M:(q +1)0M:(q -1) > 0
I | . | AN |
no i oM o(q™2) _a(q™1)
0 » ;L™ SR T;(EQL°q ) T Ve -1y, 4

o(q" +1) ® M@(qﬁ-l)

Since the index of L°‘q T 07 :

) is 1, we have

n
Wl e T *(M°(q g

M;(q ‘l)n = 0. It follows that. wzpf%ii'= 0

Hgnce'}ﬂoil factors through "Tx*Leq . For the same reason, 551oiz factors

and

: n . n
through L% . Hence { induces isomorphisms 1% :}TfoQq

":(qn*l) : M?tqn’l) i *(M°(q = ,:(qn-l)ﬁ. This proves x H(Leq#)'
B‘HCM1°(qn+1?_ | :(q )and so H(E o L n) c H(L“q ) n H(M°(q SO
.TM;FQR%I?). On the o#ﬁefAhand,‘ o |

'IH(LQq )| = h (L®q )? q4?lq'

,Q(M@(q *%)engn-l))l‘ 0 (MeC§‘+1? el&;(é#fi)sz.L.“

\ . ) | ) N . L .. f e miemem e s em e e e gt T



" Hence l(H(Leq )| and {H(M:

Q(E) is too small in this case.

42

Cem(@-).

4 oM, )| are coprime and consequently

- n n _ n e
e ) n pe®@ ) o 1201y | (o, R

1 2

. n : n
We proved H'(A, E ® L%V ) = 2.°"-1 and H(E ® L) = (0} for n=2.

. ' . a n
Remark €5.2.7) 1In the example above ci(E ® L@q } - c2(E ® L‘q ) <0 and

the stability of E depends on the choice of an ampie line bundle. Again,

by the conclusion that we have deduced above, the notion of an H-stable vector

bundle with c1

2 - 4c2 < 0 1is not very agreable (See Example (3.3))
: , N

X
N

Remark (5.2.8). Let A be an abelian surface. Let E be a vector bundle

of rank 2 on A. The following are equivalent.

1)
)
(3)

“4)

©(5)

0 .'.'_k* '_->q(E oL n_) - H(E@Lm), > 0

E is H-stable for any ample line bundle H on A and cz -4c,=0

E is H-stable for an ample line bundle H oﬁ A and ‘ci_f,4cz =0

E is simple and cf - 4cé =0

There exist an isogeney = : A' -+ A of abelian surfaces and an ample

]

line bundle L' on A' ,such'thét KerA(L') A Ker # =-{0} and E is

isomorphic to the direct image L',

*

E is simple. For any ample line bundle L on A ahd”for,sufficiently

large n, we have

isa Héisenbérg group : the pairing e(x; y) is non-degenefate and

i Sy



L

|H(EeL )[ 1 °L°2"odet E)2. SR

(65 E i; simple. The same assertion as in (5) holds for one am?le line

‘bundle L and for infinitely many n > 0.

proof The equxvalence of (1), (2), (3) and (4) follows from Takemoto [14]

and Oda [13] if we note that an extens1on of OA by 0A is not a sm1p1e

vactor bundle.

We prove that (4):::9(5}.' Let E be a simple'vectcr bundle and let

H be an ample line bundle. By (4) E o L*" s isomorphic to the direct |

image of L' @ *L®". Let x ¢ Kerm A Ker ACL' @ 7*L®). Then L' @ n*L®"

aT*(L'e "*Lcn) XT *L' @ T *r*L™" i T *L' @ »*L®". Hence L' = T *L' :
. X . b S X X X

X ¢ Ker m# A A(L'). It follows that x = 0. As in (5.2.4), we get

L |H(L'@w*L )[ s[H(EaL )[
By descent theory (cf; (SL2.4)), we conclude that H(L' @ n*LQn) c:l{(E ® Lon)

on en, 2

and [HE o L] = hO(E o L®M? if L' o L™ is ample. By the Riemann-

Roch theorem

b--N‘

h°(s@L°“)=:1’(EeL°")=;} (EeL)-c(EeL)
srcdEo )--I-c(BeL) : (E@Ln)
.an 0 ‘éZn

"= %'(L @ det E)2 = %-h (L ® det E).

| Sznce (6) is a 5pec1al case of (S),_(S);::3 (6) is trivial.'L 

Now we show that (6)==;(3) Let E »be a 51mp1e véctor bundle of rank 2.

.

o oo —— o
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Ne assﬁme that (6) holds. Then there e%isté aﬁ integer n and an vample line
‘bundle H on A such that HO(A, E, o L) # 0, H (A, E®L™) =0 for

i=1,2, 0 k* +4CE ® Lon) + H(E o Len) +0 is a Heisenbefg group and |

: 1 0 2
IH(E o L® )[ = =h (L 02“ @ det E) . Since E o L®® s simple, by the

Riemann-Roch theorem, we have ci(E ® Lon)"_ 4c~2(E @ 'Lm).vs 0. Hence

) 1sh0E ot™ =L1c%E o t®™) - c.(Eol®™ s 2E o1
x 2% R 1244
-%-ho(t.oznadet E).

ey

Since C}(E ® Len) is a Heisenberg group and ho'(E 3 I.On) is a representation

of Q(E o Lm) in which k* o erfes-by its natura.l character, ho(E ® Len)
- P

1
‘ . . en,,2 1.0 eZn
is divisible by [H(E el ) = h (LT e de t E) By 1nequa11ty (*), we get
' 2
0 en 1 0. e2n %‘CICE L )-c(EeL )

h(EelL ) = h (L ® det E). Hence
= lcl(e L M. °1(E o L% - 4c,(E L% = 0. If follows:that ci(E)
- 4c2(E) = 0. This completes the proof. o . . RN q. e. d.

Example (5.2.9) Let A be an abelian surface. Let’ L be a very ample
line bundle over A. Let @ = (fo }” f’) € HO(A I.) . We assume that
'¢1 ?2 (ps do not vanish smultaneously Thls we can defme the vector bundle

E({o) frequelty referred to as Klelman ] example by the exact sequence
o :.. o 4":"‘.',' 03 e N A . ‘. .
(Gl I 0 - 0 -+ L -+ E@) -+ oO.
| 1.—) .(fl*_?Z’Fs)

\ e

Lemma (5.2.10) Hz(A, E(p) o L) =

\ .



o MEg) - FedEe) - BEE) o )

ve3

 proof. 0 + E() - L + 0 +0.

. V '-.‘ -
0~ EPelL » 0% - L » 0.

" Hence we get

.. e v : .
e . 0 - Ho(A, E(f)re L) » HOCA, 0)°3 - HOCA, _.L) -

- The map HO(A, 0) 3 ~H (L) which sends (1, O, 0):—7\?1, 0, 1, 0)~ 72,
_ B .
(0, 0, L)y }’3 is injective. Hence HQ(A, E(P) o L) = 0. Applying Serre

| duality, weget the lemma. . T "ﬁi. e. d

3 -

‘.l.
e

Lemma (5.2.11) Eﬁo) is s1mp1e
proof Tensormg E@) W1th the exact sequence (* *), we get the exact'
sequence, B o - A \

. e V. o3 o

0 - E(p) eE(¥) ~ (E(¥) ol) + E(@) - o.

~

The exact sequence of cohomology is : . LT -:__"'

HI(E(Y)) = Hz(OA) is one dimesnional and HZ(E(‘(’) ®L)=0 by Lemma-

(5.2.10). Hence dim Hz(End(E(fﬁj)) s 1. By Serre duality, the lemma is

proven.

Lemma (5'.2.12) The.\./ector bundles E(‘f’) and E(P' are isomorphic if and

1 vonly if the vector 5pace generated by ?1 ?2 % is equal to the vector space

generated by ?i , g , j% in H (A L) S PIRER R S
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proof Assume that the vector space generated by ?’ }; f& = the vector

space generated by 71 s j’ , ﬁg'. We have ’m‘_ o ? '.2’.4,

') | %

' . V T :
‘fz = B ?2 with 8 ¢ GL(3, k). L R B
' | I
< ol \4 R
" B defines an automorphish of L°3 which we denote by  3. VWE note that the
‘. - N .. . :
. following diagram is commutative : . P i -  : e
11— ?
. 3
0 — 0 — ¥ — EPp) — o
. . N
“ Al :
. » 63 Y
0 — 0 — L —— E(p') — 0
' 1 — ?o
This proves the if part of the lemma.
Now we prove only if part. Suppose that E(¥) and E(§') are
v ' .
isomorphic. Tensoring L with the exact sequense (**), we get the diagram :
PN ) .- » ‘ " v C B ‘3 L. : v .
' 0 —- L — 0 —> EMPMel — 0

v - . .
L — 093 —_ E(? ) ® L -——9 o

where ¢ is an isomorphism.i It is sufficient to show that ¢ ﬁan be
o . 63 B . . 0 'V 1 v
lifted to an automorphism of 0. . Noting that H (L) = H (L) =0, we

. get the commutative diagram :

. . )
Lesmo et
\ owr e ARSI 4 g ¢ 5

i
!
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oot = 5 o e@el)
A . A

| 0, @3 , \ 0 v

og (0,) ~~= > 08H (E(#)el)

l

N

which induces an automorphism of o® making the diagram commutative. This
. completes the proof. : e ’ o q. e. d. ‘
Since (E®P)). has a representation’ HI(A, E) of degreetl, 9(5(40))

1sAcommutative by Lemma (5.1.1). We calculate: ?}'(E([d)) and its répresentation

\

for a very special case. Let Cl,' CZ be elliptic curves. Let A = Cl x Cz.

‘.ci_, i=1,2.

where pi denotes the projection

Let L:I. be an ample line bundle of degree divisible by 3 on

Let L be the tensor product pl*L @pz*L

1

~ from Cl x C2 onto the i-th factor. Let ..kl be a maximal level subgroup of .

?,(Ll). -Then there exists an element ‘91 € HO(CI,. LI) and an element a of

2

. 7,(1.1) of order 3 such that ¥, 1s invariant under t.hé operation of ‘K‘l and

A ¢;;'>¢2 = awl and Yy = azq,l do not have a common zero. We'i_do the same thing

3

' 2 '
Y t = 1] ! = ' - =
with L, on G, and we get .y, ¥, bysts ¥y by, ', b eq.(Lz) b | 1.

2
= ' = ’ = ' [ = ) . .

We put 5‘; -\lelbl , fﬁz ¥y ‘:’”3 Yg¥s K4 -(?1, Z., ?3) ~ Since the

operations '1\('1 x kz and ab, azb2 leave the vector space generated by ‘/1,

. . - . . . o 0 °

Y, ¢, invariant, by Lemma (5.2.12) we have [H(E(@))] 23 x h'(L)) x h (L))

- where 'ki is the maximal level subgroup chosen abové . On t‘he'l other hand

x(E) = 3 x Aho(L];].x hoeL). Since g.e) is comutative, [H(E)| divides x(E)

© by descent theory. Hence [H(F:){ =3 xh (Ll) x h (Lz). It follows that

0% — - — e 3E(P)el o .

—a e
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v . T AU : = Z/3L
0 BRI H(E) - /? e.Kl ® Kz,

QME) = k¥ eHE). - .
Consider the;pxact sequecé ofrféﬁ}esentations of 9159“)) :

e e

0 -——3 HO(O)‘_——a HQ(L)‘S——) HO(EQ'o))—;—>- -ill(O) _ 0

~

. trivial regular . .0 .. trivial
' .representation representation ’ - ... representation
S o ole/SZaKLQKZ : - of degree 2

1f foilbws that

’
[

0 ‘ : '
H (E(®)) = regular representation of Z/3Z @ X e EZ @ trivial

1

representation of Z/3Z e ?1 ® kz of degree 1.

I don't know if E(P) is H-stable for some amplé line bundle H or

not. | ..



(sl

(1]
(2]

sl

et ot e -
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