High Performance Algorithms

for Numerical Linear Algebra

Yusaku Yamamoto

[ZEBAYRE

AR

41368651

Contents

1 Introduction 3
1.1 Background L 3
1.2 Ourgoals e 4
1.3 Outlineofthethesis 4

2 Architectures of High Performance Computers and Optimization Tech-

niques 7
2.1 Architectures of a single processor 7
2.1.1 Vector processors v v v v i v e e 7
2.1.2 Processors with hierarchical memory 9
2.2 Architectures of parallel machines 10
2.2.1 Symmetric multi-processors L0 10
2.2.2 Distributed-memory parallel machines 12
2.3 Optimization techniques oo 13
231 Loopexchange. 13
2.3.2 Loopmerging e 15
233 Loopunrolling o 16
234 Blocking e 17
2.4 The basic linear algebra subprograms 18

3 Direct Solution of Linear Simultaneous Equations with Dense Coeffi-

cient Matrices 21
3.1 Introduction e e 21
3.1.1 The basic algorithm for LU factorization 21
3.1.2 Variants of the LU factorization algorithm 22
3.1.3 Pivoting for accuracy and numerical stability 23
3.2 Conventional high-performance algorithms 24
3.2.1 Blocked Gaussian elimination method 24
3.2.2 Parallel blocked Gaussian elimination method 25

3.3 The double blocked Gaussian elimination method 26

3.3.1 Difficulties with the conventional algorithm 26
3.3.2 The double blocked Gaussian elimination method 27
3.3.3 Analytical model for performance prediction 29
3.3.4 Experimentalvesults L. 32
3.3.5 Application to other linear algebra algorithms 34

Direct Solution of Sparse Symmetric Positive Definite Matrices on Distributed-

Memory Parallel Machines 35

4.1 Imtroduction L 35

4.2 Basics of the sparse direct solver 37

4.2.1 Components of a sparse direct solver 37
4.2.2 The elimination tree and the parallelism in the Cholesky decompo-

sition L 40

4.2.3 Datastructures L 42

4.3 Paralleization of the sparse direct solver 42

4.3.1 The target of parallelization, 42

4.3.2 Parallelization of each part 43

4.4 Optimization for enhancing the single-processor performance 45

4.5 Performance evaluation L L. 46

4.5.1 Parallel speedup 46

4.5.2 Effect of optimization L. 48

4.6 Conclusion 49

Direct Solution of Unsymmetric Tridiagonal Matrices on Shared-Memory

Machines 51
51 Imtroduction 51
5.2 The Dissection Method and Its Limitation 52
5.2.1 Tridiagonal solver based on the dissection method 52
5.2.2 Problems in the case of unsymmetric matrices 53
5.3 A Parallel Tridiagonal Solver with Partial Pivoting 55
53.1 Thebasicidea, 55
5.3.2 Parallelism in the elimination operation 56
54 Numerical Results 58
5.4.1 Parallel performance, 58
5.4.2 Numerical accuracy 60
55 Conclusion L e 61

i

6 Computation of Eigenvalues of Real Symmetric Matrices on Processors

with Hierarchical Memory 65
6.1 Introduction e 65
6.2 The conventional Householder tri-diagonalization and its blocked variant . 67
6.2.1 Basic algorithm for Householder tri-diagonalization 67
6.2.2 Blocked version of the Householder tri-diagonalization 68
6.3 The two-step algorithm for tri-diagonalization 70
6.3.1 Thebasicidea 70
6.3.2 Reduction of the input matrix to a band matrix 71
6.3.3 Reduction of the band matrix to a tridiagenal matrix 72
6.4 Improvement on the two-step algorithm 72
6.4.1 Limitations of the two-step algorithm 72
6.4.2 Improvement of the matrix-block vector multiplication 73
6.4.3 Improvement of the rank-2L update 73
6.5 Numericalresults e e e e e 74
6.5.1 Performance on a processor with hierarchical memory 74
6.5.2 Numerical accuracy e 76
6.6 Conclusion e 77

7 Computation of Eigenvectors of Real Symmetric Tridiagonal Matrices

on Shared-Memory Machines 79
7.1 Introduction e 79
7.2 Review of the conventional inverse iteration method 80
7.2.1 The conventional inverse iteration method 80
7.2.2 Difficulty with the conventional algorithm 82
7.3 The Householder inverse iteration method 83
7.3.1 Thebasicidea 83
7.3.2 Thealgorithm 84
7.3.3 Arithmetic operation count 85
7.4 The blocked algorithm 86
7.5 Numericalresults 89
7.5.1 Computing environments 89
7.5.2 Performance e 89
7.5.3 Numerical accuracy o 90
7.6 Conclusion. v o e 92

8 Fast Fourier Transform on Distributed-Memory Vector Parallel Ma-

chines 93
8.1 Introduction 93
8.2 Conventional FFT algorithms for vector-parallel machines 95
8.2.1 1-D FFT algorithms for vector machines 95
8.2.2 1-D FFT algorithms for distributed-memory vector-parallel machines 96
8.2.3 Implementations based on the five-step algorithm 97
8.3 A vector-parallel FFT with flexible data distribution 98
8.3.1 Conditions on the block sizes L. 98
8.3.2 The basic idea of the algorithm 99
8.3.3 The detailed algorithm and the storage scheme 99
8.3.4 Loop merging techniques for achieving high single-processor perfor-
MANCE . .« . o v v v e e e e e e 101
84 Experimentalresults 102
85 Conclusion 104
9 Conclusion 107
9.1 Summaryofourstudy 107
9.2 Future work 109

v

List of Figures

2.1 Schematic diagram of a vector processor. 8
2.2 Schematic diagram of a processor with hierarchical memiory. 10
2.3 Schematic diagram of a shared-memory parallel machine. 11
2.4 Interprocessor synchronization in computing inner-product of two vectors. 12
2.5 Schematic diagram of a distributed-memory parallel machine. 13
3.1 Allocation of nodes in the blocked Gaussian elimination method. 25
3.2 Single-processor performance and parallel efficiency as functions of the dis-
tribution block size L. 27
3.3 The effect of double blocking., 28
3.4 Execution time of the blocked Gaussian elimination method. 31
3.5 Parallel performance on the nCUBE2. 33
3.6 Parallel performance on the SR2001. 34
4.1 An example of finite element mesh and the separators. 38
4.2 A matrix generated by the FEM and reordered by the ND method. ... 39
4.3 Flow chart of the sparsesolver. 40
4.4 The nonzero structure of the matrix in Fig. 4.2after factorization. 41
4.5 The elimination tree corresponding to the matrix in Fig. 4.4. 41
4.6 Kernel operation of the Cholesky factorization. 45
4.7 Optimized loop unrolling for the local nonzero structure of the matrix. . . 46
4.8 The elimination tree for the 3-dimensional structural analysis problem. . . 48
4.9 Parallel performance for the 3-dimensional structural analysis problem. . . 48
5.1 A graph associated with a tridiagonal matrix. 53
5.2 A tridiagonal matrix reordered by the dissection method. 54
5.3 A tridiagonal matrix reordered by the dissection method. 54
5.4 Reordering of the nodes by the proposed method. 55
5.5 A tridiagonal matrix reordered by the proposed method. 56
5.6 Block structure of nonzero elements. 57

5.7 Nonzero structure after elimination by the 6th column.
5.8 Nonzero structure of block B during elimination.
5.9 Execution time of the LU decomposition.
5.10 Details of the execution time.
5.11 Residual of the three methods for random matrices.
5.12 Residual of the three methods for random matrices with diagonal elements
multiplied by 107%.
5.13 Residual of the three methods for matrices obtained by tridiagonalizing the
Frank matrices.
5.14 Residual of the three methods when the seed of the random number gen-
eratoris changed. L. L

6.1 Standard procedure for computing the eigenvalues and eigenvectors of a
real symmetric matrix. L. L oL
6.2 The k-th stage of Householder tri-diagonalization.
6.3 Blocked Householder tri-diagonalization with block size L=4.
6.4 The two-step algorithm for tri-diagonalization.
6.5 Reduction of the matrix at the second (K = 2) stage.
6.6 Exploiting the symmetry of CY)_ L.
6.7 Performance comparison of Dongarra’s and Bishof’s algorithm.

7.1 Grouping of the eigenvalues in the conventional inverse iteration method. .

8.1 Computational steps of our FFT routine.
8.2 Performanceresultsfor Ly =Ly, =16

vi

58
59

81

Acknowldgements

I would like to express my sincere gratitude to Professor Masaaki Sugihara for his support
and guidance throughout the development of this thesis. I'm also grateful to Professor
Masao Doi, Professor Katsuya Ishii, Professor Yukio Kaneda and Associate Professor Akio
Ishiguro for valuable comments and encouragements.

In conducting the research, I have benefited greatly from the discussion with many
professors and researchers in my field. Among them, I would like to express my special
thanks to Professor Yasumasa Kanada, Associate Professor Reiji Suda and Dr. Takahiro
Katagiri.

All of the works presented in this thesis were done while I was at the Central Research
Laboratory, Hitachi Ltd. I am especially indebted to my former colleagues Mitsuyoshi
Igai, Ken Naono and Hiroyuki Hirayama, without whose collaboration these works would
have been impossible. I would like to thank Nobuhiro Ioki, Shin-ichi Tanaka and other
members at the Software Development Division of Hitachi Ltd., Hiroki Kawamura at
the Hitachi Software Engineering Corp. and Yasunori Ushiro at the Enterprise Server
Division of Hitachi Ltd. for many useful discussions and for preparing the environments
for computer experiments. I am also grateful to Dr. Mamoru Sugie, Dr. Yasuhiro Inagami,
Dr. Chisato Konno, Dr. Sigeo Thara, Dr. Satoshi Itoh, Hiroaki Fujii, Toshio Okochi and
Nobutoshi Sagawa for kind guidance and for providing me with an ideal environment for
pursuing this study.

Last, but not least, I wish to thank my parents Nachisa Yamamoto and Mariko Ya-
mamoto for their constant and sincere support during the course of my research.

vii

Chapter 1

Introduction

1.1 Background

Computer simulation has become an increasingly important tool in many areas of science
and technology. For example, numerical simulation of atmospheric flows and ocean flows
are essential for weather forecast and study on climate change. Electronic structure
calculation and molecular dynamics simulation are used to develop new micro devices
or to study the structure and functionality of proteins. Car crash simulation by finite
element methods is an indispensable tool in the design of vehicles. All of these simulations
require solution of mathematical problems with a large degree of freedom. Now, finite
element methods or finite difference methods with millions of elements or grid points are
commonly used. Electronic structure calculations often employ millions of basis functions
and molecular dynamics simulations deal with millions of atoms. Accordingly, there are
ever-growing needs for larger computational power and larger memory space.

To satisfy these needs, various types of high performance computers have been pro-
posed and commercially shipped so far. Representative architectures adopted by these
computers include vector processors, processors with hierarchical memory, symmetric
multi-processors (SMPs) and distributed-memory parallel machines. Recently, combi-
nations of these architectures such as distributed memory parallel machines of which each
computational node is a vector processor or SMP have also appeared in pursuit of even
higher performance. _

However, it is not straightforward to fully exploit the performance of these complex
machines. In the case of SMPs, the user must pay enough attention to distribute the
work evenly among the processors and at the same time to minimize the number of inter-
processor synchronization. To achieve high performance on distributed-memory parallel
machines, one has to determine the distribution of data carefully so that both the fre-
quency and volume of interprocessor data transfer is kept to minimum. In addition,

techniques to extract the performance of a single processor which constitutes the parallel
machine must be employed. All these considerations need a reconstruction of algorithms
developed for a sequential computer, or sometimes development of new algorithms.

In many of the simulations listed above, the core of the computation is linear algebra
calculations. For instance, both weather simulation based on the Regional Spectral Model
and electronic structure calculation using the plane wave basis employ the fast Fourier
transform as a key component. Electronic structure calculation also needs solution of
eigenvalue problems. In the finite element method, most of the computing time is spent
to solve linear simultaneous equations with a sparse coefficient matrix. It is therefore
meaningful to develop efficient algorithms for these linear algebra calculations on the

various types of machines.

1.2 OQur goals

In this thesis, we focus on representative linear algebra computations such as solution of
linear simultaneous equations, symmetric eigenvalue problem and the fast Fourier trans-
form and develop algorithms for high performance computers. Our main targets are
parallel machines, which include both SMPs and distributed-memory machines, and com-
puters with hierarchical memory.

Our goals are development of efficient, accurate and stable algorithms. By efficiency,
we mean that the algorithm requires the same order of computational work as its sequen-
tial counterpart and the speedup with P processors approaches P when the problem size
is increased. By accuracy and stability, we mean the same level of accuracy and stability
as those of the corresponding sequential algorithm. There are many parallel algorithms
which do not posses the latter properties, but we believe that these properties are essential
for a parallel algorithm to be practical.

For some of the linear algebra computations, algorithms which satisfy the above con-
ditions can be constructed by restructuring the conventional sequential algorithms. This
is the case with the direct solution of linear simultaneous equations with dense or sparse
positive definite coeflicient matrices and the fast Fourier transform. In other occasions, we
have to devise a new algorithm. This is the case with the direct solution of linear simul-
taneous equations with unsymmetric tridiagonal coefficient matrices and the symmetric

eigenproblems.

1.3 Outline of the thesis
The following summarizes the contents of this thesis.

2

1. In Chapter 2, which serves as the preliminary to the entire thesis, we begin by ex-
plaining typical architectures of high performance computers. As architectures for a
single processor, we take up vector processors and processors with hierarchical mem-
ory. As architectures for parallel machines, we discuss symmetric multi-processors
and distributed-memory parallel machines. We go into the characteristics of each
architecture and discuss optimization techniques suited for each of them. Finally, we
introduce the idea of BLAS, or Basic Linear Algebra Subprograms. Roughly speak-
ing, BLAS 1 are a vector-vector operations such as inner product or addition of two
vectors, BLAS 2 are matrix-vector operations such as matrix-vector multiplication
and BLAS 3 are matrix-matrix operations such as matrix multiplications. We show
that higher-level BLAS are desirable both from the viewpoint of single-processor

performance and parallel efficiency.

2. In Chapter 3, we discuss direct solution of linear simultaneous equations with dense
coefficient matrices. We begin with the basic Gaussian elimination and describe
its variants and their properties. Next we introduce two conventional high per-
formance algorithms for Gaussian elimination. One is the blocked Gaussian elim-
ination, which is optimized to maximize data reuse and to achieve high single-
processor performance on processors with hierarchical memory. The other is the
parallel blocked Gaussian elimination, which was devised to minimize the number
and volume of interprocessor communication and attain high parallel efficiency on
distributed-memory parallel machines. However, it can be shown that if each node
of the distributed-memory machine is a processor with hierarchical memory, it is
difficult to choose the block size so that both high single-processor performance and
high parallel efficiency are achieved. To solve this problem, we propose the double-
blocked Gaussian elimination method and verify its eflectiveness through analysis
based on an analytical performance model and experiments. The idea of double
blocking introduced here is shown to be useful in other fields of numerical linear

algebra as well.

3. In Chapters 4 and 5, we deal with direct solution of linear simultaneous equations
with sparse coefficient matrices. After introducing some preliminaries at the begin-
ning of chapter 4, we study two problems, namely, parallel direct solution of linear
simultaneous equations with sparse symmetric positive definite matrices and par-
allel direct solution of unsymmetric tridiagonal matrices. For the former problem,
we improve the conventional algorithm for distributed-memory parallel machines
so that it can also achieve high single-processor performance when the node of the
distributed-memory machine is a processor with hierarchical memory. For the latter
problem, many parallel algorithms without pivoting have been known. Though it

3

is essential for numerical accuracy and stability to incorporate pivoting, it has been
difficult because pivoting destroys parallelism. We solve this problem by inventing
a new reordering method of the tridiagonal matrix that preserves parallelism even

when pivoting is introduced.

4. In Chapters 6 and 7, we treat the problem of computing eigenvalues and eigenvectors
of a symmetric matrix. The typical algorithm for this consists of four steps, namely,
tri-diagonalization of the input matrix by Householder transformations, computa-
tion of the eigenvalues of the resulting tri-diagonal matrix by the bisection-type
method, computation of the eigenvectors of the tri-diagonal matrix by the inverse
iteration method (IIM) and the computation of the eigenvectors of the original ma-
trix by back-transformation. Among these steps, efficient parallel algorithms have
been known for the first, the second and fourth steps. However, parallelization of
the IIM has been difficult because of the so-called re-orthogonalization process. We
propose a new procedure for re-orthogonalization that has a high degree of paral-
lelism and attains the same level of accuracy as the conventional procedure. On
the other hand, the tri-diagonalization step had the problem that it was difficult to
obtain high single-processor performance on processors with hierarchical memory.
This is because half of the operations are done with BLAS2, which is inferior to
BLAS 3 in terms of performance. We propose a new algorithm that fully utilizes
BLAS 3 and demonstrate that it can achieve much higher performance on this type

of machines.

5. In Chapter 8, we discuss parallel algorithms for the 1-dimensional complex fast
Fourier transform. We take up distributed-memory machines with vector-processing
nodes as our target and aim at constructing algorithms that fully exploit the per-
formance of these machines. To this end, we first describe algorithms based on
the so-called 3-dimensional representation of 1-dimensional data. We classify these
algorithms and demonstrate that one variant, which inputs and outputs data both
using cyclic distribution and require only one all-to-all interprocessor data transfer,
is the best one from the viewpoint of single-processor performance, parallel effi-
ciency and usability. Next, we extend this variant to increase the freedom of data
distribution. The resulting algorithm can input and output data both using block
cyclic data distributions with user-specified block sizes. This obviates the need for
data redistribution routines which was necessary with conventional algorithms and
enhances the overall performance considerably.

6. Finally in Chapter 9, we give some conclusions and future directions.

Chapter 2

Architectures of High Performance
Computers and Optimization

Techniques

In this chapter, we explain the architectures of high performance computers which we use
as target machines in the rest of this thesis. As architectures for a single processor, we
take up vector processors and processors with hierarchical memory. As architectures for
parallel machines, we discuss symmetric multi-processors and distributed-memory parallel
machines. We go into the characteristics of each architecture and discuss optimization
techniques suited for each of them. Finally, we introduce the idea of BLAS, or Basic
Linear Algebra Subprograms, and show why the use of higher-level BLAS is desirable
both for increasing single-processor performance and enhancing parallel efficiency.

2.1 Architectures of a single processor

2.1.1 Vector processors

A schematic diagram of a vector processor is shown in figure 2.1. It is composed of
three main elements, namely, a vector operation unit, a vector register and rnemory banks
[26][27). The vector register is a large register which can hold dozens or hundreds of
words of data. It sends the data to the vector operation unit at a rate of one word per
cycle, and the vector operation unit performs the vector operation, that is, the same
arithmetic operation on all of the data, at the same rate. The main memory consists
of dozens or hundreds of banks and the addresses in the memory space are allocated
to the banks cyclically. So, if the memory is accessed contiguously, the banks are used
one by one in turn. This enables the data transfer rate from the main memory to the

5

vector register to be increased by a factor of the number of banks, thereby hiding the
large cycle time of dynamic RAMs composing the main memory. In the case of several
machines, there is no distinct vector register or vector processing unit, but instead there
is a software mechanism that makes general registers and general arithmetic processing
unit behave like vector processing units. This is called pseudo-vector processor. Examples
of machines classified as vector processors are CRAY Y-MP, NEC SX-7 and Fujitsu VPP
5000. Examples of pseudo-vector processors are Hitachi SR2201 and SR8000.

Vector register
Vector
operation unit B g fiil [TT I}
Main memory [o0] [1] (2] 73]
16| [17] [1e} [
o) 514 [
1 1]
eioniod T R S— e
Bank0 1 2 15

Figure 2.1: Schematic diagram of a vector processor.

When the vector processor starts a vector operation, it has to load the first data
from the main memory to the vector register, and next from the vector register to the
vector operation unit. This causes some latency or vector startup time. Because the
startup time does not depend on the vector length, that is, the number of data on which
the vector operation is performed, its ratio to the execution time of the vector operation
decreases as the vector length increases. This leads to a guideline that one should make the
vector length as long as possible to get high performance on vector processors. Because
vectorization is usually done with respect to the innermost loop, this is equivalent to
maximizing the length of the innermost loop. We show in Table. 2.1 how the performance
of matrix multiplication on a single processor of the SR2201 varies with the vector length.

Table 2.1: Effect of vector length on the performance of matrix multiplication
Vector length 20 40 60 80 100 120 250

Performance (MFLOPS) | 167 205 224 233 241 246 250

Another consideration is to use the memory banks efficiently. As we mentioned ear-
lier, memory banks are designed so that they achieve the maximum performance when

6

the memory is accessed contiguously. However, in real applications, it is frequently nec-
essary to access a multi-dimensional array in a direction for which memory access is not
contiguous. More specifically, consider a two dimensional array A(NX, NY) (in FOR-
TRAN) and suppose that the second index of the array is incremented one by one in the
innermost loop. In this case, every NX-th elements in the memory is accessed in the
innermost loop, so if NX is a multiple of the number of memory banks, or if these two
have a large common divisor, only part of the banks are accessed. This situation is known
as bank conflict and causes severe performance degradation. To prevent bank conflict, it
is effective to change the leading dimension NX to NX + a so that NX + a and the
number of banks do not have a large common divisor.

Finally, one should pay attention to the ratio of the number of load or store operation
to the number of arithmetic operation. Many vector processors are designed so that the
vector operation unit attains the maximum performance when this ratio is 1:1. As an
example, we consider an inner product of two vectors, ¢ = x -y. In computing this,
two words of data, z; and y;, are loaded from the main memory, their multiplication is
computed and the result is added to the partial sum. So there are two loads and two
arithmetic operations for each 7 and the vector operation unit can run at a full speed. In
contrast, if one wants to compute the addition of two vectors z = x + y, one needs to
load two words of data, z; and y;, add them and store the result. In this case, the ratio of
load /store operations and arithmetic operations is 3:1, and therefore the vector operation
unit can attain at most one third of its peak performance due to the limitation of memory
throughput. We will introduce techniques to overcome this situation in section 2.3.

2.1.2 Processors with hierarchical memory

Another representative architecture for a single processor is a processor with hierarchical
memory [26][27]. The schematic diagram of this type of machine is illustrated in Fig. 2.2.
There are at least three level of memory devices, namely, the registers, the cache, and the
main memory. The cache is directly connected to the operation unit. It can contain only
several to dozens of words, but is the fastest both in terms of latency and throughput. The
data stored in it can be accessed with the latency of a few cycles and at a rate of two or
more words per cycle. On the other hand, the main memory has the largest capacity, but
is the slowest. The latency is several dozens to one hundred cycles, and the throughput
is well below one word per cycle. The cache is situated between the register and both its
capacity and speed is between those of the main memory and the registers. It retains the
data used by the operation unit so that the second and the following access to the same
data can be done at a much higher speed.

Most of the modern computers are equipped with cache, so the considerations we state

7

Register
Operation unit HEH 8~128 words

H Large throughput

Cache Several Kilobytes - several Megabytes

Small throughput

Main memory

Figure 2.2: Schematic diagram of a processor with hierarchical memory.

here apply to them. Representative machines include Intel Pentium III, IBM Power 4,
AMD Athlon and DEC Alpha. Some processors have more than one levels of cache, that
is, the first cache integrated in the processor chip and a larger second cache. But the
principles of optimization techniques for single level cache apply to them as well. Note
also that processors with hierarchical memory and vector processors are not mutually
exclusive concepts. Actually, there are machines such as the Hitachi SR8000 that have
both pseudo-vector processing facility and the cache.

To attain high performance on processor with hierarchical memory, it is essential to
increase the locality of data reference and use the data as many times as possible while it
is in the cache. This reduces accesses to the slow main memory and enables the operation
unit to run at a faster speed. Representative technique for this are blocking and use of
higher-level BLAS, which we will explain in the following sections. In addition, even if
the data is guaranteed to be in the cache, we still need to pay attention to the ratio of
load/store operations to the arithmetic operations, because of the limitation of throughput
between cache and the operation unit. To reduce this ratio, the same technique as in the
case of vector processors can be employed.

2.2 Architectures of parallel machines

2.2.1 Symmetric multi-processors

The architectures of parallel machines can be divided into two types, namely, the shared-
memory machines and the distributed-memory machines [26][27][80][102]. A simplified
diagram of a shared-memory machine is shown in Fig. 2.3. There is a main memory

8

system and a number of processors, and each of the processor is connected to the memory
through a bus. On some machines, there are more than one memory system and the
processors and the memory systems are connected via a crossbar switch instead of the
bus. This type of machine is also called symmetric multi-processors or SMPs, because
any portion of the memory can be accessed by any processor equally easily and there is
no correspondence between a processor and a portion of the memory. There are many
machines belonging to this category, such as NEC SX-7, one node of Hitachi SR8000 and
IBM p-Series. Note that SX-7 is an SMP of which each processor is a vector processor.
Similarly, one node of SR8000 is an SMP of which each processor is a pseudo-vector
processor. Recently, personal computers with dual CPUs have become popular. These
are also a kind of SMP machines.

Node 0] |Node i Node 2 Node 3
Cache - — o
e =
[
Bus T
Memory

Figure 2.3: Schematic diagram of a shared-memory parallel machine.

One of the greatest advantages of the SMPs is that there is only one global memory
space. This is the same characteristic as the sequential computer and makes parallel
programming considerably easy. On the other hand, there is a disadvantage that if the
number of processors is too large, say more than 20, bus contention in memory access
occurs frequently and it becomes very difficult to increase the performance in proportion
to the number of processors.

An important concept accompanying the SMP is interprocessor synchronization. This
means that if a processor wants to use the result of another processor, it has to wait and
make sure that the computation on the latter has completed. As an example, we show
in Fig. 2.4 the behavior of processors when computing the inner product of two vectors

using four processors.

There are several considerations to extract the potential performance of SMPs [80](102].
First, one has to make sure that computational loads are allocated to the processors evenly.
If the workload balance is uneven, or considerable part of the program has to be executed
sequentially, processor will become idle and parallel efficiency will be low. In fact, this is
true of any type of parallel machines.

Second, one has to make effort to minimize the number of interprocessor synchroniza-
tion. On many SMPs, interprocessor synchronization requires hundreds or even thousands
of cycles, so excessive use of synchronization will easily spoil the effect of parallelization.
In linear algebra algorithms, one of the best ways to enhance load balance and reduce the
number of synchronizations is to use higher level of BLAS such as BLAS 2 and BLAS 3,
as we will see in section 2.4.

Finally, one should reduce the bus contention. Many SMP machines have cache memo-
ries associated with each processor, so it is desirable to use these cache memories efficiently
and reduce the access to the main memory. For this purpose, one can use the techniques

used for processors with hierarchical memory.

2.2.2 Distributed-memory parallel machines

The other type of parallel machines is a distributed-memory parallel machine, which has
a separate memory system for each processor. We show a schematic diagram of this
type of machine in Fig. 2.5. Each computational node consists of a processor, memory
system and (possibly) cache and these nodes are connected via interprocessor network.
Machines classified into this category include CRAY T3E, IBM SP3, Fujitsu VPP5000,
NEC SX-7 and Hitachi SR2201 and SR8000. Note that SX-7 and SR8000 have a complex
architecture such that each node is again a parallel machine of SMP type. PC clusters,
which have become increasingly popular recently, also belong to this category.

This architecture has a marked advantage that the number of nodes can be easily in-
creased. Actually, massively parallel machines with thousands of nodes have been shipped
commercially and are widely used. However, from the programmer’s point of view, these
machines are very different from sequential computers because the memory space is di-
vided into as many subspaces as the number of nodes. So the programmer must always
be aware to which subspace each data belongs to. If data having been processed by one
node is to be processed by another node, it has to be first transferred to the latter node

& ; DOIP=90,3 Inner-product
Node 0 - = . DO1=1,25 of two vectors
Node 1 FAL S0 — S(P) = S(IP)
Node 2 === L “L\i - + A(IP*25+T)*B(IP*25+1)
Node 3 w END DO Synchronization
. * Time END DO, point
Synchronization $ = S(0)+S(1HS(2+S(3)
point

Figure 2.4: Interprocessor synchronization in computing inner-product of two vectors.

10

Cache __ |Node0| |Nodel| |Node2| [Node3
el =ssd Feasd framws
Memory ~ CEEE] EE " ® R

& ® o u
]

| | | |

Interprocessor network

L E LR
] & ®ET

% 8

®
8

Figure 2.5: Schematic diagram of a distributed-memory parallel machine.

via the network. This often makes the computer program much lengthier than that for
sequential machines.

To attain high performance on distributed machines, it is important as in the case of
SMPs to make the load balance even among the nodes. In addition, it is critical to keep the
frequency and the volume of interprocessor data transfer as small as possible [80][102]. On
many machines, setup time of hundreds or even thousands of machine cycles is necessary
to start one interprocessor data transfer. In addition, sending one word of data takes more
than ten times as long as performing one arithmetic operation. Accordingly, unless one
exercises enough care to minimize these costs, it is very likely that the speedup obtained
by increasing the number of nodes is cancelled by the overhead of data transfer.

To reduce the volume of data transfer, it is eflective to optimize the distribution of data
to the nodes, or to devise an algorithm which inherently involves small volume of data
transfer. These are part of the subjects of Chapters 3, 4 and 8 and will be treated there
in detail. Another approach, which can be used together with the former approaches, is
to hide the overhead of data transfer by overlapping it with arithmetic operations. This
is discussed, for example, in [32]. Decreasing the number of interprocessor data transfer
can be achieved by collecting together several transfers. We can see an example of this in

subsection 3.2.2.

2.3 Optimization techniques

In this section, we summarize basic techniques to improve the performance of a program
on a single processor [26]{27]. Techniques for SMPs and distributed-memory parallel
machines are more problem-dependent and will be treated in the following chapters.

2.3.1 Loop exchange

On vector processors, one of the key factors that determine the performance is the in-
nermost loop length. In some cases, it is possible to increase this length by exchanging

11

the innermost loop with another loop outside it. For example, we show here Stockham'’s
algorithm for computing 1-dimensional fast Fourier transform (FFT) of N = 2P points
(97].

[Algorithm 2.1 Stockham's algorithm]
doL=0,p-1
ap = 2
By = 27171
dok=0 0,1
do j = 0, /3[, -1
Xp1(G k) = X0(j k) + Xo(5 + B, k) w*Pr
Xewi(Bk+ar) = Xp(5, k) = Xp(5 + Br, k) w*Be
end do
end do
end do

Here, X1.(j, k) is a two-dimensional array of size 26y, x ay and w = exp(—2mi/N). The
algorithm consists of a three-fold loop and the length of the innermost loop changes as
2p=1 2p=2 1 as L increases.

If we notice that the computation of Xp4,(j,k)) are independent with respect to j
and k and that the length of the second innermost loop increases as L increases, we know
we can exchange the innermost and the second innermost loops at the value of L where
@y, > O holds. This will keep the length of the innermost loop always over O(vN).

Loop exchange is also useful for reducing the ratio of load/store to arithmetic op-
erations. For instance, Algorithm 2.2 and 2.3 below both compute the matrix product
C := C+ AB and only the order of loop nesting is different. While Algorithm 2.2 (outer-
product form) requires two load operations (C(i, j) and A(4, k)) and one store operation
(C(4, 7)) in the innermost loop, Algorithm 2.3 (inner-product form) require only two load
operations. So from the viewpoint of minimizing load/store, we can say that Algorithm

2.2 1s superior.

[Algorithm 2.2 Matrix multiplication (outer-product form)]
dok=1L
doi=1M
doj=1N
C(i,§) = C(i, j) + A(i, k) = B(k,)
end do
end do
end do

12

[Algorithm 2.3 Matrix multiplication (inner-product form))
doi=1M
doj=1,N
dok=11L
C(1,7) := C{1,7) + A(i, k) = B(k, 7)
end do
end do
end do

2.3.2 Loop merging

Suppose that there are two distinct loops and the same array variable A is accessed in
both of the loops. In that case, we have a possibility to be able to reduce the load/store
of A by merging these two loops.

As an example, let's consider matrix-vector multiplication y = Ax, where A is a N
by N symmetric matrix. By using the syminetry of A, the program can be written as

follows.
[Algofiihm 2.4 Matrix-vector multiplication (I)]
doi=1N
y(i) = A(i, 1) * z(d)
end do
doi=1,N
doj=1,i-1
y(i) = y(i) + AG, j) * 2(7)
end do
end do
doj=1,N
doi=1,5-1
y(i) = y(3) + A5, 1) * =(4)
end do
end do

By noting that the second loop accesses the same element of A(i, j) if the notation of
i and j is interchanged, we can merge these two loops and get the following code. This
code reduces the load of A by hald and therefore should run faster than the original code.

13

[Algorithm 2.5 Matrix-vector multiplication (1))

doi=1N
y(i) = A3, 1) * z(7)
end do
doi=1N
doj=11i-1

y(2) = y(@) + A,) * 2(7)
y(7) = y(j) + A(, J) * 2(4)
end do
end do

It is also possible to collapse a double loop into a single loop. This is sometimes useful
for increasing the length of the innermost loop. See [97] for an example in the case of
FFT.

2.3.3 Loop unrolling

The technique most commonly used to decrease the ratio of load/store is loop unrolling.
As an example, we show a code obtained by unrolling the loops of 7 and j in Algorithm
2.3.

[Algorithm 2.6 Matrix multiplication (inner-product form, (2,2) un-
rolled)]
doi=1M,2
doj=1,N,2
dok=10L
C(i,7) = C(4,7) + A(i, k) * B(k, 7)
Cli,j+1) =C(,j+1)+ A, k)= B(k,j+1)
Cli+1,75) =C@E+1,5)+ A@+ 1,k) = B(k,j)
Cli+1,j+1):=C(E+1,j+1)+AGE+1,k)xB(k,j+1)
end do
end do
end do

This is called (2,2) unrolling because the increments of both ¢ and j loops are increased
to 2 and the equations in the loop are copied 4 (= 2 x 2) times. As a result, the number of
arithmetic operations for each iteration of the innermost loop is increased to 8. However,
the number of load operation is increased only twice, because each of A(3, k), A(i + 1, k),

14

B(k,j) and B(k,j + 1) can be used twice. Hence, the ratio of load/store to arithmetic
operation is reduced by half and this code is expected to run at a faster speed than the
original one. Note however that in the above reasoning, it is assumed that all the C’s
can be stored in the register. In general, the larger the size of unrolling, the higher the
performance, on condition that variables do not spill out of the register. Note also that
unrolling of the innermost loop is sometimes effective because it decreases the number of
iterations of the innermost loop and thereby reduces the overheads. The performance of
matrix multiplication on a single processor of the SR2201 as a function of unrolling size
is shown in Table. 2.2. This clearly demonstrates the great impact of unrolling on the

performance.

Table 2.2: Effect of loop unrolling on the performance of matrix multiplication
Unrolling of (i, 7, k) (1L,1,1) (1,1,5) (2,2,1) (2,2,2) (5,2,2)
Performance (MFLOPS) | 67 110 180 210 250

2.3.4 Blocking

Blocking nieans to partition the data into small size of blocks that can be fit into the cache,
and change the order of arithmetic operations so that as many operations as possible can
be performed on each block while it is in the cache. This increases the locality of data
reference and makes it possible to use the cache efficiently.

In numerical linear algebra computations, this corresponds to partition the matrix
into (usually square) submatrices of a size fitting into the cache [37][46]. Then, in many
cases, it is possible to reformulate the algorithm so that the operations are done not
on the individual matrix elements but on the submatrices. For example, in the matrix
multiplication C = AB shown in Algorithm 2.3, if we partition the matrices A, B and
C into submatrices of size P x P and denote the submatrices by Ajx, By, and Cyy,
respectively, we can derive the following blocked version of the algorithm.

[Algorithm 2.7 Matrix multiplication (blocked form)]
do I =1 M/P
do J=1,N/P
do K =1,L/P
Cry:=Cr+AxBgy
end do
end do
end do

15

In this algorithm, the scalar multiplications and additions are replaced by matrix
multiplications and additions of P x P matrices. Because a matrix multiplication performs
O(P?) operations on O(P?) data, each data is used O(P) times, and the locality of data
reference is greatly enhanced.

Similar algorithms can be derived for Gaussian elimination to solve linear simultaneous
equations and tri-diagonalization for eigenvalue/eigenvector computation as well and will
be described in Chapters 3 and 6, respectively.

2.4 The basic linear algebra subprograms

By combining the above-mentioned techniques with optimized algorithims, one can max-
imize the performance of linear algebra programs on a single processor. However, it is
too laborious to apply these techniques to each of the loops that constitute a linear al-
gebra algorithm. Fortunately, most of the linear algebra algorithms can be decomposed
into basic linear algebra operations such as inner product of two vectors or matrix-vector
multiplication. So if optimized subroutines which performs these basic operations are
provided for each machine, they can be used in common for many types of linear algebra
computations.

Based on this idea, the BLAS, or Basic Linear Algebra Subprograms have been pro-
posed [34][35][46] and are widely used. There are three levels of BLAS as follows:

1. Level 1 BLAS

These are operations on one or two vectors and include inner product ¢ = x - y,
AXPY operation y = ax +y and L norm ¢ =|| x ||. Typically, these BLAS
1 routines perform O(NN) operations on O(NN) data when the length of the input
vector is V.

2. Level 2 BLAS

These are operations on a matrix and one or two vectors and include matrix-vector
multiplication y = Ax and rank-1 modification of a matrix A = A + xy'. Here,
the ¢ on the right shoulder denotes transpose of a matrix or a vector. Solution of
linear simultaneous equation with an upper (or lower) triangular coefficient matrix
x = U7'b is also regarded as a member of BLAS2. When the size of matrix is
N x N, BLAS 2 routines perform O(N?) operations on O(N?) data. From the
viewpoint of data reuse, BLAS2 is superior to BLAS1 because the input vectors
are used many times. But the reduction of the number of load/store is at most
by a factor of two, because each element of the input matrix is accessed only once.
Regarding parallelization on the SMP machines, BLAS 2 are much preferable to

16

BLAS 1, because both matrix-vector multiplication and rank-1 modification of a
matrix needs only one synchronization for O(/N?) arithmetic operation. In contrast,
BLAS 1 routines need one synchronization for O(N) operation and the overhead

due to it is far bigger.

3. Level 3 BLAS

These are coperations on one, two or three matrices and include matrix multipli-
cation C = AB, LU decomposition A = LU and solution of linear simultaneous
with an upper (or lower) triangular coefficient matrix and multiple right-hand-sides
X = U™!'B. When the size of matrix is N x N, BLAS 3 routines perform O(N?)
operations on O(N?) data. So, each data can be reused O(NV) times in average.
This is much better than the data reuse of BLAS1 and BLAS2. With regard to
parallelization, matrix multiplication has an ideal property, because involves only

one synchronization for O(N?) operations.

From what we have stated above, we know that higher-level BLAS, especially BLAS
3, have much more desirable properties than lower-level BLAS, both in terms of data
reuse and parallelization. Consequently, if a linear algebra algorithm constructed from
lower-level BLAS can be rewritten by higher-level BLAS by blocking or other means, it
will have a much greater chance of achieving both high single-processor performance and:
parallel efficiency. We will show examples of this in Chapters 3, 6 and 7.

The BLAS routines can be made from scratch according to the functional and interface
specification given in [34][35]. But many vendors provide a complete set of optimized
BLAS for their machines. In addition, a variant of BLAS called ATLAS (Automatically
Tuned Linear Algebra Software) [11], which automatically optimizes itself for a given
machine, has been developed and distributed freely. ATLAS is reported to give better
performance than vendor-supplied BLAS in some cases, and is therefore maybe the routine

of choice when the latter is not fast enough.

17

Chapter 3

Direct Solution of Linear
Simultaneous Equations with Dense

Coefficient Matrices

3.1 Introduction
In this chapter, we deal with the problem of solving linear simultaneous equations
Ax = Db, (3.1)

where A is a dense unsymmetric matrix of order N and x and b are vectors of length
N. This problem arises, for example, in the solution of partial differential equations with
the boundary element method and in the scattering problem of electromagnetic waves.
In addition, this is the most basic problem in numerical linear algebra and techniques
developed for this problem can be applied to many other problems.

The most common procedure for solving eq. (3.1) is the Gaussian elimination or LU-
factorization method [46][89][101]. In this method, one first factorizes A as A = LU,
where L and U are a lower triangular matrix with unit diagonal and an upper triangular
matrix, respectively. One then solves two equations Ly = b and Ux =y in this order
and finally obtain the solution x. Because LU factorization involves O(N?®) computations
and solution of two triangular equations require O(N?) computations, we treat only the
LU factorization part in this chapter.

3.1.1 The basic algorithm for LU factorization

The basic algorithm of LU factorization is shown below [46]. Here, agf) denotes the (4, 7)-th
element of A at the k-th stage.

19

[Algorithm 3.1 LU factorization (kij-form)]
dok=1N

doi=k+1,N
1+ = off)

a,

doj=k+1,N
k+ k k k
az(j“) = Ugj) - a’i;k+1) * aij)
end do
end do

end do

This algorithm requires about §N3 arithmetic operations. When the computation
is finished, the upper triangular part of matrix A constitutes U. The strictly lower
triangular part of A constitutes the strictly lower triangular part of L. The element
al® the column {af*N¥, +1 and the row {ag-)};‘;k +1 are called the pivot element, pivot
column and pivot row at the k-th stage, respectively. This algorithm is known as the
kij-form (or outer-product form) of LU factorization because the triple loops are nested
in this order.

The kij-form has the advantage that it has O((N — k)?) parallelism for each stage
k. It is therefore used as a basis of parallel algorithms which we will introduce in the
subsequent sections. However, it has the disadvantage that the innermost two loops have
the form of rank-2 modification (outer product of two vectors) and need two loads and

one store for each iteration.

3.1.2 Variants of the LU factorization algorithm

The triple loops in Algorithm 3.1 can be nested in any order, so there are six possibilities

in total. For example, the jik-form can be written as follows.

[Algorithm 3.2 LU factorization (jik-form)]
doj=1N
doi=2N
dok=1min(:-1,57-1)
Qij '= Qij — Qig * Qkj
end do
end do
doi=j+1,N
aij = aij/aj;
end do
end do

20

This form does not possess as much parallelisin as the kij-form, because the innermost
loop about k has a form of inner product and each iteration cannot be executed com-
pletely independently. However, because of the structure of inner product, it requires only
two loads for each iteration. Hence this form is preferable when the ratio of load/store
to arithmetic operation has a great impact on the performance. Other forms of LU fac-
torization also have their own advantages and disadvantages and may be the algorithm
of choice for certain type of machines. See [37][46] for details.

There is another variant of LU factorization called Cholesky factorization. It can be
used when the matrix A is symmetric positive definite and factorizes A as A = LLY,
where L is a lower triangular matrix. It has the advantage that it requires only half the
computational work and memory compared with the LU factorization. The Cholesky
factorization will be treated in more detail in the next chapter.

3.1.3 Pivoting for accuracy and numerical stability

During the course of LU factorization defined by Algorithm 3.1, it may occur that the
pivot element aéﬁ) becomes zero or very small in modulus. In that case, we cannot continue
the calculation any more, or even if we can, the subsequent matrix clements might lose
accuracy. To prevent this, one usually incorporates partial pivoting [46][56][99] into the
algorithm. This means that before computing agf“) = ag,f) /a&), one chooses the element
with the maximum modulus, say ai’f}i, from {af::)},’i ¢ and exchange the k'-th row of the
matrix with the k-th row. It can be shown that in exact arithmetic, aff?i = 0 if and only
if the matrix A is singular. Hence this procedure guarantees that the algorithm does not
break down if A is nonsingular. Moreover, it ensures that all the elements of the pivot
column have modulus smaller than 1. This is essential in retaining numerical accuracy in
the solution of the linear simultaneous equations. See [46][56][99] for details.

Although partial pivoting is important in computing the LU decomposition of a gen-
eral unsymmetric matrix A, we will not mention it explicitly in the description of high
performance algorithms to be treated. This is because it is straightforward to incorporate
partial pivoting in the case of dense algorithms. In the case of sparse algorithms, in con-
trast, incorporation of partial pivoting needs development of new techniques. This will

be the subject of Chapter 5.

21

3.2 Conventional high-performance algorithms

3.2.1 Blocked Gaussian elimination method

In this section, we introduce conventional high performance algorithms for LU factor-
ization, the blocked Gaussian elimination [37][46] and its parallelization on distributed-
memory parallel machines.

The blocked Gaussian elimination is designed for processors with hierarchical memory.
In this method, the input matrix A is partitioned into submatrices of size L x L. Here,
L is determined so that three such submatrices can be stored in the cache. Then the
algorithm of LU factorization defined in Algorithm 3.1 is applied to these submatrices,
instead of individual matrix elements. The resulting algorithm can be written as follows.
Here, AYS) denotes the (I, J)-th submatrix of A at the X-th stage and we assumed for
simplicity that N is divisible by L.

[Algorithm 3.3 Blocked Gaussian elimination]
do K =1,N/L
S{K = LxgUg (LU factorization of A(K))
do!l=K+1,N/L
A(K-H) A(lx)U;{l
end do
doJ=K+1,N/L
Ag‘y‘l) = L~ 1A(K)
end do
dol=K+1,N/L
doJ=K+1,N/L
ASI;+1) _ Agf(A(K+1)A§£+l)
end do
end do
end do

The submatrix AS?,.}, the column of submatrices {A%‘Ll)}ﬂﬁ +1 and the row of sub-

matrices {A(K“) }f,‘” L +1 are called the block pivot element, block pivot column and block
pivot row at the K-th stage, respectlvely Note that in this algorithm, division by a()
is replaced with LU factorization of A }(and multiplication by L' and Uy'. We can
prove that this algorithm actually computes the LU factorization of A by noting that
the matrix at each stage K the leading K by K blocks of A form an upper triangular
matrices and that the matrices used at each stage to transform A is a lower triangular

matrix. See [37][46] for details.

22

This algorithm is optimal for machines with hierarchical memory because it is com-
posed entirely of BLAS 3 operations such as the LU factorization of a diagonal submatrix
and matrix multiplications. From the definition of the block size L, all of these operation
can be done within the cache and access to the main memory can be reduced by a factor
of O(L).

3.2.2 Parallel blocked Gaussian elimination method

The blocked Gaussian elimination method can be naturally extended to execute on
distributed-memory parallel machines [37]. Suppose that there are P processing nodes
and P can be factorized as P = gr. In the parallel blocked Gaussian elimination method,
the blocks are allocated to nodes periodically in both directions (row and column). More
specifically, the (/, J)-th block is allocated to node MOD(I — 1, ¢)*r + MOD(J - 1,1).
The allocation in the case of ¢ = r = 4 is shown in Fig. 3.1.

L
=
L [011213 213
The number in the square denotes the node number
4151617 6|7 of the processing node which takes charge of the block.
8o li0l11 10 111 The figure shows the case where there are 16 nodes.
12113 {14 {15 14|15
",
u“.“
!‘”l
8 (9 (10411 1011
121311415 14|15

Figure 3.1: Allocation of nodes in the blocked Gaussian elimination method.

Before going into the algorithm, we need some definitions. Let dx denote the node
that has the block pivot element A.f,f} at the K-th stage. Let Ry and Ck denote the
group of nodes that have the block pivot row and block pivot column at the K-th stage,
respectively. Then the algorithm can be stated as in Algorithm 3.4.

Because this algorithm is based on the blocked Gaussian elimination, each interpro-
cessor data transfer appearing in Algorithm 3.4 occurs only once for each value of I{'. On
the other hand, if parallelization is based on the basic algorithm shown in Algorithm 3.1,
data transfer will occur once for each value of k. This means that blocking reduces the
number of data transfers by a factor of L. This advantage, combined with the ability to
use cache memory efficiently, makes the parallel blocked Gaussian elimination an ideal
method for large scale problems such as the LINPACK benchmark [66] both from the

viewpoint of single-processor performance and paralle] efficiency.

23

[Algorithm 3.4 Parallel blocked Gaussian elimination]
do K =1,N/L
Node dg performs the LU factorization AE{K} = LgUg.
Node dy broadcasts Ly in the row direction (to Ry).
Node dy broadcasts Ug in the column direction (to Ck).
Node group Cx computes A.(K4 D= A(K)U}1
for K+1<I<N/L.
Node group Ck broadcasts A (K+1) in the row direction.
Node group Ry computes A(K+1) LAY
for K+1< J< N/L.
Node group Ry broadcasts A(K+1} in the column direction.
Each node computes A(K”‘) A(K) A‘,f{“)A%“)
for the blocks A (¥ 17) allocated to it.

end do

There are additional techniques to further enhance the performance of this method
by, for example, overlapping the data transfer with computation and hiding the overhead
of the former. See [32] for details.

3.3 The double blocked Gaussian elimination method

3.3.1 Difficulties with the conventional algorithm

In the preceding section, we concluded that the parallel blocked Gaussian elimination
is effective for solving large problems on distributed-memory machines with hierarchical
memory. In the reasoning, we implicitly assumed that the blocks are distributed to the
nodes evenly, because the problem is large and there are a plenty number of blocks.

When the matrix is small or has inherently small parallelism, however, the above
reasoning fails and the parallel blocked Gaussian elimination method cannot perform well
on these machines. This is because smaller matrix size or smaller parallelism demands
smaller block size for achieving good load valance, and as a result, the block size L optimal
for single-processor performance differs from that optimal for high parallel efficiency.

To be concrete, let’s consider a situation where we want to factorize a dense matrix of
order 1000 on a distributed memory parallel machine with 64 nodes and suppose that each
node has 256K Bytes of cache memory. To attain maximum single-processor performance,
L should be as large as possible under the condition that three L x L blocks can be stored
in the cache memory. So L should be around 80 from this criterion. To attain maximum
concurrent efficiency, on the other hand, one must choose L by considering two factors,

24

namely, the frequency of interprocessor communications and the load balance among
the nodes. Increasing L will reduce the frequency of communication but will make it
more difficult to balance the load because it will decrease the number of blocks to be
distributed among the nodes. Decreasing L will give rise to an opposite effect. Usually,
for the case under consideration, the value of L that gives the highest parallel efficiency
is less than 10. So in this case, the value of L optimal for single-processor performance
is very different from that optimal for parallel efficiency (See Fig. 3.2) and one cannot
exploit the potentially high performance of the parallel machine no matter what value of
L one may choose.

A Single-processor &
§| Parallel efficiency performance g
e
(3]

(]]

= £ 8
© |
= :
= = O
: 82
A -

L

Figure 3.2: Single-processor performance and parallel efficiency as functions of the distri-
bution block size L.

‘The above discussion applies not only small to dense matrices but also to large skyline
or band matrices arising from finite element calculations. These matrices often have a size
of more than one million, but it is not rare that their skyline length or bandwidth is only
one or two thousand. Because the inherent parallelism of such matrices is determined by
the skyline length or bandwidth rather than dimension, the conventional blocked Gaussian
elimination can perform only poorly when applied to these problems. Actually, this
has been one of the obstacles to applying distributed-memory parallel machines with
hierarchical memory to finite element problems.

3.3.2 The double blocked Gaussian elimination method

To overcome this difficulty, we propose an extension of the conventional blocked Gaussian
elimination, the double blocked Gaussian elimination method[104][105]. In this method,
we use two block sizes: the distribution block size L, which is used for distributing the
coefficient matrix among the processing nodes and the algorithmic block size M, which is
used for matrix multiplication arising in the elimination operation. The values of L and

25

M are determined so as to maximize concurrent efficiency and single-processor perfor-
mance, respectively, under the condition that M is divisible by L. Using two block sizes
makes it possible to fully exploit the potential performance of distributed-memory parallel
machines with hierarchical memory even for problems with small inherent concurrency.
In order to use different block size for elimination, after calculating a block pivot row
{A%‘Ll)}ﬁf{ +1 and a block pivot column {ASK Iy +1, one postpones the elimination
until M/L pivot rows and columns are completed. After that, the elimination operations
corresponding to M/L block stages are performed at once using these block pivot rows
and columns. This method is an extension of the multistage elimination method [68] de-
veloped for vector supercomputers to a case where each element of the coefficient matrix
is not a real number but is itself an L x L submatrix.

To describe the double blocked Gaussian elimination method in detail, we assume
that NV is a multiple of M and that M is a multiple of L and set m = M/L. Then the
algorithm can be stated as in Algorithm 3.5.

In this algorithm, the allocation of the blocks (of size L x L) to nodes, the frequency of
interprocessor communication, and the amount of data to be transferred between proces-
gors are the same as in the case of the conventional parallel blocked Gaussian elimination
method with block size L. The concurrent efficiency of the both methods can thus be
considered almost the same. On the other hand, the single-processor performance of the
algorithm is governed by the performance of the main body of elimination (the last oper-
ation in the above algorithm). As can be seen from Fig. 3.3, in the double block method,
this operation can be cast into matrix multiplication with inner-product length M. We
can thus expect this method to make use of the potential performance of distributed-
memory parallel machines with hierarchical memory if we optimize the distribution block
size L to maximize concurrent efficiency and optimize the algorithmic block size M to

maximize single processor performance.

HHEH ::ﬁ:::?.F H ‘® denotes blocks used
in the calculations by
processing node 0.

TR oI e

SRR AL ——-
X .ﬁ...t:".“&ll:h

HiL IR 1] k(115

&
L]
L]
-
.4
H
"
It
-
»
"
i1

LENNE RN
SRR WRNANR

i
[
"
L]

E
]
1]
-
L]
"
-

Fe
i
H
i
B

() Simultaneous elimination (b) Elimination performed
by four block pivots by node 0

Figure 3.3: The effect of double blocking.

26

[Algorithm 3.5 Double Blocked Gaussian Elimination Method)]
do K'=1, N/M
do K=(K'-1)xm+1, K'+m
[LU factorization of the diagonal block]
Node dg performs the LU factorization A(,f,z, = LxUg.
[Broadcast of Lx and Ug]
Node dx broadcasts Lk in the row direction (to Rg).
Node dk broadcasts Uk in the column direction (to Ck).
[Formation of the K-th block pivot column)]
Node group Cx computes A(K“ A{K)UK
for K+1<1TI<N/L.
[Broadcast of the K-th block pivot column]
Node group Cy broadcasts A(KJ(” in the row direction.
[Formation of the K-th block pivot row]
Node group Ry computes A KH L;}‘A(,f}
for K+1<J < N/L.
[Broadcast of the K-th block pivot row|
Node group Ry broadcasts Af,f:ﬁl) in the column direction.
[Partial elimination to form next block pivot rows]
AL — A AU AL
for K+1<I<K'smand K+1<J<N/L.
[Partial elimination to form next block pivot columns]
AL = AfY) — AFTVAG
for K'sm+1<I<N/Land K+1<J<K'sxm
end do
[Main body of the elimination operation]
A(l('am+1) A((K’—l)am-} 1) As({;’_xgmztﬂ;&)Agggul)iﬁf}
A((k'wl)am+3)A ((K'=1)xm+3)
1K =1)rm+ 24 (K'—1)em+2,0

(K' nm+!) (K'wmai-l)
_A‘[,K"tm AK’*m,J

for K'sm+1<1I,J<N/L.
end do

3.3.3 Analytical model for performance prediction

To evaluate the performance of the double blocked Gaussian elimination method, we first
construct a model to predict performance when the dimension of the matrix, the number
of processors, single-processor performance, interprocessor communication performance,
and the two block sizes are given. Then, in the next subsection, we will predict the

27

performance on two kinds of parallel computers, the nCUBE2 and the Hitachi SR2001,

and confirm the prediction experimentally.
In constructing the model, we make the following four assumptions for simplicity:

1. Single-processor performance remains constant (s FLOPS) throughout the algo-

rithm.

2. The time tcomm. (sec) needed for interprocessor communication is a linear function

of the amount of data (n bytes) to be transferred:
teomm = tsetup + /W, (3.2)
where t,c4,, (sec) and w (bytes/sec) are setup time and throughput, respectively.

3. Only time for computation, time for communication, and idle time is taken into

consideration.

4. The total execution time is divided into two kind of phases, the communication
phase and the computation phase. In the former phase, each processor either joins
in mnterprocessor communication or waits in an idle state. In the latter phase, each
processor either performs computation or, if it has finished its computation, waits

in an idle state.

Because of the assumption 4, the length of each computation phase is governed by a node
with the heaviest load. Under these assumptions, the time needed to perform one stage
of the conventional blocked Gaussian elimination can be illustrated as in Fig. 3.4.

Under these assumptions, the concurrent efficiency of the double blocked Gaussian
elimination method with distribution block size L can be considered almost the same as
that of the conventional method with block size L, provided that the single-processor
performance is the same. This is because the former differs from the latter only in that
it postpones part of the elimination until M/L block pivots are completed. Therefore,
we construct a model for the conventional method and estimate the performance of the
double blocked method by using a formula for block size L but substituting the measured
single-processor performance at block size M for the variable s in assumption 1.

In this model, the total execution time is given as the sum of the computation time
and the communication time. The computation time consists of the following:

(a) T : Time for the LU factorization of the diagonal block,
(b) Tﬁ”,)vc : Time for formation of the block pivot column,

28

Execution time for the K-th block stage

3
Y

o o — co—. ool v - v ——— .’ v

ldecomp. Ibeast of | formthe {beastof | formthe Ibcastof !
jof diag. : the diag. : block pivot :tha block : block pivot I the block { elimination

bl block 1 ivat col. ivot
Node 0 : xk |u]?s"n- : i :E:‘:}?uﬁ‘in me I?.lr?lt.:?xi porure
I I i |
I I 1 |
(221188 1]

Z
(=%
(o]
-t
-
H
-
M
o
:
H
:
H
:
:

|
|
ml (1132

N{)dez —lluiuncuu]antcinu:- |
|
|
|

| |
L]I‘W'lll%l’l’.l‘l.lll'J'III i 221
| i l
I I | \1 i
Node 3 —|ll’l'Illll.ll}’.l‘.ilﬁlll}l.lil.lll l"{l..ll....l }l.'l.l'..l"*lli‘.!..l'.

l
!ll

The above is a timing diagram for 4 nodes. The abscissa denotes time and solid lines
show computation time. Dotted lines show communication time or idle time. Arrows
denote data transfer between processing nodes.

Figure 3.4: Execution time of the blocked Gaussian elimination method.

(c) T };})V g . Time for formation of the block pivot row, and
(d) T, ,(;23 p : Time for the main body of the elimination.
The communication time consists of the following:
(e) T,(fv) : Time for broadcasting the diagonal block,
(f) T f,'})vc Time for broadcasting the block pivot column, and
(g) T,(f,)v r : Time for broadcasting the block pivot row.

Let the dimension of the matrix, the block size, and the number of processing nodes be
N, L, and P, respectively, and assume that nodes are allocated to blocks periodically
in both directions with period P'/2. For simplicity, let N be a multiple of L * P'/? and
set N' = N/L and N" = N/(L x P'/?). Then, for example, T{s},, can be calculated as
follows.

The number of floating point operations needed to eliminate one block is 2L*, and the
maximum number of blocks taken charge of by one node is N”? for the first P'/? block
stages, and (N” — 1)? for the second P*/2 block stages, and so on. Therefore, the total
time needed for this part of calculation becomes

T = ;L-" * N" % (N" 4+1) % (2N" + 1) = P/%/s. (3.3)

Times for other parts can be calculated in a similar way and the results are summa-
rized in Table 77. The total execution time of the blocked Gaussian elimination can be

29

expressed as the sum of these times:

Tt = T{0 + TSyc + TS r + Thebp + T + Tshve + Ty a (3.4)

Table 3.1: Execution time for each part of the blocked Gaussian elimination.
Item | Time
T | (2/3)L3 « N'/s
TSve | (/2L * N" % (N" +1) = P?/s
Tiyr | (1/2)L% % N" % (N" +1) * PY/?/s
Tho | (1/3)LF « N"s (N" + 1)+ (2N" + 1) + P25
TS | N' % tyerup + L2 N'Jw
TSve | N' % toepup + (1/2)L2 % N" % (N" + 1) % P2 Jy
T | N * boerup + (1/2)L2 % N" % (N" + 1) x P [

3.3.4 Experimental results

In this section, we evaluate the performance of our double blocked Gaussian elimination
method using two types of distributed-memory parallel machines, namely, the nCUBE2
and the Hitachi SR2001 [104][105].

First, we predict the performance by using the model developed in subsection 3.3.3.
The example problem is to solve linear simultaneous equations of size N=1024 with 64
nodes. We used #,esp = 120 (1s) and w = 0.85 (Mbytes/s), which are values obtained by
approximating the measured communication time by a linear function. As single-processor
performance, we used measured value listed in Table 3.2.

Table 3.2: Single-processor performance on the nCUBE2.
M 4 8 16 {32 |64

Performance (MFLOPS) | 1.16 | 1.39 | 1.51 | 1.57 | 1.58

We estimated the performance for two series of parameters: (a) M is set equal to
L and the both are varied from 4 to 64 (this corresponds to the conventional parallel
blocked Gaussian elimination method), and (b) L is fixed to 4 and M is varied from 4 to
G4. The results of prediction are shown in Fig. 3.5 by dotted lines. It is estimated that by
setting L=4 and M =64, the new method can attain performance higher than the highest
performance of the conventional method.

30

P 80 \- (b} Double blocked (L=4) predicted
% 70 1 L~ (b} Double blocked (L=4) measured
]
= .
s 60
§ 507
g 40 "~ (a) Conventional (L=M) measured
%" 301 L~ (a) Conventional (L=M) predicted
3
o}

20 T MR

10 100
Block size (M)

Figure 3.5: Parallel performarnce on the nCUBE2.

The measured performance is shown in Fig. 3.5 by solid lines. As estimated, the new
method actually attained 77.14 MFLOPS when L=4 and M =64, which is 12% faster than
the fastest conventional method (68.47 MFLOPS when L=M=8).

We also evaluated the performance of the new method on the HITACHI SR2001.
Again, we first predicted the performance based on the model developed in subsection
3.3.3. The example problem is to solve linear simultaneous equations of size N=512 with
16 nodes. As t,enp and w, we used values in the hardware catalog. As single-processor

performance, we used measured values listed in Table 3.3.

Table 3.3: Single-processor performance on the SR2001.
M 4 8 16 32 64

Performance (MFLOPS) | 12.86 | 24.04 | 36.09 | 41.96 | 38.57

We estimated performance for two series of parameters: (a) M is set equal to L and
the both are varied from 4 to 32 (this corresponds to the conventional method), and (b)
L is fixed to 16 and M is varied from 16 to 32. The result of estimation are shown in
Fig. 3.6 by dotted lines. It is estimated that by setting L=16 and M =32, the new method
can attain performance higher than the highest performance of the traditional method.

The measured performance is shown in Fig. 3.6 by solid lines. As estimated, the
new method actually attained 338 MFLOPS when L=16 and M=32, which is 19% faster
than the fastest conventional method (283 MFLOPS when L=M=16). These results
confirm the effectiveness of our new method on distributed-memory parallel machines

with hierarchical memory.

31

= 400 L. (b) Double blocked (L=4) predicted
§ - (b) Double blocked (I.=4) measured
£ .

300
g - (a) Conventional (L=M) predicted
® L (a) Conventional {L=M) measured
5 2007
:
>
o

100 T

1 10 Block size (M) 100

Figure 3.6: Parallel performance on the SR2001.

3.3.5 Application to other linear algebra algorithms

The idea of using two different block sizes for data distribution and algorithmic blocking
can be applied to other linear algebra algorithms as well. For example, the algorithm
presented in subsection 3.3.2 can be extended quite straightforwardly to incorporate par-
tial pivoting. In fact, this extended algorithm has been implemented on CP-PACS [19],
a massively parallel distributed-memory machine with 2048 processors, and contributed
to winning the world’s fastest record in the LINPACK benchmark [66] in 1996.

Another application is tri-diagonalization of real symmetric or complex Hermitian
matrices by the Householder method [46][76]. In this case, the frequency of interprocessor
communications does not depend on the distribution block size L and therefore the choice
of L=1 is the best from the viewpoint of parallel efficiency. On the other hand, the
algorithmic block size that attains the highest single-processor performance is determined
from the capacity of the cache memory and is usually much larger than 1. Hence, the
idea of double blocking is expected to work well. The readers are referred to [55][59] for
more details.

Other potential applications include the QR factorization, reduction to the Hessenberg
form of a unsymmetric matrix and bi-diagonalization for computing the singular value
decomposition [46][89][90]. Application to sparse direct solvers [41][44][45] should also be

explored as a future work.

Chapter 4

Direct Solution of Sparse Symmetric
Positive Definite Matrices on
Distributed-Memory Parallel
Machines

4.1 Introduction

Structural analysis based on the Finite Element Methods is one of the most frequently
used applications in the field of scientific computing. Recently, as the size of the prob-
lems increases, there is a growing need for using distributed-memory parallel machines
which have high computational power and large memory spaces, and many software pack-
ages such as MARC and NASTRAN have heen ported to this type of machines. In the
structural analysis, much of the computation time is consumed to solve linear simulta-
neous equations. It is therefore crucial to develop an efficient linear equation solver for
distributed-memory parallel machines.

In many structural analysis calculations, the coefficient matrix is a large sparse sym-
metric positive definite matrix with a large condition number. To solve linear simultane-
ous equations with such a coefficient matrix, sparse direct solvers have been widely used
[41]{44]{45]. The sparse direct solver stores and computes only nonzero elements in the
factorized matrix and thereby reduces the amount of memory and floating point operation
compared with the skyline solvers.

There have been many studies to parallelize the sparse direct solver, and efficient
distributed-memory parallel algorithms have been proposed for each part of the solver, in-
cluding reordering [20](58][77], symbolic factorization [44], Cholesky factorization [6]{9][49]
[82][83], and forward and backward substitution [48]. However, there are not many

33

distributed-memory parallel sparse solver programs which performs all of these phases;
some examples of such solvers are CAPSS [51], which was developed as a part of the
ScaLAPACK project, MUMPS [4][5], which was developed in a European joint project
PARASOL [75], PSPACES (78], which was developed by Kumar et al. at Minnesota
University.

We developed a complete sparse direct solver which performs all of the above four
steps [106][107]. The features of our solver are as follows:

L. It can solve linear simultaneous equations whose coefficient matrix is symmetric
positive definite and has a 3 x 3 block nonzero structure. Such matrices arise in

3-dimensional structural analysis problems.

2. It performs the reordering step on one processing node and performs the following
steps on multiple nodes. By adopting this strategy, it can utilize the large mem-
ory space of a distributed-memory parallel machine, while retaining an easy-to-use

interface.

3. The single-processor performance in the Cholesky factorization part is enhanced us-
ing a locally optimized loop unrolling technique. This is made possible by exploiting
the block nonzero structure of the matrix.

Compared with the sparse solver programs listed above, advantages and disadvantages

of our solver can be stated as follows:

¢ Comparison with MUMPS

In MUMPS [4][5], one of the processing nodes is designated as the host node and
the user is required to store the whole coefficient matrix on the memory of the host
node when calling the solver. This interface has the advantage that it is easy to use,
because it is the same interface as that of the sequential sparse solver. However,
it has the disadvantage that the size of problems that can be solved is limited by
the memory size of the host node. In contrast, our solver accepts a coefficient
matrix that is scattered among the processing nodes, allowing the user to solve
larger matrices. In addition, our solver has an optional matrix distribution routine
which provides the user with the same interface as that of MUMPS.

e Comparison with CAPSS

In CAPSS (51}, all the four steps of the sparse solver including reordering are exe-
cuted on distributed memory. As an reordering algorithm, it adopts the Cartesian
Nested Dissection method [51)], which is simple and easy to parallelize on distributed

34

memory. However, it is known that this algorithm is not as effective as other popu-
lar reordering algorithms [20][58](77] in reducing the fill-ins. In contrast, our solver
utilizes a more eflective reordering algorithm called the Mullilevel Nested Dissection
(MND) [20][58]. Because MND is hard to parallelize, we chose to execute only the
reordering step on a single node. Though this causes the possibility of limiting the
size of solvable problems, we circumvent it by exploiting the 3 x 3 nonzero struc-
ture of the coefficient matrix and perform reordering on a smaller matrix with 1/3
columns and 1/3 rows. This reduces the memory required for reordering by 1/9 and
contributes to extending the limit of solvable problems.

e Comparison with PSPACES

In PSPACES [78], as in CAPSS, all the four steps of the sparse solver are executed on
distributed mémory. As an reordering algorithm, it uses a newly developed variant
of the Multilevel Nested Dissection [78] which is designed to be both effective and
easy to parallelize. This would be an ideal solution if the new reordering method
is as powerful as the current one. In this study, however, we take a conservative
approach and use a current version of the MND method that has proved effective

for many types of problems.

The rest of this chapter is structured as follows: we explain basic concepts of the sparse
direct solver in section 4.2 and details of parallelization in section 4.3. In sections 4.4 and
4.5, we will explain optimization techniques for enhancing single-processor performance
and the result of performance evaluation on the SR2201 distributed memory parallel
computer, respectively. Finally, we will conclude our study in section 4.6.

4.2 Basics of the sparse direct solver

4.2.1 Components of a sparse direct solver

A sparse direct solver finds a solution to a system of linear simultaneous equations Ax = b
by performing the four steps, namely reordering, symbolic factorization, Cholesky factor-
ization, and forward and backward substitution in this order. We will explain briefly each
of the four phases [41}[44].

(1) Reordering

In the reordering phase, the rows and columns of the coefficient matrix A are permuted
simultaneously using a permutation matrix P, and A is transformed into A’ = PAP"
The permutation matrix P is chosen so that the number of fill-ins after the Cholesky

35

decomposition A’ = LL* is as small as possible, and at the same time, parallelism in the
Cholesky decomposition is as high as possible. Popular methods for reordering includes
the Minimum Degree (MD) method [29], which is based on the idea of locally minimizing
the number of fill-ins generated at each step, and the Nested Dissection (ND) method
[45](20](58](77], which is based on recursive partitioning of the underlying mesh.

In the ND method, the FEM mesh is partitioned into two subregions A and B by a
vertex set called separator. The separators are chosen so that A and B contain roughly
equal number of vertices and there is no edge that connects a vertex belonging to A and
that belonging to B. After the partition, the vertices are renumbered so that the vertices
in A are numbered first, those in B next, and those in the separator last. From the
definition of the separator, there are no matrix elements whose column belongs to set
A and whose row belongs to set B, or vice versa, and the matrix is transformed into a
bordered block diagonal form. By repeating this partitioning and renumbering recursively
for each subregion, the matrix is transformed into a recursive bordered block diagonal
matrix. A matrix arising from the five-point finite difference formula on a 5 by 5 lattice
shown in Fig. 4.1 and reordered using the ND method is shown in Fig. 4.2.

v A

S
11 1:\ \19 15 17
12 4 20 16 18
UK
, @
0 1 X

@ : Separator at the first level
@ : Separator at the second level

Figure 4.1: An example of finite element mesh and the separators.

36

LR

el 0 o *

;1

L] Ld * »

se @
. &8

<
o &w

-« 8]
* &

. . e
. L] see
L] - ¢t
L - [K]

Figure 4.2: A matrix generated by the FEM and reordered by the ND method.

(2) Symbolic factorization

In this step, the positions of fill-ins are calculated prior to the Cholesky decomposition,
and the storage area to store them is allocated. At the same time, the index list to access

the nonzero elements is generated.

(3) Cholesky factorization

The Cholesky decomposition A’ = LL' is calculated using the index list generated in
the symbolic factorization phase. In this phase, the central operation of the Gaussian
elimination

A5 = Q45 = aikakj/akk (41)

is performed only for the lower triangular part, using the symmetry of the matrix. Also,
only those elements which become nonzero after factorization are calculated. Variants of
the algorithm include the right-looking algorithm (also referred to as kij-form or outer-
product form), where the outermost loop index is k, the lefi-looking algorithm (9] (also
referred to as jik-form or inner-product form), where the outermost loop index is j, and
the multifrontal algorithm [40][67], which is similar to the right looking algorithm, except
that it accumulates the updates to the matrix in a small full matrix called the frontal
matriz, and perform the update later. Consult [10][44][81] for comparison of these three

approaches.

(4) Forward and backward substitution

The solution of the linear simultaneous equation is calculated by solving Ly = b and

L'x = y successively.

37

The flow chart of the sparse direct solver is shown in Fig. 4.3. By separating the sym-
bolic factorization phase from the Cholesky factorization phase, it becomes unnecessary
to repeatedly calculate the same index list, when many sets of equations with the same
nonzero structure are to be solved, as in the case of Newton iteration in the nonlinear
problems. Also, by separating the forward and backward substitution phase, when many
sets of equations with the same coefficient matrix are to be solved, as in the case of
time dependent problems, only the forward and backward substitution phase needs to be

repeated.

[Reordering |

l

[Symbolic Iacﬁorizatio:n] A

[Cholesky factorization| B

Forward/backward
substitution

A: When only the values of nonzero elements change.
B: When only the right-hand-side vector change.

Figure 4.3: Flow chart of the sparse solver.

4.2.2 The elimination tree and the parallelism in the Cholesky

decomposition
Definition of the elimination tree

Next we will explain the concept of the elimination tree [44] which plays an important
role in parallelizing the sparse solver. The elimination tree is a rooted tree defined using
the nonzero structure of the Cholesky factor L and each vertex of the tree corresponds to
a column of L. For two vertices 7 and 7 (i > j) of the tree, ¢ is defined as the parent of j if
i = min{k > j|Li; # 0} and is denoted as ¢ = p(j). When the matrix is irreducible, i.e., if
it cannot be transformed into a block diagonal matrix with the simultaneous permutation
of its rows and columns, there is only one tree that has the vertex N as its root. The
nonzero structure of the Cholesky factor of the matrix shown in Fig 4.2 is illustrated in
Fig. 4.4, while the corresponding elimination tree is shown in Fig. 4.5. The number in the
circle denotes the column number. The recursive structure of the tree reflects the recursive

38

bordered block-diagonal structure of the matrix; the subtrees correspond to the diagonal
blocks, while the chains between branches correspond to the border of the matrix.

.
LR
s
(XX
o
0 ise
(R}
[XX
RO
e sesise
Te
(R4
ses
- 8 »
O
O >
.o
e
1 seseteie
{ *_s8wisy
[ese KK o nle
. LR .e ssiss
i L] csjoense
] seses LE R AN RILE N N2
1 XX seansinasns

Figure 4.4: The nonzero structure of the matrix in Fig. 4.2 after factorization.

Figure 4.5: The elimination tree corresponding to the matrix in Fig. 4.4.

Parallelization of Cholesky decomposition using the elimination tree

One of the important properties of the elimination tree is that elimination by column
j affects column ¢ only if node 7 is an ancestor of node j in the tree. Consequently, if
the left-looking algorithm is used, all the columns used in the elimination of column ¢ are
descendants of node 7. This means that if two nodes belong to two different subtrees which
do not share any nodes, the elimination operations for them can be done independently.

39

Using this fact, a matrix partitioning strategy called subtree-to-subcube mapping [44)
has been proposed and is widely used. In this strategy, the number of processing nodes
is assumed to be a power of two, and the nodes are allocated cyclically to the vertices of
the tree from the root downwards. At the first branch, half of the processing nodes are
allocated to the left subtree, while the other half are allocated to the right subtree. This
process is continued recursively until there is only one processing node in each group, and
then the whole subtree is allocated to that node. In Fig. 4.5, we show the node number
of the processing node allocated to each vertex when the subtree-to-subcube mapping is
applied to the elimination tree.

By using this mapping, the elimination operation for a subtree allocated to a processing
node can be done without interprocessor communication. Consequently, to maximize the
parallelism, it is necessary to reorder the matrix so that the number of vertices in these
subtrees is maximized (namely, the number of vertices in the separators are minimized)
and at the same time, the difference in the sizes of the subtrees is minimized.

4.2.3 Data structures
The partial matrix data allocated to each processing node by the subtree-to subcube
mapping is stored using the following three arrays.

1. A 1-dimensional array containing all the nonzero elements of the partial matrix.
The elements are stored in the ascending order of the column number, and within

each column, in the ascending order of the row number.

2. A l-dimensional array containing the row numbers of all the nonzero elements of
the partial matrix. The elements are stored in the ascending order of the column

number, and within each column, in the ascending order of the row number.

3. A l-dimensional array of size N + 1 containing pointers to the first elements of each
column in arrays 1 and 2.

In addition to these, we use a 1-dimensional array of size N which stores a mapping from
a column number to the node number which takes charge of it, and another 1-dimensional
array which stores a mapping from a column number to the column number of its parent.
All the processing nodes have copies of these two arrays.

4.3 Paralleization of the sparse direct solver

4.3.1 The target of parallelization

In this subsection, we will describe how to parallelize each part of the sparse direct solver.

40

Among the four phases of the sparse direct solver, our program executes only the
reordering phase on one processing node. It then distributes the reordered matrix to
nodes using a utility routine and executes the remaining phases on all the nodes. The

reason for adopting this strategy is as follows:

1. It is more convenient for the user to pass the whole matrix to the solver, espe-
cially because the standard interface for passing partitioned matrices from the FEM
program to the solver has not yet been established.

2. Because the number of nonzero elements in the coefficient matrix is about an order
of magnitude smaller than that in the factorized matrix, storing the whole coefficient
matrix does not become a severe constraint on the size of the problem that can be
solved, as long as the number of nodes is ten or so.

By adopting this strategy, it becomes possible to efficiently use the large address space
of a distributed-memory parallel machine, while retaining an easy-to-use interface.

4.3.2 Parallelization of each part

(1) Reordering

We used a variant of the ND method called the Multilevel ND method [20][58]. This
algorithm approximates the input mesh by a coarser mesh, partitions it, and maps the
partitioning again to the original mesh. The partitioning of the coarser mesh is done
recursively using the same procedure. The MND method has a desirable property that a
high quality partitioning with small separator and equally-sized subtrees can be obtained
at a relatively small cost, compared with other methods based on the ND approach, such
as the spectral ND method [77].

After partitioning the mesh using the MND method, our program reorders the nodes
within each subregion using the Approximate Minimum Degree method [29]. By doing
this, the number of operations needed for the Cholesky decomposition can be further

reduced.

(2) Partitioning of the matrix

In this part, an elimination tree for the reordered coefficient matrix is generated, and
the columns of the matrix are allocated to processing nodes using the subtree-to-subcube
mapping. For the columns corresponding to the chains of the tree, a block cyclic mapping
is used. In determining the block size L, we have to consider two factors: increasing L
will reduce the frequency of interprocessor communication and the overhead due to it, but

41

may cause load imbalance among the nodes. Decreasing L will give rise to the opposite
effect. In our study, we chose L = 12 from the result of preliminary experiments.

(3) Symbolic factorization

The position of nonzero elements after decomposition is calculated, and an index list to
access the nonzero elements of the decomposed matrix is generated. The index list is
expressed as a list of row numbers of nonzero elements in each row.

(4) Cholesky factorization

The left-looking algorithm is used for the Cholesky decomposition due to its relatively
small communication requirement. In this algorithm, as we stated in subsection 4.2.2,
elimination operation within a subtree allocated to one processing node can be done
without communication. As the processing proceeds, the number of nodes which work
together increases to two, four, eight, and so on. For calculation above the uppermost

branch, all the nodes cooperate.

(5) Forward and backward substitution

In terms of the elimination tree, the forward elimination is a process in which the elements
of solution corresponding to the leaves are calculated first, and the other solution are
calculated upward. While the backward substitution is a process in which the elements
of the solution corresponding to the root is calculated first, and the other solutions are
calculated downward.

There are two variants of the forward elimination, depending on whether the index
of the inner loop is ¢ or j, in the calculation of y; = v; — L;;y;. Here, because the index
list expresses the row number 7 of nonzero elements in each row j, the outer-product
algorithm, in which the inner loop index is 7, is more desirable. But, if the outer-product
algorithm is applied straightforwardly, it will incur much interprocessor communication,
because even when y; is in a subtree allocated to one node, the y;'s, which is to be modified
by y;, is in general allocated to other processors.

In our program, we solve this problem by accumulating the modification by y; in a
temporary array within the processor, and make a update to y; allocated to another
node only after the processing of the subtree allocated to the former processor has been
finished. Thus, the processing of subtrees.allocated to each node can be done without
communication.

On the other hand, in the backward substitution step, the inner-product form, in
which the inner loop index in the calculation of y; = y; — Ly;y, is j, is more preferable. In

42

this algorithm, to calculate y;, the y;'s corresponding to the ancestors of y; are required.
So, by making sure that all the solutions obtained so far have been sent to the processor
prior to the calculation of the subtree, the calculation within that subtree can be done

without communication.

4.4 Optimization for enhancing the single-processor
performance

Among the five phases of the parallel sparse solver stated in the last section, the most
time-consuming part is the Cholesky decomposition, whose central operation is a matrix-
vector multiplication ¢; = ¢ — Ab,, as shown in Fig 4.6. Actually, because the algorithm
is blocked, by, and ¢, are also matrices whose width is equal to the block size L, and the

operation becomes a matrix multiplication Cy = Cj, — A By.

Ck = Ck - AkBk

. denote columns
Bk computed by node 0.

N

Figure 4.6: Kernel operation of the Cholesky factorization.

In this operation, because all the matrices Ay, B, and C, are sparse, it is necessary to
access the elements using the index list. This lowers the single-processor performance if,
as is the case with most microprocessors, the processor has no special hardware for index
list addressing. Moreover, the loop unrolling technique used to reduce the load/store and
increase the performance cannot be applied straightforwardly, because the number and
the position of nonzero elements differs for each iteration. A straightforward application
would reduce the performance, for it would increase the operation count by operating also
on zero elements.

To solve these problems, we use locally optimal loop unrolling patterns for each part of
the matrix. In case of three-dimensional structural analysis problem, the nonzero elements
appear in a 3 by 3 block. So, we decompose the nonzero pattern of the matrix By, into

43

a direct sum of the three kind of blocks, whose sizes are 6 by 2, 3 by 3, and 6 by 1 each,
as shown in Fig. 4.7. Then we apply loop unrolling of (6, 2), (3, 3), or (6, 1) to (J, I) of
Fig. 4.7, according to the chosen block. In this way, the loop unrolling technique can be
applied without increasing the operation count. Because the (6, 2) unrolling attains the
highest speed for the machine we used in the experiment, we decompose By so that the
number of 6 by 2 blocks is maximized. The decomposition of the nonzero structure into
these blocks is done in the symbolic factorization step, so its overhead is negligible when
many sets of equations with the same nonzero structure are to be solved.

soo0oocooC
oo oo00
800800
RN
L il
84

By

o0 ciea aff St

Do ew
voeleee
o als alae
. olr eine
o ojenlvae

* eie wlew

TERIH NN
»e0ivee
* oje wln
AR AL AL

— lffp—
LI T I)

Ay Cy

Black and white circles denote nonzero
and zero elements of B, respectively.
Unrollingof 6 by 2, 3by3or6by 1is
applied to the loops over J and I.
Elements processed in the same
iteration of the do loop are surrounded
with a recltangular.

| |

Figure 4.7: Optimized loop unrolling for the local nonzero structure of the matrix.

4.5 Performance evaluation

We evaluated the performance of our parallel sparse solver on the Hitachi SR2201 distributed-
memory parallel computer. We used a three-dimensional structural analysis problem of
size N=70,032 as a test problem and varied the number of processing nodes P from 4
to 16. We also measured the performance for P=1 and 2, but in these cases, we used a
smaller problem of N=32,274 due to memory limitation.

4.5.1 Parallel speedup

The execution times for the symbolic factorization, Cholesky factorization and forward /backward
substitution are shown in Table 4.1 as a function of P. Here, we used the technique intro-
duced in the previous section to enhance the single-processor performance in the Cholesky

factorization part.

44

From the table, it can be seen that the Cholesky factorization part is sped up by 2.5
times when P is increased from 4 to 16, while the speedup of the symbolic factorization
and forward/backward substitution parts is less than twice. This is because the latter
two parts require the same number of interprocessor communication as the Cholesky
factorization part, although they have far less computational work to distribute among
the processing nodes. Note, however, that the relatively small speedup of these two parts
does not affect the total parallel performance severely, for their contribution to the total

execution time is small.

Table 4.1: Execution time for each part of the sparse solver (in seconds).

P=4 | P=8 | P=16
Symbolic factorization 0.55 | 048 | 0.29
Cholesky factorization 23.86 | 16.17 | 9.68
Forward/backward substitution | 0.65 | 0.57 | 0.35
Total 25.06 | 17.22 | 10.32

We can further analyze the parallel performance of the Cholesky factorization part
by using the elimination tree. The elimination tree corresponding to this problem is
illustrated in Fig. 4.8. In the Figure, we show only branching vertices and omitted vertices
below the fourth level, where the tree is divided into 16 subtrees. The numbers to the
right and left of a branching vertex denote the number of vertices belonging to the right
and left subtrees, respectively, right below the branching vertex.

From these numbers, we know that the distribution of vertices among the subtrees is
highly equal up to the second level (which corresponds to parallelization with 4 processing
nodes), but a severe imbalance occurs at the third level, at a vertex marked as a. As a
result, one of the nodes has to take charge of 16 thousand vertices, which is about twice the
number allocated to other nodes. We can deduce that this is the reason why the speedup
from P=4 to P=8 is modest (23.86/16.17=1.48). In contrast, vertices are distributed
relatively equally at the fourth level. This is in accordance with the observation that the
speed up from P=8 to P=16 is higher (16.17/9.68=1.67).

The imbalance at vertex « is caused because the finite element mesh in this problem is
irregular and is difficult to partition automatically by the MND method. It remains our
future work to improve the MND method so that it can generate high quality partitioning
for such irregular problems. Another possibility is to modify the subtree-to-subcube
mapping strategy so that it can allocate equal number of vertices to each node even if the
elimination tree is unbalanced, by exploiting tree structures at finer levels.

45

Figure 4.8: The elimination tree for the 3-dimensional structural analysis problem.

4.5.2 Effect of optimization

Next we compared the performance of the Cholesky factorization part with and without
optimization explained in the section 4.4. The result of measurement is shown in Fig. 4.9.
Here we used the problem of N=32,274 for the cases of P=1 and 2 and the problem
of N=70,032 for the cases of P=4, 8 and 16. The single-processor performance with
optimization is about 100MFLOPS, which is 20% higher than that without optimization.
When the number of nodes is increased to 16, speedup of about 10 times was obtained.

Performance (MFLOPS)
1000 940

780

181 462

98 ——0-— without optimization
100 s} with optimization

’ S ———
1 i0
Number of nodes

Figure 4.9: Parallel performance for the 3-dimensional structural analysis problem.

46

4.6 Conclusion

We developed a sparse direct solver for distributed-memory parallel machines and evalu-
ated its performance on the Hitachi SR2201 parallel computer. This solver is designed to
deal with sparse symmetric positive definite matrices with 3 x 3 block nonzero structure,
and adopts a locally optimized loop unrolling technique in the Cholesky factorization
part for enhancing single-processor performance. For a structural analysis problem of size
N=T70,032, our program attained 100MFLOPS on one processing node and speedup of
about 10 times when the number nodes is 16.

Our future work will include optimization of the other phases of the solver including
the symbolic factorization and forward and backward substitution, improvement of the
reordering and allocation algorithms, and performance comparison with other parallel
sparse solver algorithms such as the parallel multifrontal method.

47

Chapter 5

Direct Solution of Unsymmetric
Tridiagonal Matrices on
Shared-Memory Machines

5.1 Introduction

The problem of solving linear simultaneous equations with a tridiagonal coefficient matrix
arises in many areas of scientific computing. Typical applications include computation
of eigenvectors of a tridiagonal matrix by the inverse iteration method [46][101], solution
of a partial differential equation by the ADI method [98] and interpolation by spline
functions [79]. When the size of the matrix is large, it is appropriate to accelerate the
solution with the use of parallel computers. Many approaches for the parallel solution of
tridiagonal matrices have been proposed so far, including the dissection method [50], the
cyclic reduction method [54][91] and a method based on the QR decomposition [7].

In the cyclic reduction method, the odd-numbered variables in the equations are elim-
inated first and the number of equations is reduced by half. This procedure is repeated
until the number of equations is sufficiently small. This method has a large degree of
parallelism and has been successfully implemented on vector processors [92]. Also, exten-
sions to block tridiagonal matrices [54] and band matrices [39] have been proposed. In
this method, however, the order in which the variables are eliminated is predetermined
and pivoting for numerical stabilization cannot be incorporated. This makes it difficult
to apply this method to general unsymmetric tridiagonal matrices.

The dissection method is based on the Cholesky decomposition and extracts the par-
allelism in the elimination operation by renumbering the variables and equations [45](50].
It can be extended to unsymmetric tridiagonal matrices by using the LU decomposition
instead of the Cholesky decomposition. However, because the order of variable elimina-

49

tion is fixed also in this method, the type of matrices to which it is applicable is limited
to symmetric positive definite matrices or diagonal domninant matrices.

The approach based on the QR decomposition 7], on the other hand, can be applied
to general unsymmetric tridiagonal matrices. However, it is known that the QR decompo-
gsition also needs pivoting to produce accurate solution when the matrix is nearly singular
[30]. Hence, the applicability of this method without pivoting is also limited.

In this chapter, we propose a new parallel direct solver for unsymmetric tridiagonal
matrices [109][111]. Our method is a variant of the dissection method that can incorporate
partial pivoting and can solve linear simultaneous equations with general unsymmetric
tridiagonal coefficient matrices on parallel machines efficiently and accurately.

A parallel direct solver for unsymmetric tridiagonal matrices with pivoting has also
been proposed in [52]). However, in this method, there is a tradeoff between the ratio of the
sequential part in the algorithm and the number of interprocessor synchronizations. More
specifically, if we denote the number of columns that have to be eliminated sequentially
by 2P and the number of interprocessor synchronizations by @, PQ is equal to the matrix
size N. In contrast, our method has the advantage that it needs only one interprocessor
synchronization and the number of columns that have to be eliminated sequentially is
independent of N.

This chapter is organized as follows: In section 5.2, we briefly review the conventional
dissection method applied to tridiagonal matrices along with the difficulty arising in the
case of unsymmetric matrices. Qur new parallel direct solver which incorporates partial
pivoting is introduced in section 5.3. Numerical results on the Hitachi SR8000, a shared-
memory parallel computer with 8 processors, can be found in section 5.4. Concluding

remarks are given in the final section.

5.2 The Dissection Method and Its Limitation

5.2.1 Tridiagonal solver based on the dissection method

We consider a problem of solving a linear simultaneous equation Tx = b, where T is
a unsymmetric tridiagonal matrix of order N. In the dissection method, we first trans-
form T to TV = PTP' with a permutation matrix P and then solve a new equation
(PTPY)(Px) = Pb by Cholesky decomposition. P is determined so that the parallelism
in the decomposition phase is maximized.

As is well known [45][50], a matrix A with symmetric nonzero pattern can be repre-
sented by a non-directed graph Ga. Ga has N vertices that correspond to rows of A
and G, has an edge between two vertices ¢ and j if and only if A;; # 0. The graph Gt

50

corresponding to T is a chain, as shown in Fig. 5.1(a). We can identify the simultaneous
permutation of rows and columns T/ = PTP! with renumbering of G'r.

To solve Tx = b on a parallel computer with P processors using the dissection method,
we divide Gt into P subregions and P — 1 boundary vertices. Then we renumber the
vertices so that the vertices in the first subregion are numbered first, those in the second
subregion are numbered second, and so on, and the P — 1 boundary vertices are given
numbers from N — P + 2 to N. The graph Gt with new vertex numbers is shown in
Fig. 5.1(b) for the case of P = 3. Here, the boundary vertices are represented by shaded

circles.

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

OO OO Ol e O OO e e e el el el el el e OO
(a) natural ordering

1 2 3 4 5 619 7 8 9 1011 12 20 13 14 15 16 17 18

OO OO Ol elem e el e ek el el el e el el)
(b) reordering by the dissection method

Figure 5.1: A graph associated with a tridiagonal matrix.

By applying the corresponding permutation of rows and columns to T, we obtain a
matrix shown in Fig. 5.2. It can be seen from the figure that the original tridiagonal matrix
T is transformed into a bordered block diagonal matrix with three diagonal blocks. When
pivoting is not used, the Cholesky decomposition of each diagonal block can be performed
independently. Thus we can solve the tridiagonal equation Tx = b in parallel using p

processors.

5.2.2 Problems in the case of unsymmetric matrices

When solving linear simultaneous equations with unsymmetric coefficient matrix using
direct methods, it is in general necessary to perform pivoting to ensure accuracy and
numerical stability [30][46]. The most commonly used method for pivoting is the partial
pivoting, which chooses the element in the pivot column with the largest modulus as the
pivot element. In this subsection, we study how the parallelism in the dissection method
for Tx = b is affected when the partial pivoting is introduced.

Assume we apply Gaussian elimination with partial pivoting to a matrix shown in
Fig. 5.2. The nonzero pattern after the first 6 columns (which corresponds to the vertices
in the first subregion in the graph of Fig. 5.1(b)) have been eliminated is shown in Fig. 5.3.
The actual nonzero pattern depends on the sequence of the row numbers of the pivot

51

elements chosen; o = (n;,n,,...,ng), where i < n; < N. The nonzero pattern displayed
in the figure is the union of nonzero patterns over all possible o’s. In the figure, the
elements modified by the elimination operation are denoted by squares with oblique lines,
while the elements generated by fill-ins are denoted by black squares.

123456789 1011121314151617181920

Figure 5.2: A tridiagonal matrix reordered by the dissection method.

1234587891011 121314151617181820
j T

nonzero modified M fill-in
elements elements

Figure 5.3: A tridiagonal matrix reordered by the dissection method.

From the figure, we can see that the element in the 7th column and the 2nd row from
the last has been modified due to the elimination. However, in the elimination of the 7th

52

column, this element is one of the candidates of the pivot element, because we choose
the pivot element from all the elements in the column below the diagonal. This means
that we cannot start the elimination of the 7th column until the value of this element
has been determined, that is, until the first six columns have been eliminated. Hence
introduction of partial pivoting causes dependence of the elimination operations in the
second subregion on those in the first subregion, thereby destroying the parallelism.

5.3 A Parallel Tridiagonal Solver with Partial Pivot-
ing
5.3.1 The basic idea

In this section, we propose a new parallel direct solver for unsymmetric tridiagonal ma-
trices that can incorporate partial pivoting [109][111]. We achieve this by modifying the
reordering scheme in the conventional dissection method.

In the example shown in the previous subsection, the dependence of the elimination
operations was caused due to the existence of the nonzero element in the 7th column and
the 2nd row from the last. This element is nonzero because the rightmost vertex in the
first subregion is connected with the leftmost vertex in the second subregion through a
boundary vertex (vertex 19 in Fig. 5.1(b)). In our algorithm, we dissolve this dependence
by renumbering the vertices again in each subregion of Fig. 5.1(b). More specifically,
in each subregion, the vertex numbers of all the "purely inner” vertices, which are not
adjacent to any boundary vertices, are decremented by one, and the leftmost vertex in
the subregion is given the second largest number in the subregion. By reordering all the
subregions in this manner, we obtain the numbering of the vertices shown in Fig. 5.4.

1 2 3 4 6 61911 7 8 9 1012 20 18 13 14 15 16 7

OOl Ol O O i e el S e el e e O Dy Ol Sman)

Figure 5.4: Reordering of the nodes by the proposed method.

The new matrix corresponding this renumbering is shown in Fig. 5.5. Because the
leftmost vertex in each subregion is given the second largest number in the subregion, the
element that caused the dependence of elimination operation is moved to the second last
column in the subregion.

53

1234586789 1011121314151617181920

Y

LT

. LA

IR
Pl] |28
Z element that causes dependence
in the elimination operation

Figure 5.5: A tridiagonal matrix reordered by the proposed method.

5.3.2 Parallelism in the elimination operation

In Fig. 5.6, we show the block structure of the nonzero pattern of the matrix shown in
Fig. 5.5. Here, the columns of the matrix are divided into sets that correspond to purely
inner vertices (A, B and C), inner vertices that are connected to boundary vertices (the
thin column sets right after the sets A, B and C) and the boundary vertices (the last
set). Likewise, the rows are divided into sets that correspond to three subregions and the
boundary vertices. Each block of the matrix is shaded if there are at least one nonzero

element in the block, and is white otherwise.

Now we focus on the column set B. Among the four blocks in B, only the second one
contains nonzero elements and the blocks left to this block contain no nonzero elements.
As a result, the columns in B are not modified by the elimination of columns left to
B, even if partial pivoting is introduced. This means that we can start elimination of
columns in B before elimination of columns in A has been completed. Similarly, because
the only nonzero block in C is the third one and all the blocks left to this block is zero,
the columus in C is not modified by the elimination of columns left to C. So we can
start eliminating columns in C without waiting for the completion of the elimination of
columns in A and B.

Fig. 5.7 illustrates the nonzero structure of the matrix shown in Fig. 5.5 after elimi-
nation by the 6th column. As we have explained now, the columns in B (the 7th to the
10th column) have not been modified by the elimination of the 1st to the 6th columus.
By using this new renumbering, we can eliminate the columns in A, B and C in parallel

o4

1 567 1012 13 1718 20
3)) &
i’ 5.‘ L
.:.,.,;‘5._.::% :
B
S
i3
R .
AT o
4 &" SR
e s
:‘::J!":'u E :';n _&:
W“:fﬂ.l‘{:“ ke ﬁ.l Eg
s “ £ A
e e o]
Catdtonl)
et]
Bl
Bl Lees i 0%
| J L i1 §

Figure 5.6: Block structure of nonzero elements.
using 3 processors.

12346567891011121314161617181920
T T

! O:%:,_

et

NN

AL A

[73 nonzero modified Jfill in
elements elements

Figure 5.7: Nonzero structure after elimination by the 6th column.

In Fig. 5.8, we show the nonzero structure of the second block in B during elimination.

Here, we consider the situation where there are 12 columns in the set B and the elimination
by the 5th column in the set have been completed. When we apply Gaussian elimination
with partial pivoting to a tridiagonal matrix, it can be easily seen that fill-ins appear at

positions two elements above the diagonal. In our method, in addition to these, we also

have fill-ins in the second last rows and columns in the block. As a result, the number of

55

elements involved in the elimination in each step increases from 6 to 12 and the number
of pivot candidates increases from two to three. This almost doubles the number of

arithmetic operations and it is the price we have to pay for parallelization.

123456789101112

nonzero modified I fill in
elements elements

Figure 5.8: Nonzero structure of block B during elimination.

So far, we have described our algorithm for the case of P = 3. However, it can be
casily generalized to use any number of processors. Our algorithm needs only one inter-
processor synchronization, which occurs when all the " purely inner” columns allocated to
each processor have been eliminated. The remaining columns, which correspond to the
boundary vertices and vertices adjacent to them, needs to be eliminated sequentially, but
the number of such columns is 3(P — 1) and is independent of the matrix size N.

5.4 Numerical Results

We implemented our method on the Hitachi SR8000/F1, a shared memory parallel ma-
chine with 8 processors [95], and compared its performance and numerical accuracy with
that of the conventional methods.

5.4.1 Parallel performance

To evaluate the parallel performance, we used random tridiagonal matrices whose elements
were extracted from uniform random numbers in [0,1] (matrices of type (a)). The matrix
size N was varied from 500 to 8,000 and the number of processors P was varied from 1
to 8. We used a sequential tridiagonal solver based on Gaussian elimination with partial
pivoting when P = 1 and used our method when P > 2.

The execution times for the LU decomposition part are shown in Table 5.1 and Fig. 5.9.
As can be seen from the table, our method achieves speedup of 5.5 times compared with

56

the sequential method when N = 8000 and P = 8. It is also faster than the sequential
method when P=2or P = 4.

Fig. 5.10 shows the details of the execution time for the case of P = 8. The white area
and the shaded area denote the execution time for the parallel part (elimination of the
purely inner columns) and the sequential part (elimination of the remaining columns),
respectively. We can see from the graph that the execution time for the latter is almost
constant and its percentage decreases as N increases. This is in consistent with the
observation we made at the end of subsection 5.3.2 and means that the parallel efficiency
of our method increases with N.

We also measured the execution times for matrices of type (b) and (c¢) which we will
define in the next subsection. But here we omit the results because they were almost the
same as those for matrices of type (a).

Table 5.1: Execution time of the LU decomposition.

Matrix size | Sequential Ours Ours Ours Speedup
N (1PU) (2PU) (4PU) (8PU) (8PU)
500 3.26E-4 2.04E-4 1.85E-4 2.58E-4 1.26
1000 6.24E-4 3.49E-4 2.66E-4 3.05E-4 2.04
2000 1.21E-3 6.63E-4 4.32E-4 3.84E-4 3.15
4000 2.44E-3 1.32E-3 7.42E-4 548E-4 4.45
8000 4.79E-3 2.59E-3 1.38E-3 8.75E-4 5.47

Execution time (sec.)

6X1073
—+— Sequential method (1PU))
5X1073
—3— Our method {(2PU)
| —&— Our method (4PU) /
4X10% ' _5— Our method (8PU) /
3x10°

2X 10-3 //{/ /

. M

N=500 N=1000 N=2000 N=4000 N=8000
Matrix size N

Figure 5.9: Execution time of the LU decomposition.

o7

Execution time (sec)

1x1078
gx10™ —
8x107 I [J Parallel part =
7X107* I ¥4 Sequential part 1
6x10™ m
5x107% B]
4%107¢ ™
3x107 - —
2x1074 <)
1x1074 o % %w
0 >R S e s oA

N=500 N=1000 N=2000 N=4000 N=8000
Matrix size N

Figure 5.10: Details of the execution time.

5.4.2 Numerical accuracy

Next we compared the accuracy of our method with that of the sequential tridiagonal
solver with partial pivoting and that of the dissection method without pivoting. The
problems we used are (a) the random matrices which we used in the previous subsection,
(b) random matrices which are the same as (a), except that the diagonal elements are
multiplied by 1074, and (c) matrices obtained by tridiagonalizing the Frank matrices
Ai; = min(i, j) and subtracting their smallest eigenvalue from the diagonal elements.
Matrices of type (c) arise in the computation of eigenvectors using the inverse iteration
method. The matrix size N was varied from 500 to 8000 as in the previous subsection,
and the accuracy was measured in terms of the residual || Tx — b ||w.

The residual for the matrices (a), (b) and (c) are shown in Figs. 5.11, 5.12 and 5.13,
respectively. It can be seen from the figures that our method achieves higher accuracy
than the dissection method in all cases except for one, which is the N = 2000 case for
matrix (c). The accuracy of our method is up to two orders of magnitude higher than the
dissection method for matrices of type (b). This suggests that pivoting is indispensable
for matrices which do not have diagonal dominance. When compared with the sequential
Gaussian elimination with partial pivoting, our method attains much the same accuracy.
The results shown in figures 5.11 and 5.12 are for a specific seed of the random number
generator, but the difference of the accuracy of the three methods showed almost the same
tendency for other values of the seed. In Fig. 5.14, we show how the residual changes

58

when the seed of the random number generator is changed for the case of N = 2000 and
matrix type (b). As can be seen from the graph, the accuracy of our method is almost
the same as that of the sequential method and about two orders of magnitude better than
that of the dissection method. This agrees with the results shown in Fig. 5.12.

From these numerical results, we can say that our method is a good choice when one
wants to solve general unsymmetric tridiagonal matrices on parallel computers efficiently

and accurately.

Residual || Txb || =

1072

104 H* Sequential method
—3— Our method

1076 . .
—a4— Dissection method

108

10710

10-12

10-14

10'16 ol 1 L "

N=500 N=1000 N=2000 N=4000 N=8000

Matrix size N

Figure 5.11: Residual of the three methods for random matrices.

5.5 Conclusion

In this chapter, we proposed a new parallel direct solver for unsymmetric tridiagonal
matrices that can incorporate partial pivoting. We implemented our algorithm on one
node of the Hitachi SR8000/F1 and obtained speedup of 5.5 times compared with the
sequential tridiagonal solver with partial pivoting when the matrix size is 8000 and the
number of processor is 8. The accuracy of our method is almost the same as that of the
sequential solver and is up to two orders of magnitude better than that of the parallel
solver based on the dissection method without pivoting. Our future work will include
implementation of this algorithm on distributed memory parallel machines and incorpo-
ration of this algorithm into real applications such as the inverse iteration method for

eigenvalue computation.

99

Residual ||Tx-b || =
102

108 //

1010 /
10712 —4&— Sequential method |

~—{}— Our method
1071 | |
—&— Dissection method

10‘16 i i 1 1
N=500 N=1000 N=2000 N=4000 N=8000

Matrix size N

Figure 5.12: Residual of the three methods for random matrices with diagonal elements
multiplied by 1074,

60

Residual || Tx-b || «
1072

—4— Sequential method

10*1 -
—J— Our method

1078

—aA— Dissection method

108

10 -10

10712

10 -14

10—18 1 i 1 1
N=500 N=1000 N=2000 N=4000 N=8000

Matrix size N

Figure 5.13: Residual of the three methods for matrices obtained by tridiagonalizing the
Frank matrices.

Residual || Tx-b || =

1072
104 b st
R o
106 (-4 o z
8 6 R o A F ")
108 g—0
o » L
10710
10712 ~—4— Sequential method | |
—— Our method
10-14]
—i— Dissection method
10718

1 2 3 4 5 6 7 8 9 10
Series of random numbers

Figure 5.14: Residual of the three methods when the seed of the random number generator
is changed.

61

Chapter 6

Computation of Eigenvalues of Real
Symmetric Matrices on Processors

with Hierarchical Memory

6.1 Introduction

In this chapter and the next, we deal with the problem of computing the eigenvalues
and the corresponding eigenvectors of an N by N real symmetric or complex Hermitian

matrix A, that is, a set of a scalar ¢; and a vector x; that satisfy
Ax,- = €yX;. (61)

It is well known that A has N eigenvalues including multiplicity and we are interested in
computing all or part of the eigenvalues and, in some cases, the corresponding eigenvectors.
This is one of the most basic linear algebra calculations and has wide applications to
scientific computing such as structural analysis and electronic structure calculation [103].

The standard procedure for this problem consists of the following four steps [46][76]{100]
[101]:

1. Reduction of A to a real symmetric tridiagonal matrix T by Householder transfor-

mations.
2. Computation of the eigenvalues {e;,es,...,en} of T.
3. Computation of the eigenvectors {y;,y2,...,yn} of T.

4. Back-transformation of these eigenvectors into those of the original matrix,

{x1,%X2,...,%Xn}.

63

The steps are shown in Fig. 6.1 in more detail. In this chapter, we deal with the compu-
tation of eigenvalues (steps 1 and 2) on high performance architectures. Computation of

eigenvectors will be covered in the next chapter.

Of the two steps for computing the eigenvalues, we focus on the tri-diagonalization
step. This is because it requires O(/N?) computational work and dominates the computing
time in large scale problems. On the other hand, computation of the eigenvalues of tri-
diagonal matrix T by, for example, the bisection method requires only O(N?) computation
[46][76).

Tri-diagonalization by the Householder transformations has inherently large paral-
lelism of O(N?) and its efficient implementations on parallel computers have been well
studied. In fact, there are algorithms for shared-memory parallel computers {84] and
distributed-memory parallel computers [22][23][36][59][60][63][70].

Optimizing the single-processor performance of this algorithm on processors with hi-
erarchical memory is more difficult, however, because it consists mainly of matrix-vector
multiplications and rank-2 updates of a matrix [46]{76], both of which are BLAS 2 opera-
tions that provide only small opportunity for reusing the matrix data. To solve the prob-
lem, Dongarra and van de Geijn [36] proposed a blocked algorithm for tri-diagonalization.
By deferring the application of the Householder transformations and applying L trans-
formations at once, they show that the rank-2 update operation, which cccupies half
of the computational work, can be replaced with rank-2L update, a BLAS 3 operation.
However, in their algorithm, the data reuse rate in the other half of the algorithm re-
mains low. Bishof et al. [16][17], on the other hand, devised a two-step algorithm for
tri-diagonalization which first transforms the matrix into a band matrix of half band-
width L and then reduces it into a tridiagonal matrix. Their algorithm has the advantage
that the former step can be done using entirely BLAS 3 operations, while the latter step
requires only O(N?L) work. Nevertheless, it still has the difficulty that if one chooses
L so that the cache memory can be fully utilized in the former step, L tends to become
large and the computational work of the latter step becomes not negligible.

In this chapter, we improve Bishof’s algorithm by combining it with Dongarra el al.’s
blocking technique. By deferring the application of transformations in the former step of
Bishof’s algorithm and applying L' transformations at once, we can effectively increase
the size of matrix multiplications and use the cache efficiently without increasing the work
in the latter step. In addition, we employ loop merging techniques to further enhance
data reuse.

The rest of this chapter is organized as follows. In section 6.2, we describe the basic
algorithm of Householder tri-diagonalization and its blocked version due to Dongarra et
al. In section 6.3, we explain the two-step algorithm of Bishof et al. Our improvement on

64

this algorithm is introduced in section 6.4 and the results of numerical experiments are

given in 6.5. Finally we conclude with some prospect of future work.

Real symmetric matrix A Computation
Householder transformation Q°"AQ =T (Q: Orthogonal matrix)

l Tridiagonal matrix T

Bisection method | T—e.I | =0
1
l Eigenvalues of T: {e, }

Inverse iteration method Ty,=ey,
.l- Eigenvectors of T: {y; }
Back-transformation x, = Qy,

! |

Eigenvectors of 4: {x;}

Figure 6.1: Standard procedure for computing the eigenvalues and eigenvectors of a real

symmetric matrix.

6.2 The conventional Householder tri-diagonalization

and its blocked variant

6.2.1 Basic algorithm for Householder tri-diagonalization

The basic algorithm for Householder tri-diagonalization is shown in Algorithm 6.1. The
computation consists of N — 2 stages. Let’s denote the matrix at the k-th stage (1 < k <
N —2) by A®) the column vector which consists of the (k + 1, k)-th through (N, k)-th
elements of A® by d®) and the lower-right N —k by N — k submatrix of A% by C*), as
shown in Fig. 6.2. At the k-th stage, we first generate the reflector vector u® from d*)
and, by multiplying it with C*), obtain vectors p®*) and q(®. u® and q® are called the
pivot column and pivot row, respectively. Finally, we update C*) using the pivot column
and the pivot row. This operation is called rank-2 modification of the matrix. See [46][76]
for the proof that this algorithm actually tri-diagonalizes the input matrix A.

65

[Algorithm 6.1 Tri-diagonalization by the Householder transforma-
tions]
dok=1 N-2
[Generation of the reflector vector u]
o) — /R
u® = (@) — sgn(d®)e® a® . 4®)
a® =2/ | u® |,
[Matrix-vector multiplication]
p) = oK k) y(k)
B = o) /o
g = pk) — By
[Rank-2 update of the matrix]
C) .=) — (k) glkdt — gy (k)
end do

Figure 6.2: The k-th stage of Householder tri-diagonalization.

6.2.2 Blocked version of the Householder tri-diagonalization

In Algorithm 6.1, each of the matrix-vector multiplication and the rank-2 update of the
matrix require 2/3N? floating point operations and these two constitute most of the total
computational work. However, both of these are BLAS 2 operations that provide only
small opportunity for data reuse. As a result, it cannot attain high performance on
processors with hierarchical memory.

To overcome this difficulty, Dongarra et al. proposed a blocked algorithm for the
Householder tri-diagonalization [36). This is shown as Algorithm 6.2. Here, (X); denotes

66

the i-th column vector of matrix X. In the k-th stage of this algorithm, after computing
the pivot column u*) and pivot row q*), we defer the rank-2 update and instead store
u®) and g as a column of matrix U%) and Q™) respectively. After L pivot columns
and rows have been generated, we perform L updates at once. Hence the rank-2 update
is replaced by rank-2L update or matrix multiplication, as illustrated in Fig. 6.3, and the
ratio of data reuse of C®) is increased by a factor of L. This algorithm is adopted in the
LAPACK routine dsytrd [8].

[Algorithm 6.2 Tri-diagonalization by the blocked Householder
transformations]
do K =1, N/L
YlE-1)=L) — 3, Q((Kvl)*l») =¢
dok=(K-1)xL+1, KxL
[Partial Householder transformation]
d® = d® — gE-0(QE-1Y)_xe_1yar
- Q(k—l)(U(k-l)l)k_(K_l)‘L
[Generation of the reflector vector u®]
ok = /dkEg k)
u® = (d¥) — sgn(d®)e® 4 .. d,
o =2/ | u® |
[Matrix-vector multiplication]
p(=) () — Ylk-DQU-1)t _ Q-1 (k-1ty(h)
Bk = o)y /2
g = p® _ kL)
Uk = [U(kwl)]u(k)], Q) = [Q(k‘l)‘q(k)]
end do
[Rank-2L update of the matrix]
CUK*L) . CUE-1L) _ =L QUE=L) _ QUKL J(K=L)t

end do

Although this algorithm can replace half of the BLAS 2 operations with BLAS 3, the
other half, the matrix-vector multiplication part, still has to be done with BLAS 2. The
algorithm of Bishof et al. [16][17] which we will explain in the next section was proposed

to remedy this problem.

67

= C((}:"‘) L)

TN I N RLRA AR YW o1
AR

ETERA LA
%7 7
. .
27257 A ALLTITS LIS S LS G457 P e i s

— U w G — U w B
224% RIS IL LIS IIIL) %2257, DL LI LRATIIIS
%% ? Z SRS RIS SEF OIS zz zz LIS LELIT PP TEIAL SIS
ey
EAT A UrAaA
e » A *
2257 G G & L

e 2 e
+ + +
d6) de*N) gG+2) gh+3) 7] o}
. e
Matrix multiplication

Figure 6.3: Blocked Householder tri-diagonalization with block size L=4.
6.3 The two-step algorithm for tri-diagonalization

6.3.1 The basic idea

Bishof’s algorithm of transforms the input matrix A to a tridiagonal matrix T in two
steps, namely, reduction of A to a band matrix B of half bandwidth L and reduction of
B to a tridiagonal matrix T, as illustrated in Fig. 6.4.

Matrix size p Half bandwidth |

[X
s vl_.-' e :;:
Rl e
AR
Bl s ¥

et .
I": A o :2‘
i

A B T

Figure 6.4: The two-step algorithm for tri-diagonalization.

Of the two steps, the former step can be done entirely with BLAS 3 operations and
requires about (4/3)N? floating point operations [16][17], while the latter can be done
with about 6/N2L operations. Accordingly, when N 3> L, the algorithm needs almost the
same number of operations as the basic algorithm (Algorithm 6.1) and most of them are
done with BLAS 3 routines.

68

6.3.2 Reduction of the input matrix to a band matrix

We show the algorithm for reducing the input matrix to a band matrix as Algorithm
6.3. Here, it is assumed for simplicity that N is divisible by the half bandwidth L. To
describe the algorithm, we divide matrices into blocks of size L x L and use these blocks
and rows/columns of the blocks as the basic components.

The algorithm consists of N/L — 1 stages. It is very similar to the basic Householder
tri-diagonalization algorithm shown in Algorithm 6.1, except that the vectors are replaced
with block vectors of width L and the scalars are replaced with L x L matrices. Specifically,
vectors d®, ut®) p® g are replaced with block vectors D), UK) p&) QX) of
width L, while scalars a®*) and %) are replaced with L x L matrices a¥) and %),

At the K-th stage, we focus on the block vector D) which consists of the () +1, K)-th
to (N/L, K)-th block elements of AX). In a spirit similar to that of the basic Householder
tri-diagonalization, we try to find a block Householder transformation I — Ut¥)af)U(¥)
that transforms D) into a block vector whose first block is an upper triangular matrix
and the following blocks are zero (Fig. 6.5). We can obtain such a block Householder
transformation easily by computing the QR decomposition of DY) using Houscholder
transformations [46] and combining these transformations using the WY representation
[15](46][87]. Next, by multiplying it with CU9), we obtain block vectors PU) and QU).
U¥) and Q) are called the block pivot column and block pivot row at the K-th stage,
respectively. Finally, we update C¥) using the block pivot column and the block pivot
row. This is a rank-2L update of C¥). This completes the transformation of the leading
(K + 1)L by (K + 1)L submatrix of A to a band matrix.

[Algorithm 6.3 Reduction of the input matrix to a band matrix]
do K =1 N/L-1
[Generation of a block Householder transformation]
Compute a block Householder transformation
I — U oKIUK) that transforms the block vector DU
into a block vector whose first block is an upper triangular
matrix and the following blocks are zero.
[Matrix-block vector multiplication)
P = cUOUK) oK)
ﬁ(K) - a(K)U(K)tP(K)/z
Q(¥) = p¥) _ g g(K)
[Rank-2L update of the matrix]
cl) .= ClK) - gE)IQU _ Uyt
end do

69

Matrix before the x-th stage Matrix afier the x-th stage

Figure 6.5: Reduction of the matrix at the second (K = 2) stage.

In this algorithm, both the matrix-block vector multiplication and the rank-2L update
account for nearly half of the total computational work. As is clear from the algorithm,
both of these operation are matrix multiplications and their rate of data reuse increases
with the half bandwidth L. It is therefore optimal for maximizing the single-processor
performance in this step to make L as large as possible under the condition that all the
blocks used in the matrix multiplications can be stored in the cache.

6.3.3 Reduction of the band matrix to a tridiagonal matrix

In the second step of the Bishof’s algorithm, the band matrix obtained in the first step
is further reduced to a tridiagonal matrix. This can be achieved using the algorithm
explained in [68] or [101] and requires about 6 N2L floating point operations. Note that
the computational work of this step increases proportionally with L.

6.4 Improvement on the two-step algorithm

6.4.1 Limitations of the two-step algorithm

As we have ‘stated in subsection 6.3.2, we have to use moderately large L to achieve
high single-processor performance in the first. On the other hand, the computational
work in the second step increases with L. To be concrete, let’s consider a situation of
tri-diagonalizing a matrix of N = 7200 on a processor with 64KB of cache memory. If
we choose L = 12, the computational work in the second step is kept to less than 3%
of the total work, but we cannot fully exploit the cache in the first step because matrix
multiplication C = AB of size L x L require only 3.5KB of memory. In contrast, if we
choose L = 48, we can fully utilize the cache and increase the rate of data reuse by four
times, but the computational cost of the second step increases to about 10%. As can be

70

seen from this example, it is sometimes difficult to choose L properly, especially when N
is not large enough.

To solve this problem, we propose two techniques to enhance data reuse in the first
step of Bishof’s algorithm without increasing L. One of the techniques is for the matrix-
block vector multiplication part and the other is for the rank-2L update part. These two
techniques can be used together to improve the overall performance of Bishof’s algorithm.

6.4.2 Improvement of the matrix-block vector multiplication

We consider the computation of C¥)U%) in Algorithm 6.3. Because the original matrix
A is symmetric and the rank-2L updates keep the symmetry, we know that CUS) is
symmetric for every K. Let’s assume that the multiplication is performed block-by-block
and focus on two blocks F; and F, of C/¥) which are at mirror positions of each other
with respect to the diagonal (Fig. 6.6). As can be seen from the Figure, F; is multiplied
with G; and added to H,;, while F; is multiplied with G, and added to H,;. In the
standard implementation, these two operations are done in separate loops. However, if
we merge them, we can eliminate the load of F; by exploiting the fact that F = F%. This
increases the data reuse rate for C) twice.

L
—
\'\\

\T’, L ey
5\‘72‘: W.W.E Fa G H2
i “«.\\‘ x =
@ ‘“\.(",

F) \\'\ G 2] HI nfz‘

c® y® cWy W

Figure 6.6: Exploiting the symmetry of C).

6.4.3 Improvement of the rank-2L update

For the rank-2L update part, we can apply the idea of the blocked Houscholder trans-
formation introduced in subsection 6.2.2. The algorithm based on this idea is shown as
Algorithm 6.4. Here, L' is some integer and QX and UX are matrices whose columns

71

are block vectors. (QX); and (UX); denote the i-th column (block vector) of QX and UX,
respectively.

In this algorithm, after computing the block Householder transformation I— U)o y(¥)
and generating the block pivot rows and columns, we defer the rank-2L update and in-
stead store the block pivot rows and columns as a block column of matrices Q¥ and UK.
After L' block pivot rows/columns have been generated, we apply these L' rank-L updates
as a rank-2LL’ update on matrix C'*). This modification increases the data reuse rate
of C) in this part by L' times without increasing the computational work in the second

step of Bishof’s algorithm.

[Algorithm 6.4 Improved version of Bishof’s algorithm]
doK=1, N/(LL) -1

U((K—d)wLL’} — (i’, Q((K—l)mLL’} = ¢

do K=(K-1)xL+1,KxL
[Partial Householder transformation]
D) .= DK} _ U(K~l)(Q(Kﬂl)i)!{h(K_l)‘L,

_ Q(K—«l}(u(}{—l)t)K_(K_l)*u

[Generation of a block Householder transformation]
Compute a block Householder transformation
I — U QKUY that transforms the block vector D)
into a block vector whose first block is an upper triangular
matrix and the following blocks are zero.
[Matrix-block vector multiplication]
P(l{) — (C(K) _ U(K-—I)Q(K-—l)t _ Q(K-—I)U(}{-—l)t)u(K)a(K)
BUE) = a(K)U(K)tp(K)/z
QUK) = PUO _ gEIYK)
U = [U(K“”[U(’”j, Q) = IQ(K-l)lQ(K)]

end do

[Rank-2LL' update of the matrix|

CUESLY) . =1L _ (KL) QKoL) _ QKeL) y(KeL')e

end do

6.5 Numerical results

6.5.1 Performance on a processor with hierarchical memory

We implemented the following three methods on the Hitachi EP8000 and evaluated their

performance.

72

s Dongarra et al.’s blocked Householder tri-diagonalization described in subsection
6.2.2.

e Bishof et al.’s two-step tri-diagonalization algorithm described in section 6.3
¢ Our improvement on Bishof et al.’s algorithm proposed in section 6.4.

The EP8000 uses IBM Power 4 as its processor and have a peak performance of 5.2GFLOPS.
As a compiler, we used Hitachi FORTRAN90 01-01 version.

First, we show the performance comparison of Dongarra’s algorithm and Bishof’s
algorithm in Table 6.1 and Fig. 6.7. In the latter algorithm, we chose the maximum value
of the half bandwidth as L = 48 so that all the data used in the algorithm can be stored
in the first cache. From these results, we can make following observations:

1. Dongarra’s algorithm, which uses BLAS 3 for only half of the total computational
work and uses BLAS?2 for the rest, can attain at most 20% of the peak performance.

2. Bishof’s algorithm can attain 1.6 to 1.9 times the performance of Dongarra’s algo-

rithm.

3. The performance of Bishof’s algorithm is highest when L = 12 and decreases as L

increases.

The last point is due to the fact that the computational work in the second step increases

proportionally with L.

2500

@N-2400 '

2000 | |® N=3600
ON=7200 PR

1500 : E: JEeah

i}i 2L

500 e Sems: | 4 i

0 - oo e I i
L=1 =12 L=24 =48

Figure 6.7: Performance comparison of Dongarra’s and Bishof’s algorithm.

Next, we investigated the effect of our improvements proposed in section 6.4. The
results are given in Table 6.2. Here, we used L' = 4. The results show that our im-
provements increase the performance of Bishof’s algorithm by 10 to 15% and achieve 1.7

73

Table 6.1: Performance comparison of Dongarra’s and Bishof’s algorithm.

Algorithm | L | N Execution Performance % of peak Relative
time (sec.) (MFLOPS) performance

Dongarra |1 | 2400 | 15.87 1162 223 1.0
et al. 3600 | 53.35 1166 224 1.0
) 7200 | 492.18 1011 19.4 1.0
Bighof 12 | 2400 | 9.91 1860 35.8 1.60
et al. 3600 | 32.02 1943 37.4 1.67
7200 | 265.33 1875 36.1 1.86
24 | 2400 | 10.17 1813 34.9 1.56
3600 | 33.24 1872 36.0 1.61
7200 | 275.75 1808 34.8 1.80
48 | 2400 | 12.02 1534 29.5 1.32
3600 | 42.77 1455 28.0 1.25
7200 | 298.55 1667 32.1 1.65

to 2.1 times the performance compared with Dongarra's algorithm, or about 40% of the
peak performance. Thus we can say that these improvements are effective for enhancing

the single-processor performance of Householder tri-diagonalization on processors with

hierarchical memory.

Table 6.2: Performance comparison of the original and improved version of Bishof’s algo-

rithm.

Algorithm | N Execution Performance % of peak Relative
time (sec.) (MFLOPS) performance

Original 2400 | 9.91 1860 35.8 1.0
L=12 3600 | 32.02 1943 374 1.0

7200 | 265.33 1875 36.1 1.0
Improved | 2400 | 9.01 2047 394 1.10
L=12 3600 | 28.37 2192 42.2 1.13
L'=+4 7200 | 230.80 2155 41.5 1.15

6.5.2 Numerical accuracy

To study the numerical accuracy of the three algorithms, we used a problem of computing
all eigenvalues of a symmetric matrix and compared the accuracy of eigenvalues obtained
by Dongarra's and Bishof's algorithm. The accuracy of our algorithm is considered al-

74

most the same as that of Bishof’s, because it is known that the blocking of Householder
transformations, which we used in subsection 6.4.3, does not affect numerical accuracy
[46]. Of course, the loop merging technique introduced in subsection 6.4.2 does not change
numerical properties.

As test matrices, we used Frank matrices of N=2400, 3600 and 7200 which are defined
by Ai; = min(7, 7). This type of matrices are frequently used to evaluate the accuracy of
eigensolvers [63][71][112] because their eigenvalues can be computed analytically. As an
indicator of the accuracy, we used the sum of relative errors of computed eigenvalues:

N

>

i=1

e — el

€y

H (6'2)

where e; and e} are the i-th exact and computed eigenvalues, respectively.
The results are given in Table 6.3. They show that the accuracy of these two algorithms
are almost the same and dividing the tri-diagonalization into two steps has little impact

on numerical accuracy.

Table 6.3: Accuracy comparison of Dongarra's and Bishof’s algorithm.

N Dongarra’s algorithm | Bishof’s algorithm
2400 | 0.399 x 1076 0.440 x 107
3600 | 0.199 x 10-° 0.217 x 10°°%
7200 | 0.193 x 107" 0.116 x 10~

6.6 Conclusion

In this chapter, we dealt with the problem of computing the eigenvalues of real symmetric
matrices. We studied three algorithms developed for processors with hierarchical memory,
namely, Dongarra et al.’s blocked Householder tri-diagonalization, Bishof et al.’s two-step
algorithm and our improvement on it, and evaluated their performance on the Power 4
processor. The results we have obtained can be summarized as follows:

1. Dongarra’s algorithm can attain at most 20% of the peak performance on the Power
4, because half of the computation has to be done with BLAS 2.

2. Bishof’s algorithm, which consists entirely of BLAS 3 routines, can attain 1.6 to 1.9
times the performance of Dongarra’s algorithm.

3. Our improvements on Bishof’s algorithm can increase the performance by 10 to 15%
and achieves 40% of the peak performance.

75

4. Numerical experiments on the Frank matrices show that Bishof’s algorithm can
attain the same level of accuracy as Dongarra’s algorithm.

From these results, we can say that Bishof’s algorithm and our improvements on it are
a good alternative to the widely used Dongarra’s algorithm when computing eigenvalues
on processors with hierarchical memory.

When it comes to computing the eigenvectors, however, it is known that Bishof’s
algorithm requires twice the computational work of Dongarra’s algorithm for each eigen-
vector. This is because in the former case, the back-transformation of the eigenvectors of
the tridiagonal matrix also consists of two steps and each step requires the same amount
of work as that of the back-transformation in Dongarra's algorithm. As a result, Bishof’s
algorithm loses competitiveness when a large number (e.g., more than N/2) eigenvectors
are necessary. It remains our future work to develop a more efficient way for computing
the eigenvectors in this case. Also, a parallel version of Bishof’s algorithm for distributed-
mernory parallel machines is under development.

76

Chapter 7

Computation of Eigenvectors of Real
Symmetric Tridiagonal Matrices on
Shared-Memory Machines

7.1 Introduction

In this chapter, we study algorithms for computing the eigenvectors of a real symmetric
tridiagonal matrix when the corresponding eigenvalues are given. Combined with the
other three steps shown in Fig. 6.1, namely, tri-diagonalization by Householder trans-
formations, computation of the eigenvalues of the tridiagonal matrix by the bisection
method and back-transformation, this algorithm can be used to compute the eigenvalues
and eigenvectors of a general real symmetric matrix.

Of these four steps, the tri-diagonalization step can easily be parallelized both on
shared-memory and distributed-memory parallel machines. The reader is referred to the
literature cited in section 6.1 for details. It is also easy to find the eigenvalues of the tri-
diagonal matrix in parallel by, for example, using the bisection or multi-section methods.
Back-transformation also poses no difficulty in parallelization, because each eigenvector
can be back-transformed independently.

Calculation of the eigenvectors of the tri-diagonal matrix is more difficult to paral-
lelize, however, because one has to ensure orthogonality of the calculated eigenvectors.
Many new algorithms have been developed to address this problem, including the divide
and conquer method [28][47], Dhillon’s algorithm [31], and the multicolor inverse iteration
method [71]. Among them, the divide and conquer method is very efficient and outper-
forms conventional methods such as the QL method and the inverse iteration method
even on a sequential computer. But it is suitable only for the case where all the eigen-
values and eigenvectors are needed. Dhillon’s method, which is an improvement over the

77

conventional inverse iteration, obviates the need for explicit orthogonalization and still
can produce orthogonal eigenvectors. This algorithm is implemented in the latest version
of LAPACK (version 3.0) as a subroutine dstegr. But it does not always work well when
the relative gaps of the eigenvalues are very small. In such cases, one has to use the
subroutine dstein, which uses the conventional inverse iteration. The multicolor inverse
iteration method reduces the number of orthogonalization to a minimum and thereby
extracts parallelism in the computation of the eigenvectors. But it has the limitation that
the level of available parallelism becomes quite low when the eigenvalues are clustered.

In this chapter, we propose another approach for computing the orthogonal eigenvec-
tors of a real symmetric tri-diagonal matrix based on the idea given in [108]. Like Dhillon’s
method and the multicolor inverse iteration, our method is hased on the conventional in-
verse iteration. But instead of eliminating or reducing the orthogonalization, we choose to
parallelize the orthogonalization process itself. To this end, we abandon using the mod-
ified Gram-Schmidt orthogonalization procedure, which is the bottleneck in parallelizing
the conventional method, and instead, choose to hold the basis of the orthogonal comple-
mentary subspace of the calculated eigenvectors explicitly and successively modify it by
the Householder transformations. When implemented on shared-memory multiprocessors,
our method needs only O(N) interprocessor synchronization to compute all eigenvectors
of an N by N matrix. Moreover, in our method, two thirds of the total arithmetic op-
eration can be performed with the BLAS-3 (matrix-matrix multiplication) routines. It is
therefore especially suited for modern SMP machines with hierarchical memory.

The paper is organized as follows: In section 2, we briefly review the conventional
inverse iteration method along with the difficulty in parallelizing it. We also give some
assumptions and notations. The basic idea of our new algorithm, the Householder inverse
iteration method, is given in section 3. The blocked version of this algorithm, which
allows the use of the BLAS-3 routines, is discussed in section 4. Results of performance
evaluation on the Hitachi SR8000, a shared-memory multiprocessor systemn, can be found
in section 5. Concluding remarks are given in the final section.

7.2 Review of the conventional inverse iteration method

7.2.1 The conventional inverse iteration method

Given an N by N real symmetric tri-diagonal matrix T along with approximations to
its eigenvalues {e;}¥, (ex < €2 < ... < eyn), we consider the problem of computing
the eigenvectors {v;} corresponding to the eigenvalues {e;}. In the conventional inverse

78

iteration method (I1IM), we perform the iteration
v,(m} = (T - eI) ™Y (7.1)

for each i starting from the approximate eigenvalue €] and some initial vector v§"’. It is
expected that if €] is sufficiently close to e;, the component of vfo) which is parallel to v,

is amplified during the iteration and vff’" converges to v;.

But in finite precision arithmetic, the component parallel to other eigenvectors, say
Vi, remains in the calculated vector due to numerical errors. This causes the problem that
orthogonality of the eigenvectors, one of the basic properties that the exact eigenvectors
of a real symmetric matrix should have, is not guaranteed sufficiently. To remedy this
problem, in the conventional inverse iteration method, v§"" is orthogonalized against pre-
viously calculated eigenvectors after each iteration. This is usually done with the modified
Gram-Schmidt (MGS) method [101][100]. Because the magnitude of v, component re-
maining in the calculated vector v; is shown to be proportional to (e, — e;)~! according to
error analysis [101]{100], orthogonalization is usually done only against those eigenvectors
which belong to eigenvalues close to e;.

The algorithm of the conventional inverse iteration with orthogonalization by the
MGS method is shown as Algorithm 7.1. Here, the dot denotes the inner product of two
vectors, and || # ||z denotes the Ly-norm of a vector. In the practical algorithm, additional
processes are necessary to deal with degenerate or tightly clustered eigenvalues, such as
changing the initial vector or displacing some of the eigenvalues slightly. But these are
omitted in the shown algorithm.

In Algorithm 7.1, the innermost loop over k corresponds to the MGS orthogonaliza-
tion, in which the newly calculated vector vE’"’ is orthogonalized against the previously
calculated eigenvectors v within the same group G{(i). An example of grouping of the

eigenvalues is shown in Fig. 7.1.

e 8 €3 e5 g €7 ey g 8y9 @y 813 813 &4y
B e e ¥ @ O LO-0-0—0 O OO OO0
€
>

Figure 7.1: Grouping of the eigenvalues in the conventional inverse iteration method.

79

[Algorithm 7.1 Conventional inverse iteration method]
[Grouping of the eigenvalues]
Define two eigenvalues as belonging to the same group when their
distance is smaller than or equal to some criterion €. Let the group
to which the i-th eigenvalue belongs be denoted by G(z).
for i=1: N

Set some initial vector v§°’.

m =1

until v§"" converges

vi™ = (T - e I)"ty{m Y

for all k € G(4) (k < 1) do

vim = vi™ (v vy

end

vi™ =M™
end
(m)

Vi o= Vi
end

7.2.2 Difficulty with the conventional algorithm

In the conventional IIM, the eigenvectors belonging to different groups can be calculated
independently, for the orthogonalization of the calculated vectors is done only within
each group. It is therefore natural in parallelizing this algorithm to exploit the group-
level parallelism by allocating each group to one processor. In fact, the ScaLAPACK
routine pdstein adopts this strategy.

But as the size of the matrix grows, the distance between adjacent eigenvalues becomes
smaller, and the number of eigenvalues belonging to a group becomes large. In particular,
it has been observed in many problems that if the criterion for grouping is set at ¢ =
1072 || T |1, which is a widely accepted value [101], most of the eigenvalues belong to one
group when N is greater than 1000. If this is the case, most of the calculation has to be
performed by one processor, and there is virtually no eflect of parallelization.

When the group-level parallelism is not available, the modified Gram-Schmidt method
itself has to be parallelized. Because the method is sequential about index k, the only
possibility is to parallelize the BLAS-1 (vector-vector operation) routines that appear
in the innermost loop, such as the inner product ¢ = vgm)tvk and the AXPY operation
vi™ = v{™ _ cv,. But this would cause as many as O(N?) interprocessor synchro-

1

nization to compute all the eigenvectors, when most of the eigenvalues belong to the

80

same group. Considering the fact that other parts of the eigenvalue solver such as the
tri-diagonalization and back-transformation need only O(/V) synchronization, this is pro-
hibitively expensive.

From the above discussion, we can say that there is no effective scheme for parallelizing
the conventional inverse iteration method, when most of the eigenvalues belong to the

same group.

7.3 The Householder inverse iteration method

In this section, we give the basic idea and the algorithm of the Householder inverse
iteration method [108], which is a new eigenvector solver suited for a shared-memory con-
current computer. We also compare the arithmetic operation count of the new algorithm

with that of the conventional method.

7.3.1 The basic idea

In the conventional inverse iteration method, the components of the newly computed vec-
tor that are parallel to the previously computed eigenvectors are removed by the modified
Gram-Schmidt orthogonalization. However, because the MGS method is sequential about
index k, the BLAS-1 operations such as ¢ = vty and vi™ = vi™ — cv;, have to be
parallelized when the group-level parallelism is not available. This brings about small
granularity of O(N) and extremely large amount of synchronization of O(N?).

To avoid this problem, we abandon using the MGS method for orthogonalization.
Instead, we choose to hold the basis of the orthogonal complementary subspace of the
previously calculated eigenvectors explicitly. Then we can make the newly calculated
vector orthogonal to the previous eigenvectors by projecting it onto this subspace. After
that, the orthogonal complementary subspace is updated so that it is orthogonal also to
the newly calculated eigenvector.

Let v/ be the newly calculated (i-th) eigenvector (before orthogonalization), V;_; be the
subspace spanned by the 1st to (+~1)-th eigenvectors, namely, V;_; = span{vy,va, ..., vi_1},
Vi1, be the orthogonal complementary subspace of V;.; in RY, Q,an Nby N—i+1
matrix, be the orthonormal basis of V;1,, and e; be an N —i4-1 dimensional vector whose
j-th component is one and all the other components are zero. Then the orthogonalization

process for v; can be described as follows:
(1) Calculate p; = Q!_,vi.

2) Find a Householder transformation H; = Iy_;;1 — ayw;w! which clears the second
i

and the following components of p;.

81

(3) Calculate Q;_1H,.

(4) Adopt the first column of Q;_;H; as the orthogonalized new eigenvector v;, and
adopt the matrix that consists of the second and the following columns of Q,_;H;

as Q,‘.

In the step (1) above, v} is projected onto V;1; and the resulting vector is expanded using
the orthonormal basis Q;_;. The vector of coefficients in this expansion is given by p;.
In step (3), The Householder transformation H; is applied to Q,_; from the right. Then,
the first column of Q;_,H; is parallel to the projection of v} onto V;*,, because

(Qi-1Hy)ey, = (1/6;)Qi—1HiH.p;
(1/8)Qi-1pi = (1/8:)Qim1 Qi vi- (7.2)

]

Here we used the fact that H;p, = fie; for some f;, and assumed that §; is not zero
because fB; = 0 would imply that v} consists only of the components which are parallel
to the previously calculated eigenvectors. We can also show that all the other columns of

Q;..H; are orthogonal to v] because
vH(Qi- H)e; = piHie; = fiele; =0 for j> 1. (7.3)

So we can adopt the former as the orthogonalized eigenvector v; and the latter as Q;, an
orthonormal basis of the new orthogonal complementary subspace V.*, in step (4).

As an initial orthonormal basis, we use the unit matrix of order V. In our algorithm,
this initial matrix Qg = I is successively updated by the Householder transformations,
and is finally transformed to a matrix whose column vectors are the eigenvectors of T.
Considering that the Householder transformations keep the orthogonality of a matrix to
high accuracy [46], it can be expected that the eigenvectors obtained by this algorithm
are highly orthogonal. Moreover, the main operations of this algorithm are projection
of v; to VX, in step (1) and the Householder transformation of Q;_; in step (2), both
of which are the BLAS-2 (matrix-vector) operations. The number of interprocessor syn-
chronization needed to parallelize the algorithm on SMP machines is therefore O(1) for
orthogonalization of one eigenvector and O(N) for all eigenvectors.

7.3.2 The algorithm

Details of the Householder inverse iteration method are shown as Algorithm 7.2. The
additional procedures for degenerate or tightly clustered eigenvalues are not shown in the
figure, but are the same as for the conventional method.

82

[Algorithm 7.2 Householder inverse iteration method]

Qo = 1In
Vo := ¢ (an N by 0 matrix)
for i=1. N
Set some initial vector v§0).
m:=1
until v(m) converges

= (T - ¢'I)! (m*-l)
pi == Q! ,v! (piis a vector of length N —1+1.) (A.l)
Find a Householder transformation H; = In_;;; — a;wyw,
which clears the second and the following components of p;.
(w; is a vector of length N — 1 +1.)
q; = ;Q;_w; (q; is a vector of length N.) (A.2)

= (Qi-1h — qi(wih

((A); denotes the i-th column of matrix A.)

m = m+1
end
3 —]:_‘ QI 1”_(11

(update Q;_; by the Householder transformation) (A.3)
Vi= Vi [(Qiy)i]

Set Q; to be the matrix obtained by eliminating the first column

of Q4

end

7.3.3 Arithmetic operation count

The main operations of the Householder inverse iteration are equations (A.1), (A.2) and
(A.3) in Algorithm 7.2. The equation (A.1) projects the computed vector v; to the
orthogonal subspace V%, while (A.2) and (A.3) performs the Householder transformation.
Assuming that the inverse iteration converges with single iteration, each of (A.1), (A, 2)
and (A.3) needs 2N (N —i+1) operations for the i-th eigenvector, and about N* operations
for all eigenvectors. The total operation count is therefore 3N3. On the other hand, the
conventional IIM needs 2/N? arithmetic operations when all the eigenvalues belong to the
same group. This means that our method requires 1.5 times the operation count of the
conventional method.

However, in contrast to the conventional algorithm, where almost all the operations
are done in BLAS-1 routines such as inner-product and AXPY, our algorithm is based on

83

BLAS-2 routines such as matrix-vector multiplication and rank-1 update of a matrix. Our
method therefore leaves room for code optimization such as loop unrolling. By combining
such techniques with reduced interprocessor synchronization, our new method has the
potential to outperform the conventional method on shared-memory machines.

When the number of wanted eigenvectors is smaller than N, say N', the number of
operations needed to perform each of (A, 1), (A, 2) and (A, 3) is

N 1

S2N(N —i+1)=N?N'- ENN'(N’ +1)+ NN (7.4)
i=1
So we need about 3N2N’ — (3/2)N'2N total operations. Because the conventional 1IM
needs about 2NN'? operations, our current algorithm is not competitive when N’ is
considerably smaller than N. However, by using the WY-representation, it is in principle
possible to construct a modified algorithm which requires only O(N N'2) operations. We

are now developing such an algorithm.

7.4 The blocked algorithm

To attain high performance on a modern computer with hierarchical memory, it is impor-
tant to increase the locality of data reference and use the data as many times as possible
while it is in the cache. Such consideration becomes more important in shared-memory
multiprocessor environment, because it helps preventing performance degradation due to
bus contention between the processors, by enabling most of the data accesses to be done
in the local cache associated with each processor.

In numerical linear algebra algorithms, locality of data reference can usually be in-
creased by blocking, that is, by reconstructing the algorithm so that most of the com-
putation is performed in BLAS-3 routines. The BLAS-3 routines can perform O(L?)
operations on O(L?) data when the size of blocking is L, and thereby reduce the memory
access by a factor of L when L is chosen so that all the necessary blocks can be stored in
the cache.

In our algorithm described in the previous section, blocking is possible by deferring
application of the Householder transformation on Q until several transformations are
available, and then applying these successive transformations at once using the WY rep-
resentation [46]. Let L be the size of blocking and 7 be an integer such that 1 <i < N
and mod(z, L) = 1. Then, in the i-th step of the blocked algorithm, after generating
the Householder transformation H; = Iny_;41 — aywiw}, we skip its application on Q;_,
and instead accumulate it as WY representation for block Householder transformation as

follows:

YO = w; (7.5)

84

WO = _aw, (7.6)

The following L —1 steps are executed in a similar way. At the i+ j-thstep (1 < j < L-1),
the matrices Y and W are updated as follows:

zZ = “‘*Of,',“"(I + W(j-l)Y(j'-l))mej (77)
WU = (WUl (7.8)
YD = (YU D|wy], (7.9)

where [A|B] denotes concatenation of two matrices. At the end of the i + L — 1-th step,
the block Householder transformation is applied to Q;_,, generating Q;; . directly:

Qisp-1 = Qi (I+ WUy E-lye (7.10)

As is clearly seen from eq. (7.10), application of the block Householder transformation
can be done using only matrix-matrix multiplications, or BLAS-3 routines.

Of course, we also have to change eq. (A.1) in the non-blocked algorithm, because
the matrix Q,4;—1 has not received necessary transformation at intermediate stages 7 + j
(1 < j < L-1). The correct formula to calculate p,4; is

Pi+j = (I+W(j~1)y(jh”)qg—1";+j
= QL viy; - WUDYUDQE v, (7.11)

Though the additional terms in eq. (7.11) increase the number of arithmetic operations
slightly, the performance improvement due to the use of BLAS-3 will more than compen-

sate for it.
We summarize the blocked version of our Householder Inverse Iteration method as

Algorithm 7.3. Here, we assume for simplicity that N is divisible by L. In this algorithm,
two thirds of the total operation can be done in BLAS-3, and the locality of data reference
is greatly improved compared with the original algorithm given in the previous section.

85

[Algorithm 7.3 Blocked version of the Householder inverse iteration
method] '
Qo =1y
Vo := ¢ (an N by 0 matrix)
for ib=1: N/L

i=(b—1)*L+1

for j=0:. L -1

Set some initial vector vfi)J
=1
until vffj) converges
vigg = (T~ 524—3‘1)“]"&%‘“”

ifj=0

pi = Qv
else

Pivi o= Qf_ Vi, — WU»”Y(J,“I)QLW;M

(Piy; is a vector of length N — i+ 1.)
end if
Find a Householder transformation
Hi-H =In 431 — cv,:~HW.»+jW§+,v
which clears the second and the following components
of Piyj.
ifj=0

Y(O) = Wi

W(o) = Wy
else

%= —ayy (I + W(j“”Y(j_l))Wi-rj

W()) = [W(J“‘l)lz]

end if
m o= m4l
end

i1 = Qi (T+ WDy -1yt
Partition Qj_, as Q;_; = [QL,|QF,], where QF , consists
of the first L columns of Q}_,.
Vipr- = [Vin|QF,]
Qitp-1 = Qﬁ-l
end
end

o6

7.5 Numerical results

7.5.1 Computing environments

We evaluated the performance and numerical accuracy of our Householder Inverse Iter-
ation method on one node of the Hitachi SR8000, an SMP (shared-memory processors)
machine with 8 processors per node [95]. Each processor has a peak performance of 1
GFLOPS and the total performance per node is 8 GFLOPS. We also used SR8000/G1,
which has 14.4GFLOPS of total peak performance. For parallelization of the program,
we used an automatically parallelizing FORTRAN compiler and specified the loops to be
parallelized using compiler directives. As test matrices, we used the following two kinds

of matrices:
(a) The Frank matrix: A;; = min(3, 7).

(b) Matrices obtained from a generalized eigenvalue problem Av = ¢Bv. Here A and B
are random matrices whose elements were extracted from uniform random numbers
in [0,1]. The diagonal elements of B were then replaced with 10* to ensure positive

definiteness.

Both types of matrices were first tri-diagonalized by orthogonal transformations and then

used as an input matrix for our algorithm.

7.5.2 Performance

First we show in Table 7.1 the execution times of the conventional inverse iteration method
and the non-blocked version of the Householder inverse iteration method on the SR8000.
The input matrices we used here are of type (a), but the execution times for matrices
of type (b) were almost the same. The numbers in the parentheses show the execution
time for computing the eigenvectors only, while those outside also include the time to
compute the eigenvalues by the bisection method. We also show the execution tirne of
the conventional IIM on the Hitachi S3800, a vector supercomputer that has the same
peak performance of SGFLOPS. Here, the time is for computing both the cigenvalues and
eigenvectors, because the numerical library we used for this measurement did not have
the function to compute only the eigenvectors.

The figures show that the Householder inverse iteration method is more efficient than
the conventional ones, especially when N ig small, and achieves 2.4 times the performance
when computing the eigenvectors of a matrix of order 1000. When comparing the execu-
tion time on the SR8000 and the S3800, one can see that while the conventional method

87

Table 7.1: Performance comparison of the Householder and the conventional IIM
Problem size | Conventional IIM Householder IIM Conventional 1IM

(SR8000) (SR8000) (S3800)
N=1000 4.21s (3.92s) 2.06s (1.64s) 2.15s
N=2000 18.84s (17.61s) 12.05s (10.68s) 12.40s

N=4000 98.46s (94.11s) 83.37s (78.68s) 80.65s

fails to exploit the performance of the SMP machine due to a large number of interpro-
cessor synchronization, our new method solves this problem and succeeds in attaining the
same level of performance as that of the vector supercomputer even on the SMP machine.

Table 7.2 shows the execution times of the conventional and the Householder IIM on
the SR8000/G1. In this case, the execution times of the blocked algorithm described in
section 4 are also shown. It is apparent from the table that the blocking works well and
increases the performance by about 50%. For the case of N = 1000, the blocked version
of the Houscholder I[IM achieves more than 3.1 times the performance of the conventional
method.

As can be seen from tables 7.1 and 7.2, the superiority of our algorithm over the
conventional IIM is large when N is small and decreases as N grows. This is natural
considering that our algorithm reduces interprocessor synchronization at the cost of in-
creased operation count. Note, however, that the cost of interprocessor synchronization
is relatively low on the SR8000 [95]. For other SMP machines that have higher interpro-
cessor synchronization cost, the effect of reducing the synchronization is larger and the
effectiveness of our algorithm will remain for much larger value of N.

Table 7.2: Performance comparison of the Householder and the conventional IIM
(SR8000/G1, execution time for the inverse iteration part.)

Problem size | Conventional [IM Householder IIM Householder IIM
(non-blocked) (blocked)

N=1000 2.20s 0.98s 0.70s
N=2000 9.93s 6.81s 4.36s
N=4000 49.84s 49.11s 30.76s

7.5.3 Numerical accuracy

To check the numerical accuracy of the new method, we evaluated the residual and or-
thogonality of the computed eigenvectors for the new and the conventional method. Here,
the residual is defined as the maximum of the Ls-norm of Tv; — e;v; over all 7, where ¢;

88

is the computed ¢ th eigenvalue and v, is the computed corresponding eigenvector. The
orthogonality is defined as the modulus of the element of V'V — Iy with the maximum
modulus, where V = [vy,vs,...,Vpn].

The results for the Frank matrices and the matrices from generalized eigenvalue prob-
lems are shown in Tables 7.3, 7.4 and Tables 7.5, 7.6, respectively. As can be seen from
the tables, the residual for the non-blocked version of the Householder 1IM is as good as
that for the conventional one. As for the orthogonality of the computed eigenvectors, the
method gives results that are better than or at least as good as those for the conventional
method. It is also clear that blocking does not deteriorate the numerical accuracy either

in terms of residual or orthogonality.

Table 7.3: Comparison of the accuracy of the Householder and the conventional IIM
(Residual, Frank matrices)

Problem size | Conventional IIM Householder IIM Householder 1IM
(non-blocked) (blocked)
N=1000 0.164 x 107 0.164 x 1077 0.164 x 1077
N=2000 0.111 x 10~ 0.111 x 10~°¢ 0.111 x 1076
N=4000 0.528 x 10~¢ 0.528 x 1078 0.528 x 1076

Table 7.4: Comparison of the accuracy of the Householder and the conventional 1IM

(Orthogonality, Frank matrices)

Problem size | Conventional IIM Householder IIM Householder IIM
7 (non-blocked) (blocked)
N=1000 0.138 x 10712 0.400 x 10~ 0.433 x 10~
N=2000 0.945 x 10713 0.622 x 10~ 0.644 x 10714
N=4000 0.821 x 10713 0.124 x 10°13 0.127 x 10713

Table 7.5: Comparison of the accuracy of the Householder and the conventional 1IM

(Residual, Matrices from generalized eigenvalue problems)

Problem size | Conventional IIM Householder IIM Householder IIM
(non-blocked) (blocked)
N=1000 0.881 x 10~12 0.858 x 1012 0.895 x 1012
N=2000 0.478 x 10~ 0.475 x 10~1 0.478 x 10-11
N=4000 0.195 x 1071° 0.197 x 10-1° 0.196 x 10710

89

Table 7.6: Comparison of the accuracy of the Householder and the conventional IIM

rthogonality, Matrices from generalized eigenvalue problems
Orth lity, Matrices f g lized ei 1 bl

Problem size | Conventional IIM Householder IIM Householder I1IM
(non-blocked) (blocked)

N=1000 0.824 x 1071 0.867 x 10~ 0.837 x 1071
N=2000 0.932 x 1071 0.976 x 1071 0.892 x 1071
N=4000 0.119 x 10-10 0.118 x 10710 0.155 x 10710

7.6 Conclusion

In this article, we proposed a new algorithm for computing the eigenvectors of a real
symmetric matrix on shared-memory concurrent computers. In our algorithm, we chose
to hold the basis of the orthogonal complementary subspace of the previously calculated
eigenvectors and successively update it by the Householder transformations. This obvi-
ates the need for the modified Gram-Schmidt orthogonalization, which is the bottleneck
in parallelizing the conventional inverse iteration, and reduces the number of interproces-
sor synchronization from O(N?) to O(N). The performance of the algorithm is further
enhanced with the blocking technique, which allows the use of BLAS-3 routines. The or-
thogonality of the computed eigenvectors is expected to be good because the Householder
transformations keep the orthogonality to high accuracy.

We evaluated our method on one node of the Hitachi SR8000, an SMP machine with
8 processors, and obtained up to 3.1 times the performance of the conventional method
when computing all the eigenvectors of matrices of order 1000 to 4000. The orthogonality
of the eigenvectors is better than or at least as good as that of the conventional method.

Our future work will include application of this algorithm to distributed-memory par-

allel computers.

90

Chapter 8

Fast Fourier Transform on
Distributed-Memory Vector Parallel

Machines

8.1 Introduction

The fast Fourier transform (FFT) is one of the most widely used algorithms in the field
of scientific computing. It can reduce the computational work needed to compute the
Fourier transform of an N-point complex sequence from O(N?) to O(Nlog N) and has
played an important role in areas as diverse as signal processing, computational fluid
dynamics, solid state physics and financial engineering, etc.

The FFT has a large degree of parallelism in each stage of the computation, and
accordingly, its implementations on parallel machines have been well studied. See, for
example, [12] [21] [93] for implementations on shared-memory parallel machines and [2]
[38] [53] [57] [93] [94] for implementations on distributed-memory parallel machines. Re-
cently, distributed-memory machines with (pseudo-)vector processing nodes have become
increasingly popular in high-end applications. The machines classified in this category
include NEC SX-7, Fujitsu VPP5000 and Hitachi SR2201 and SR8000. To attain high
performance on this type of machines, one has to achieve both high single-processor
performance and high parallel efficiency at the same time. The former is realized by max-
imizing the length of the innermost loops, while the latter is realized when the volume
of inter-processor communication is minimized. Implementations based on the transpose
algorithm [42] [64] which satisfy both of these requirements are given in [2] [53] [94].

While there have been considerable efforts towards a high performance parallel im-
plementation of the FFT, the problem of providing the user with more flexibility of data
distribution has attracted relatively little attention. To compute the FFT in a distributed-

91

memory environment, the user need to distribute the input data among processors in a
manner specified by the FFT routine, call the routine, and receive the output data again
in a manner specified by the routine. In many cases, the data distribution scheme used by
the FFT routine is fixed, so if it is different from that used in other parts of the program,
the user has to rearrange the data before or after calling the routine. This problem could
be mitigated if data redistribution routines are provided along with the FFT routine.
However, because the FFT requires only O(/N log N) computation when the number of
data points is IV, the additional overhead incurred by the redistribution routines is often

too costly.

To solve the problem, Dubey et al. [38] propose a general-purpose subroutine for 1-
dimensional FFT. Their routine is quite flexible in the sense that it can accept general
block cyclic data distributions. Here, block cyclic distribution is a data distribution in
which the data is divided into blocks of equal size, say L, and the i-th block is allocated to
node mod(i, P), where P is the number of nodes. Their routine has a marked advantage
that the amount of inter-processor communication needed for performing the FFT is
independent of the block size L. However, it has several shortcomings. First, it is based
on the binary exchange algorithm [42] [64], which requires O((N/P) log P) inter-processor
communication for each node. This is much greater than the communication volume of
O(N/P) required by the transpose algorithm. Second, it is not self-sorting, so if one
needs a sorted output, additional inter-processor communication is necessary. Finally, no
consideration on vectorization has been given.

In this chapter, we propose another general-purpose 1-dimensional FFT routine for
distributed-memory vector-parallel machines. Our method is an extension of an FFT
algorithm proposed by Takahashi [94], which is based on the transpose algorithm. His
algorithm has the advantage that it requires only one global transposition, is self-sorting,
and can input/output data scattered with cyclic (L = 1) distribution. We extend this
algorithm to accept input data scattered with a block cyclic distribution of block size L,
and to output the result using a block cyclic distribution of another block size, say Ls.
L, and L, are arbitrary as long as N is a multiple of P% % L, x L,. This flexibility can be
realized without increasing the amount of inter-processor communication, in contrast to
the approaches that rely on redistribution routines.

If our method is implemented in a straightforward manner, however, the length of the
innermost loops tends to become shorter as the block sizes grow, causing degradation of
single-processor performance. We solve this problem by adopting the Stockham’s FFT [97]
suited to vector processors as the FFT kernels and employing loop merging techniques. We
implemented our method on the Hitachi SR2201, a distributed-memory parallel machine
with pseudo-vector processing nodes, and measured its performance using 1 to 16 nodes.

92

The rest of this chapter is organized as follows: In section 8.2 we describe the con-
ventional FFT algorithms for vector-parallel machines. Our new implementation is in-
troduced in section 8.3 along with several considerations to attain high performance on
vector-parallel machines. Section 8.4 shows the performance of our routine on the Hitachi
SR2201. Conclusions are given in the final section.

8.2 Conventional FFT algorithms for vector-parallel

machines

8.2.1 1-D FFT algorithms for vector machines

In this section, we will explain conventional algorithms for 1-dimensional FFT on vector
and vector-parallel machines following (2] [13] [94]. The discrete Fourier transform of a

1-dimensional complex sequence {fq, f1,..., fx-1} is defined as follows:
N-1 ;
a=Y fwk (k=0,1,...,N-1), (8.1)
7=0

where wy = exp(—27i/N) and i = /-1. '
When N can be factored as N = N, N, the indices j and &k can be expressed in a
two-dimensional form:
J = JzNy+7, (Jz=0,....,N; =1, j,=0,...,N, —1), (8.2)
ko= k,+ kN, (kg =0,...,N; -1, ky=0,...,N, - 1). (8.3)

Accordingly, {f;} and {c} can be regarded as two-dimensional arrays:

f]:y]y = fijy+j") (84)

Chajey = ChpthyNa- (8.5)

Using these notations, we can rewrite eq. (8.1) as follows:

Ny-1pN,.-1

- (2 Ny+iy) (ke 4ky Nz)
Chaky = Z: Z fjmJ’va
Jy=0 jz=0

e ok » »
= 2l X fuawh |wn | wr,” (8.6)

=0 \ \js=0

This shows that the Fourier transform of { f;} can be computed by the following algorithm
proposed by Bailey [13]:

93

[Algorithm 8.1]

1. Compute ¢_; Eh f]z.]ywjz * by repeating N -point FFT N, times.

2. Multiply ¢} g, bY wj”[”’.

3. Compute ¢, , = ZJN;{_{,I ckwwa ky by repeating Ny-point FFT N, times.
The factor w“’ * appearing in step 2 is called {widdle factor and the step 2 is called twiddle
factor multiplication. This algorithm requires about the same amount of computational
effort as the FFT of N data points. It is especially suited to vector machines if the loops
about j, and k, are used as the innermost loops in steps 1 and 3, respectively. Then
the innermost loops will have a fixed length of IV, and N, and the factor w, which is a
constant within these loops, can be loaded outside the loops.

8.2.2 1-D FFT algorithms for distributed-memory vector-parallel
machines

In the algorithm explained in the previous subsection, we decompose the 1-D FFT into
multiple FFTs of smaller size and use this multiplicity for vectorization. In the case of
distributed-memory vector-parallel machines, we need another dimension to use for par-
allelization. To this end, we factor N as N = N, N, N, and introduce a three-dimensional

notation for the indices j and k:

j o= jeN,N;+j,N. + js (8.7)
Ge=0,...,Ng—1, j,=0,...,N,=1, j,=0,...,N, —1),
k = kg+ kN + kNN, (8.8)

(kg=0,...,Ny—=1, k,=0,...,N,~1, k,=0,...,N,—1).

By regarding the input and output sequences as three-dimensional arrays fj, ;, j, and
Chaky ke WE Can rewrite eq. (8.1) as follows:

Chs ky ks

Nozd ffNarl [Na 1 K K k o (kotky Nz) k
— Juky Jv] Jyky Jz(RethylNa Feks
= Z Z Z ey ds N, Wy, N, | WN, | YN Wy, -

Je=0 Jy=0 Je=0

(8.9)

This suggests the following five-step FFT proposed by Takahashi [94]:

94

[Algorithm 8.2: Five-step FFT]
1. Compute ¢}, ; ;. = St fi J‘wﬁf‘ by repeating N -point FFT Ny N. times.

2. Twiddle factor multiplication (I): multiply c_; . by wf@fff,y,

Ny-1 ik , T .
3. Compute sz.kmg = Zj;’:() Cl.’('z,jy,j,wﬁy Y by repeating Ny-point FFT N N, times.

4. Twiddle factor multiplication (II): multiply Cg,.kv g, by wf;(k”k“‘v").

\ \ - ‘zkr« 3 M] N
5. Compute ¢k, kyk = Liico Chy iy, @N, DY repeating Ny-point FFT NN, times.

Because the operation in step 1 consists of N, N, independent FFTs, we can, for example,
use the index j, for vectorization and the index j, for parallelization. Steps 3 and 5 can

be executed in a similar way.

8.2.3 Implementations based on the five-step algorithm

There are many possible ways to exploit the parallelism in Algorithm 2 for vectoriza-
tion and parallelization. For example, Agarwal et al. [2] propose to scatter the three-
dimensional array along the z-direction in steps 1 and 2, and along the z-direction in
steps 3-5, both using block distribution. In this case, indices j,, j, and j, can be used for
vectorization in steps 1, 3 and 5, respectively. Takahashi [94] suggests to scatter the data
along the z-direction in steps 1-4, and along the z-direction in step 5, both in a cyclic
manner. In this case, vectorization can be done with respect to indices jy, j; and j, in
steps 1, 3 and 5, respectively. These methods are classified as the trenspose algorithms,
because all the inter-processor data transfers are done in the form of global transposi-
tion, i.e., redistribution of a multi-dimensional array scattered along one direction along
another direction.

These methods have several advantages: first, they require only one global transposi-
tion. The volume of inter-processor communication due to this is O(N/P) per node and
is much smaller than O((N/P)log P), which would be required by the binary exchange
algorithms [42] [64]. Second, the innermost loops have a fixed length of N,, N, or N,
in steps 1, 3 and 5, respectively. Takahashi also notes that it is possible to extend the
length of the innermost loops to N?/3/P by setting N, = N, = N, = N'/3 and using loop
merging techniques [94]. In addition, his implementation has a natural user interface in
the sense that both the input and output data are ordered and distributed in a cyclic
fashion [94].

However, some users may need more flexibility of data distribution. For example,
block cyclic distribution is frequently used when solving linear simultaneous equations

95

or eigenvalue problems on distributed-memory machines [18]. So if the user wants to
connect the FFT routine with these routines, it is more convenient that the FFT routine
can input/output data using block cyclic data distribution with user-specified block sizes.
Note that the block sizes suitable for input and output data may not be the same, so it
is more desirable if they can be specified independently. In the following section, we will
propose an algorithm that satisfies these requirements.

8.3 A vector-parallel FFT with flexible data distri-

bution

8.3.1 Conditions on the block sizes

In this section, we propose a 1-D parallel FFT algorithm with the following two properties:

1. The input and output data are scattered with block cyclic distributions with user-
specified block sizes L; and Ly, respectively.

2. Only one global transposition is needed throughout the algorithm.

And we optimize the algorithm for vector-parallel machines.

Before explaining our algorithm, we will establish a necessary and sufficient condition
on L; and L, for the existence of such an algorithm. For simplicity, here we deal only
with the radix-2 FFT and assume that P, L, and L, are powers of two.

Proposition 8.1 A necessary and sufficient condition for the existence of a 1-D parallel
FFT algorithm that satisfies the above two properties is P2« Ly * L, < N.

Proof Here we only show that this is a necessary condition. We prove the sufficiency in
the following subsections by actually constructing an algorithm.

An N-point radiz-2 FFT consists of p = log, N stages. By eramining its signal flow
graph [97], we know that each of the intermediate quantities at the g-th stage (1 < ¢ < p)
is computed from every 27~9-th elements of the input date {f; }?;‘01. These elements reside
on the same node if and only if 2% > Ly x P (assuming P > 2). This means that we
need a global transposition right after the stage

1 = p — logy(Ly x P) (8.10)

or earlier.
On the other hand, we also know from the signal flow graph that each of the interme-
diate quantities at the g-th stage contributes to every 29-th elements of the output data

96

{ce}ioy. These elements reside on the same node if and only if 29 > Ly x P. This means

that we need a global transposition right before the stage

go = logy(Ly * P) (8.11)
or later.
To do with only one global transposition, we need
q1 2 G2, (8.12)

which implies P?x Ly x Ly < N.

A similar result holds when N is not a power of two and we can construct an FFT
algorithm with only one global transposition when N is a multiple of P% « Ly * L,.

8.3.2 The basic idea of the algorithm

To realize an FFT algorithm which has the two properties mentioned in the previous
subsection, we use Algorithm 2 as a basis. Assume that N is a multiple of P? L; * L,
and choose N;, N, and N, so that IV, and N, are divisible by Ly P and Ly P, respectively.
Now we scatter the three-dimensional array along the z-direction in steps 1 and 2 using
block cyclic distribution of block size L,, and along the z-direction in steps 3-5 using
block cyclic distribution of block size Ly. Then, from eq. (8.7), we know that the whole
input sequence of length N is scattered with a block cyclic distribution of block size L.
Likewise, the whole output sequence is scattered with a block cyclic distribution of block
size Ly. This method requires only one global transposition like the implementations
discussed in the previous subsection, and leaves the room for vectorization using indices
Jy» jz and j, in steps 1, 3 and 5, respectively.

However, a straightforward implementation of this idea may not guarantee sufficient
innermost loop length to achieve high single-processor performance. This is because N,
and N, need to be large enough to be multiples of L, * P and L, * P, respectively, and
therefore N,, which is the length of the innermost loops in steps 1 and 5, tends to become
smaller. For example, when N = 2%°, P = 16 and L; = L; = 16, N, must be less than
or equal to 4. We solve this problem by adopting Stockham’s algorithm [97] suited to
vector processors in the FFTs in steps 1, 3 and 5, and merging as many loops as possible.
We will explain the algorithm and storage scheme for our implementation in the next
subsection and discuss loop merging techniques in subsection 8.3.4.

8.3.3 The detailed algorithm and the storage scheme

To describe our implementation, we first introduce some notations. Let Xlﬂ*) denote the
partial array allocated to node p at step i. The dimension of X,ﬁ") varies depending on 1.

97

We also define the indices and their ranges as follows:

je=0,...,Nasy j,=0,...,N,—1, j,=0,...,N, -
ky=10,...,Ny, ky=0,....N,—-1, k,=0,...,N; -
p=0,...,P-1, ¢=0,...,P—
5o=0,...,N,/(L.P)-1, j/=0,...,14

L
L
1
-1

¥

3

ki =0,...,N./(LoP)—1, k;=0,...,L,—1.

(8.13)
(8.14)
(8.15)
(8.16)
(8.17)

Here, j. and k, are local block numbers within a node and j, and k[are indices within

a block. They are related to 7, and k, in the following way:

J2 = jiLiP + pLy + j,
ky = kyLoP + pLy + ki,

where p is the node number.
Using these notations, our FFT can be described as follows:

[Algorithm 8.3]

1. Data input: XV (jy, 32, 330 Jz) = fiNyNatdy Nubst Ly P4pLy+52-
2. FFT in the z-direction:
XD Gy 32 32 k) = T3 X§0 Gy 32 320)R
3. Twiddle factor multiplication (I):
X Gy 32 o ka) = XDy 320 ke)RR,
4. Data packing for global transposition:
X3 (G, 3%, 32 ki Koy q) = X3 (G0 32, 8, Ko Lo P + gLy + k7).

5. Global transposition: X (jy, 32, 55, ki, ki, @) = X$0 0y, 52, 30, ki, KL,

6. Data unpacking:

XOULLiP + gLy + 37 kg, kg, gy) = XV Gy, 57 550 K2 Ky, @),
7. FFT in the y-direction:

X0 (e Ky Ky y) = Titg’ X (Ge kL R, g)l
8. Twiddle factor multiplication (II):

Ap}()g)(k;,! Ko Ky 7u) = X'}g-{)(j,,k” K kol g (kL Lo P4pLa+k+kyNe)

[R

98

D).

(8.18)
(8.19)

9. FFT in the z-direction:
X (KL, K, Ky k) = SN X (kY KL by k)

10. Data output: Ck;LQP“‘r})L2+k¥+k§N¢‘{“ng;—Ny = X’gg)(k;f, k;, ky, kz)

In this algorithm, the most computationally intensive parts are the FFTs in steps 2, 7
and 9. The indexing scheme for array Xgi) is designed so that the index with respect to
which the Fourier transform is performed comes last and the loop merging techniques to

be described in the next subsection can be applied easily.

8.3.4 Loop merging techniques for achieving high single-processor

performance

From algorithm 8.3, it is apparent that we can merge the loops about the first three indices
in the FFTs in steps 2, 7 and 9, and use the resulting loop as the innermost loop. Thus
the length of the innermost loops can be extended to N,N,/P, N,N,/P and NN, /P in
steps 2, 7 and 9, respectively.

To further extend the innermost loop length, we use Stockham's algorithm [97] in
performing these FFTs. Let n = 2P and assume we want to compute the FFT of an
n-point sequence ¥4(0,0),¥y(1,0),...,Ys(n — 1,0). This can be done with the following
algorithm.

[Algorithm 8.4 Stockham FFT)]
doL=0,p-1
ayp = 2L
B = 2r-L-1
dok=0a,-1
doj=0,p8; -1
Yei(l,m) =Y (L, m) + Y (I + B, m) w™Pe
Yea(,m+ayg) = Yy (I, m) — Yy (I + By, m) w™Pe
end do
end do
end do

The result is stored in ¥,(0,0),Y,(1,0),...,Y,(n — 1,0).

Notice that the w in the innermost loop does not depend on I. This means that if we
use this algorithm to compute the N,-point FFT in step 2, we can merge the loops about
Jy» J2» J. and B, thereby extending the length of the innermost loop to N,N,B./P.

99

Because the loop of length [appears oy times in Stockham’s algorithm, the average

length of the innermost loops in step 2 is

NyNz « Z!{?f;%}NI-l QL/BL NyNz % %ZlogQ N:c
P logy N =1 P N, -1
~ N,N,log, N,/2P. (8.20)

Hence, the loop length can be increased by a factor of log, N, /2. Similarly, the innermost
loop length in steps 7 and 9 can be extended to NN, log, N, /2P and NN, log, N,/2P,
respectively.

As an example, consider the case of N = 2% P = 16 and L, = L, = 16 which we
mentioned in subsection 8.3.2. We can choose N; = N, = 256 and N, = 4, and then
the length of the innermost loops is 256, 4096 and 256 in steps 2, 7 and 9, respectively.
This ig enough for many vector machines to attain near-peak performance. Thus we can
expect our FFT routine to attain high single-processor performance even when L; and L,
are large and N, is small.

. Because the FFT involves only O(Nlog N) operations on N-point data, it is also
essential for higher performance to minimize memory access. This can be achieved by
putting together some of the steps in Algorithm 8.3. For example, data packing for global
transposition in step 4 can be combined with step 3. We adopt this kind of optimization
techniques in the implementation described in the next section.

8.4 Experimental results

We implemented our method on the Hitachi SR2201 [43] and evaluated its performance.
The SR2201 is a distributed-memory parallel machine with pseudo-vector processing
nodes. Each node consists of a RISC processor with a pseudo-vector mechanism [69)],
which preloads the data from pipelined main memory to on-chip special register bank at
a rate of 1 word per cycle. One node has peak performance of 300MFLOPS and 256MB
of main memory. The nodes are connected via a multi-dimensional crossbar network,
which enables all-to-all communication among P nodes to be done in P — 1 steps without
contention [114].

Our FFT routine is written in FORTRAN and inter-processor communication is done
using remote DMA, which enables data stored in the main memory of one node to be
transferred directly to the main memory of another node without buffering. The FFT in
the x, y and z direction in steps 2, 7 and 9 is performed using Stockham’s radix 4 FFT
[97], a variant of Algorithm 8.4 which saves both computational work and memory access

by computing Y., directly from Yz.

100

The computational steps of our umplementation are illustrated in Fig. 8.1 for the case
of N =512, P=2and L; = L, = 2. Here, the multi-dimensional arrays in Algorithm 8.3
are expressed as three dimensional arrays using the relationship (8.18) and (8.19). The
numbers in the first and third three-dimensional arrays correspond to the indices of input
sequence f; and output sequence cg, respectively. The shaded area represents elements
which are allocated to node 0, and the area enclosed by a thick line represents a set of
elements used to perform a single FFT in the z, y or z-direction. It is apparent from the
figure that (i) the FFTs in each direction can be computed within each node, (ii} there
is only one global transposition, and (iii) the input and output data are scattered with a
block cyclic distribution of block size 2, as required.

ey Jy i Jy L v 3 0
0 7 i
l 1 T
2] i P Kk, kel [kate ,
3] kI * 1e- ke fifk
4 2) ifu o b il
Jz 3 q Ju " s s v
3 N alow i
— — = 5 i A
ﬂ §] el b
big HE bl }
i g i1 4
1. Data input 2. FFT in the x-direction 4. Data packing 7. FFT in the y-direction
3. Twiddle factor 6. Global transposition 8. Twiddle factor
multiplication (I) 6. Data unpacking multiplication (D)
/ {cd
AR NS ST A A
W A L 7 A [0]
yd i‘{ A g
Hil Ak
A ERED f E]]
‘,’3,. ,)ﬁ\ I %
%«‘% f /) 4 é
S h
el A
P 3 1
e [
8. FFT in the z-direction 10. Data output

Figure 8.1: Computational steps of our FFT routine.

To measure the performance of our FFT routine, we varied the problem size N from
218 to 2% and the number of nodes P from 1 to 16. We set the output block size L
equal to the input block size L; to reduce the number of experiments and varied L = Ly
from 1 to 16. N, and N, are determined so that N, > L,P and N, > L;P hold and
N, is set to N/(N,N.). The w's used in the FFT and twiddle factor multiplication are

101

pre-computed, so the time for computing them is not included in the execution time to
be reported below.

Table 8.1 shows the execution time and the performance obtained when N = 220, We
performed three experiments for each set of L; and P and took the best value. From
these results, we can see that (i) the performance on a single node is 130 MFLOPS, which
is more than 40% of the peak performance (300 MFLOPS for one node), (ii) parallel
efficiency is extremely high and is more than 94% when P = 16, and (iii) the performance
does not change significantly with the block sizes. The last point is due to the optimization
techniques we have stated in the previous subsection.

Table 8.1: Performance results for the problem of N = 220

Ly =Ly | 1 node 2 nodes 4 nodes 8 nodes 16 nodes
1 0.809 s 0.414 s 0.205 s 0.103 s 0.054 s
129.5 MF 253.3 MF 510.7 MF 1016.7 MF 1920.8 MF
2 0.809 s 0.413 s 0.205 s 0.102 s 0.054 s
’ 129.6 MF 253.8 MF 512.1 MF 1027.9 MF 1942.7 MF
4 0.809 s 0.413 s 0.205s 0.102 s 0.053 s
129.6 MF 253.9 MF 5122 MF 1027.9 MF 1971.2 MF
8 0.809 s 0.413 s 0.206 s 0.102 s 0.053 s
129.6 MF 253.9 MF 509.9 MF 1028.2 MF 1964.7 MF
16 0.809 s 0413 s 0.205 s 0.102 s 0.053 s
129.6 MF 253.8 MF 510.7 MF 1027.9 MF 1965.0 MF

The performance results when NV is varied is shown in Table 8.2 and Fig. 8.2. Note
that we were able to perform the FFT of N = 2?2 points only when P > 2 and that of
N = 2% points only when P > 8 because of memory limitation. The performance did not
depend on the block sizes, so we showed only the results for L; = L, = 16. It is apparent
that the performance increases as the problem size grows and reaches 2152 MFLOPS when
N = 2% and P = 16, which is 45% of the peak performance (4800 MFLOPS for 16 nodes).

From these results, we can conclude that our FFT routine attains high performance on
a (pseudo-)vector-parallel machine and flexibility in data distribution at the same time.

8.5 Conclusion

In this paper, we have proposed a l-dimensional FFT routine for distributed-memory
vector-parallel machines which provides the user with both high performance and flex-
ibility in data distribution. Our routine inputs/outputs data using block cyclic data

102

Table 8.2: Performance results for Ly = Ly, = 16

N |1 node 2 nodes 4 nodes 8 nodes 16 nodes

218 10.194 s 0.099 s 0.051 s 0.026 s 0.014 s
121.7 MF 237.5 MF 466.2 MF 899.9 MF 1681.9 MF

2%0 | 0.809 s 0.413 s 0.205s 0.102 s 0.053 s
129.6 MF 253.8 MF 510.7 MF 1027.9 MF 1965.0 MF

222 1761s 0873s 044ls 0223s
262.0 MF 528.3 MF 1046.7 MF 2070.9 MF

22 1.894 s 0.935s
1062.8 MF 2152.5 MF

distribution, and the block sizes for input and output can be specified independently by
the user. It is based on the transpose algorithm, which requires only one global data
transposition, and no additional inter-processor communication is necessary to realize
this flexibility. A straightforward implementation of our method can cause a problem of
short innermost loops when the block sizes are large, but we have shown how to solve this
by employing loop merging techniques.

We implemented our method on the Hitachi SR2201, a distributed-memory par-
allel machine with pseudo-vector processing nodes, and obtained the performance of
2152 MFLOPS, or 45% of the peak performance, when transforming 2% points data on 16
nodes. This result was unchanged for a wide range of block sizes from 1 to 16. It should

be easy to adapt our method to other similar vector-parallel machines.

103

Performance (MFLOPS)

2600

2000

1560

1000

500

o szls
- N =920 é
- N=22
—t— N:224 /D

/

1 2 4 8 16
Number of nodes

Figure 8.2: Performance results for Ly = L, = 16

104

Chapter 9

Conclusion

9.1 Summary of our study

In this thesis, we studied efficient algorithms for numerical linear algebra on modern
high performance architectures such as the shared-memory parallel machine, distributed-
memory parallel machine and processors with hierarchical memory. In particular, we
focused on three basic linear problems, namely, solution of linear simultaneous equations,
eigenvalue problems and the fast Fourier transform, and aimed at developing algorithms
that can attain high parallel efficiency, high single-processor performance and high nu-
merical accuracy and stability. The achievements of our study are as follows:

1. In Chapter 3, we proposed the double-blocked Gaussian elimination method for
distributed-memory parallel machines whose computational nodes consists of pro-
cessors with hierarchical memory. Compared with conventional parallel blocked
Gaussian elimination method, our method has the advantage that it can achieve
both high single-processor performance and high parallel efficiency a the same time.
We verified the effectiveness of our method on the nCUBE2 and the Hitachi SR2001.
The idea of double blocking is useful for other linear algebra problems such as
Householder tri-diagonalization and the QR factorization, and in fact, it has been
successfully used for Householder tri-diagonalization.

2. In Chapter 4, We designed a sparse direct solver for distributed-memory parallel
machines. This solver is designed to deal with sparse symmetric positive definite
matrices with 3 x 3 block nonzero structure, and adopts a locally optimized loop
unrolling technique to attain high single-processor performance in the Cholesky
factorization part. We implemented our solver on the Hitachi SR2201 and found that
our technique can actually improve the performance for a real structural analysis

problem.

105

3. In Chapter 5, we proposed a new parallel direct solver for unsymmetric tridiagonal
matrices. In contrast to most of the parallel tridiagonal solver proposed so far, our
solver can incorporate partial pivoting for numerical accuracy and stability without
sacrificing parallelism. Numerical experiments on the Hitachi SR8000/F1 show that
it can achieve speedup of 5.5 times compared with the sequential tridiagonal solver
with partial pivoting when the matrix size is 8000 and the number of processor is
8. The experiments also show that accuracy of our method is almost the same as
that of the sequential solver and is up to two orders of magnitude better than that
of the parallel solver without pivoting.

4. In Chapter 6, we investigated algorithms for tri-diagonalization of a real symmetric
matrix on a processor with hierarchical memory. We proposed two improvements for
the two-step algorithm of Bishof et al., which can perform tri-diagonalization using
only BLAS 3 operations. Numerical experiments on the IBM Power 4 processor
show that the resulting algorithm can attain single-processor performance 10 to
15% higher than that of Bishof’s algorithm, or about 40% of the peak performance.
This is twice the performance of widely used Dongarra’s algorithm. We also showed
that the accuracy of the two-step algorithm is comparable to that of Dongarra’s
algorithm.

5. In Chapter 7, we proposed the Householder inverse ileralion method, a new al-
gorithm for computing the eigenvectors of a real symmetric matrix on a shared-
memory parallel machine. Compared with the parallel inverse iteration methods
proposed so far, it can reduce the number of interprocessor synchronization in the
re-orthogonalization step from O(N?) to O(N) even when full re-orthogonalization
is performed. Numerical experiments on the SR8000 show that our method is up
to 3.1 times faster than the conventional inverse iteration when computing all the
eigenvectors of matrices of order 1000 to 4000, and still attains the same level of
orthogonality of computed eigenvectors.

6. Finall, in Chapter 8, we designed a 1-dimensional FFT program for distributed-
memory vector-parallel machines. Our program provides the user with both high
performance and flexibility in data distribution, in the sense that the distribution
block sizes for input and output can be specified independently by the user. It is
based on the transpose algorithm, which requires only one global data transposi-
tion, and no additional inter-processor communication is necessary to realize this
flexibility. Numerical experiments on the SR2201 shows that it can attain 45% of
the peak performance when transforming 2% points data on 16 nodes. This result
was unchanged for a wide range of block sizes from 1 to 16.

106

We believe that the algorithms we have developed in this thesis are applicable to a wide
range of problems arising in science and engineering and will contribute to the progress of
these fields by providing them with a means to use modern high performance computers

more efficiently.

9.2 Future work

We are planning to extend our study along the following three directions:

e Application to real problems

In this thesis, we have verified the effectiveness of our algorithms on a number of
test problems. However, it remains our future work to integrate our solvers into real
applications and evaluate their performance there. In particular, we are interested
in solving large eigenvalue/eigenvector problems arising in electronic structure cal-
culations and information retrieval by collaborating with researchers in these fields.

¢ Development of an automatically-tuned library

As architectures of high performance computers become more complex and diverse,
the cost of developing an optimized linear algebra library for each architecture is
growing prohibitively expensive. To solve this problem, several automatically-tuned
libraries have been proposed [11)[61][62][65]. We are interested in combining the
ideas presented in these studies with our algorithm to develop an automatically-
tuned library that can attain high performance on a wide range of machines.

e Guaranteeing the accuracy of solution

As the size of the problems grows, it becomes more and more important to guaran-
tee the accuracy of the computed solution. Recently, simple and efficient methods
for finding rigorous error bounds have been proposed for linear simultaneous equa-
tions [72][73] and eigenvalue problems [74]. It will be rewarding to investigate the
applicability of these ideas to our algorithms.

By combining the results obtained by following these paths, we hope to provide a more
efficient, easy-to-use and reliable library for numerical linear algebra.

107

Bibliography

(1]

2l

3]

(4]

(5]

(10]

R. C. Agarwal and J. W. Cooley: Vectorized Mixed Radix Discrete Fourier Trans-
form Algorithms, Proc. of IEEE, Vol. 75, No. 9, pp. 1283-1292 (1987).

R. C. Agarwal, F. G. Gustavson and M. Zubair: A High Prformance Parallel Algo-
rithm for 1-D FFT, Proc. of Supercomputing '94, pp. 34-40 (1994).

N. Akita: Solution of Three-Term Equations on Vector Processors, Proceedings
of the Annual Meeting of Information Processing Society of Japan, pp. 1305-1306
(1984).

P. Amestoy, I. S. Duff and J. -Y. L’Excellent: MUMPS MUItifrontal Massively
Parallel Solver Version 2.0, Technical Report TR/PA/98/02, CERFACS (1998).

P. Amestoy and I. S. Duff: The PARASOL Project and the Multifrontal Parallel
Solver for Sparse Systems, Proceedings of the Ninth SIAM Conference on Parallel
Processing for Scientific Computing, SIAM, Philadelphia, 1999.

P. Amestoy, I. Duff and J. -Y. L’Excellent: Multifromtal Parallel Distributed Sym-
metric and Unsymmetric Solvers, Computational Methods in Applied Mechanics and
Engineering, Vol. 184, pp. 501-520 (2000).

P. Amodio and L. Brugnano: The Parallel QR Factorization Algorithm for Tyidi-
agonal Linear Systems, Parallel Computing, Vol. 21, pp. 1097-1110 (1995).

E. Anderson, Z. Bai, C. Bishof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen: LAPACK Users’
Guide, second edition, SIAM, Philadelphia, 1995.

C. Ashcraft, S. C. Eisenstat and J. W. -H. Liu: A Fan-in Algorithm for Distributed
Sparse Numerical Factorization, STAM Journal on Scientific and Statistical Com-
puting, Vol. 11, No. 3, pp. 593-599 (1990).

C. Ashcraft, C. Eisenstat, J. W. -H. Liu and A. Sherman: A Comparison of Three
Column Based Distributed Sparse Factorization Schemes, in Proceedings of the Fifth

109

[11]

[12]

[13]

[14]

(18]

[16]

(17]

(18]

(20]

[21]

[22]

SIAM Conference on Parallel Processing for Scientific Computing, SIAM, Philadel-
phia, 1991.

ATLAS homepage: http://math-atlas.sourceforge.net/

A. Averbuch, E. Gabber, B. Gordissky and Y. Medan: A Parallel FFT on a MIMD
Machine, Parallel Computing, Vol. 15, pp. 61-74 (1990).

D. H. Bailey: FFTs in External or Hierarchical Memory, The Journal of Supercom-
puting, Vol. 4, pp. 23-35 (1990).

M. W. Berry and M. Browne: Understanding Search Engines, SIAM, Philadelphia,
1999.

C. Bishof and C. F. van Loan: The WY Representation for Products of Householder
Matrices, SIAM Journal on Scientific and Statistical Computing, Vol. 8, No. 1,
pp. 82-s13 (1987).

C. Bishof, M. Marques and X. Sun: Parallel Bandreduction and Tridiag-
onalization, Technical Report 8, PRISM Working Note, 1993. http://www-
unix.mes.anl.gov/prism/lib/tech.html

C. Bishof, B. Lang and X. Sun: Parallel Tridiagonalization through Two-step
Band Reduction, Technical Report 17, PRISM Working Note, 1994. http://www-
unix.mcs.anl.gov/prism/lib/tech. html.

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Don-
garra, 8. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker and R. C. Wha-
ley: ScalLAPACK Users’ Guide, SIAM, Philadelphia, 1997.

T. Boku, Y. Iwasaki, H. Nakamura and K. Nakazawa: The Architecture of Massively
Parallel Processor CP-PACS, Proceedings of the 2nd Aizu International Symposium
on Parallel Algorithms/Architectures Synthesis (pAs ’97), pp. 31-41, IEEE Com-
puter Society, 1997.

E. G. Boman and B. Hendrickson: A Multilevel Algorithm for Reducing the Enve-
lope of Sparse Matrices, Technical Report SCCM-96-14, Stanford University (1996).

D. A. Carlson: Ultrahigh-Performance FFTs for the Cray-2 and Cray Y-MP Super-
computers, Journal of Supercomputing, Vol. 6, pp. 107-116 (1992).

H. Chang, S. Utku, M. Sakama and D. Rapp: A Parallel Householder Tridiagonal-
ization Stratagem Using Scattered Row Decomposition, International Journal on
Numerical Methods in Engineering, Vol. 26, p. 857-874 (1988).

110

[23] H. Y. Chang, S. Utku, M. Salama and D. Rapp, D: A Parallel Householder Tri-
diagonalization Strategem using Scattered Square Decomposition, Parallel Com-
puting, Vol. 6, No. 3, pp. 297-311 (1988).

[24] J. Choi et. al.: ScaLAPACK: A Portable Linear Algebra Library for Distributed
Memory Computers - Design Issues and Performance, LAPACK Working Notes 95,
1995.

[25] J. W. Cooley and J. W. Tukey: An Algorithin for the Machine Calculation of
Complex Fourier Series, Mathematics of Computation, Vol. 19, pp. 297-301 (1965).

[26] I. Crawford and K. Wadleigh: Software Optimization for High Performance Com-
puting: Creating Faster Applications, Prentice-Hall, 2000.

[27] D. E. Culler, J. P. Singh and A. Gupta: Parallel Compulter Archilecture: A Hard-
ware/Software Approach, Morgan Kaufmann, 1998.

[28] J. J. M. Cuppen: A Divide and Conquer Method for the Symmetric Tri-diagonal
Eigenproblem’, Numerische Mathematik, Vol. 36, pp. 177-195 (1981).

[29] T. A. Davis, P. Amestoy and I. S. Duff: An Approximate Minimum Degree Ordering
Algorithm, SIAM Journal on Matriz Analysis and Applications, Vol. 17, No. 4,
pp. 886-905 (1996).

[30] J. W. Demmel: Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[31] I. Dhillon: A New O(n?) Algorithm for the Symmetric Tri-diagonal Eigen-
value/Eigenvector Problem, Ph. D. Thesis, Computer Science Division, University
of California, Berkeley, 1997.

[32] S. Domas, F. Desprez and B.Tourancheau: Optimization of the ScaLAPACK LU
Factorization Routine Using Communication/Computation Overlap, in Proceed-
ings of the Euro-Par ’96 Parallel Processing, Lecture Notes in Computer Science,
Vol. 1124, pp. 3-10, Springer-Verlag, August, 1996.

[33] J. J. Dongarra and D. C. Sorensen: A Fully Parallel Algorithm for the Symmetric
Eigenvalue Problem, SIAM Journal on Scientific and Statistical Computing, Vol. 8,
No. 2, pp. 8139-s154 (1987).

[34] J. J. Dongarra, J. D. Croz, S. Hammarling and R. J. Hanson: An Extended Set
of Fortran Basic Linear Algebra Subprograms, ACM Transactions on mathematical
Software, Vol. 14, No. 1, pp. 1-17 (1988).

111

[35] J. J. Dongarra, J. D. Croz, S. Hammerling and I. Duff: A Set of Level 3 Basic Linear
Algebra Subprograms, ACM Transactions on Mathematical Software, Vol. 16, No. 1,
pp- 1-17 (1990).

[36] J. J. Dongarra and R. A. van de Geijn: Reduction to Condensed Form for the Eigen-
value Problem on Distributed Architectures, Parallel Computing, Vol. 18, No. 9,
pp. 973-982 (1992).

[37] J. J. Dongarra, I. S. Duff, D. C. Sorensen and H. A. van der Vorst: Numerical
Linear Algebra on High-Performance Computers, SIAM, Philadelphia, 1998.

(38] A. Dubey, M. Zubair and C. E. Grosch: A General Purpose Subroutine for Fast
Fourier Transform on a Distributed Memory Parallel Machine, Parallel Computing,
Vol. 20, pp. 16971710 (1994).

[39] P. Dubois and G. Rodrigue: An Analysis of the Recursive Doubling Algorithm, in
D. J. Kuck and A. H. Sameh, eds., High Speed Computer and Algorithm Organiza-
tion, Academic Press, New York (1977).

[40] I. S. Duff and J. K. Reid: The Multifrontal Solution of indefinite Sparse Symmetric
Linear Equations, ACM Transactions on Mathematical Software, Vol. 9, pp. 302-325

(1983).

[41] 1. S. Duff, A. M. Erisman and J. K. Reid: Direct Methods for Sparse Matrices,
Oxford University Press, Oxford, 1986.

[42] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon and D. Walker: Solving Prob-
lems on Concurrent Processors, Vol. I, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[43] H. Fujii, Y. Yasuda, H. Akashi, Y. Inagami, M. Koga, O. Ishihara, M. Kashiyama,
H. Wada and T. Sumimoto: Architecture and Performance of the Hitachi SR2201
Massively Parallel Processor System, Proceedings of IPPS 97, pp. 233-241, 1997.

[44] K. A. Gallivan et. al.: Parallel algorithms for Matriz Computations, SIAM, Philadel-
phia, 1990.

[45] A. George and J. W. H. Liu: Computer Solution of Large Sparse Positive Definite
Systems, Prentice Hall, 1981.

[46] G. H. Golub and C. F. van Loan: Matriz Computations, 3rd edition, The Johns
Hopkins University Press, Baltimore, 1996.

112

[47] M. Gu and S. Eisenstat: A Divide-and-Conquer Algorithm for the Symmetric
Tri-diagonal Eigenproblem, SIAM Journal on Matriz Analysis and Applications,
Vol. 16, pp. 172-191 (1995).

(48] A. Gupta and V. Kumar: Parallel Algorithms for Forward and Backward Substitu-
tion in Direct Solution of Sparse Linear Systems, Proceedings of the Supercompuling
95, Dec. 1995.

[49] A. Gupta, G. Karypis and V. Kumar: Highly Scalable Parallel Algorithms for
Sparse Matrix Factorization, JEEE Transactions for Parallel and Distributed Sys-
tems, Vol. 8, No. 5, pp. 502-520 (1997).

[50] M. T. Heath, E. Ng and B. W. Payton: Parallel Algorithms for Sparse Linear
Systems, SIAM Review, Vol. 33, pp. 420-460 (1990).

[61] M. T. Heath and P. Raghavan: Performance of a Fully Parallel Sparse Solver,
The International Journal of Supercomputer Applications and High Performance
Computing, Vol. 11, No. 1, pp. 49-64 (1997).

[62] M. Hegland: On the Parallel Solution of Tridiagonal Systems by Wrap-around Par-
titioning and Incomplete LU Factorization, Numerische Mathematik, Vol. 59, No. 5,
pp. 453-472 (1991).

(53] M. Hegland: Real and Complex Fast Fourier Transforms on the Fujitsu VPP500,
Parallel Computing, Vol. 22, pp. 539-553 (1996).

[54] D. Heller: Some Aspects of the Cyclic Reduction Algorithm for Block Tridiagonal
Linear Systems, STAM J. Numer. Anal., Vol. 13, No. 4, pp. 484-496 (1976).

[65] B. Hendrickson, E. Jessup and C. Smith: Toward an Efficient Parallel Eigensolver
for Dense Symmetric Matrices, SIAM Jounal on Scientific Computing, Vol. 20,
No. 3, pp. 11321154 (1999).

[56] N.J. Higham: Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia,
1996.

[67]) S. L. Johnson and R. L. Krawitz: Cooley-Tukey FFT on the Connection Machine,
Parallel Computing, Vol. 18, pp. 1201-1221 (1992).

[58] G. Karypis and V. Kumar: A Fast and High Quality Multilevel Scheme for Parti-
tioning Irregular Graphs, SIAM Journal on Scientific Computing, Vol. 20, No. 1,
pp. 359-392 (1998).

113

[59) T. Katagiri and Y. Kanada: Performance Evaluation of Blocked Householder Al-
gorithm on Distributed Memory Parallel Machine, Transactions of the Information
Processing Society of Japan, Vol. 39, No. 7, pp. 2391-2394 (1998), in Japanese.

[60] T. Katagiri and Y. Kanada: A Parallel Implementation of Eigensolver and Its per-
formance, presented at Ninth STAM Conference on Parallel Processing for Scientific
Computing (1999).

[61] T. Katagiri, H. Kuroda and Y. Kanada: A Methodology for Automatically Tuned
Parallel Tridiagonalization on Distributed Memory Vector Parallel Machines, Pro-
ceedings of Vector and Parallel Processing 2000, pp. 265-277, Portugal, June 2000.

[62] T. Katagiri, H. Kuroda K. Ohsawa and Y. Kanada: I-LIB: An Automatically Tuned
Parallel Numerical Library and Its Performance Evaluation, Proceedings of JSPP
(Joint Symposium on Parallel Processing) 2000, pp.27-34, 2000, in Japanese.

[63] T. Katagiri: A Study on Large Scale Eigensolvers for Distributed Memory Parallel
Machines, Ph. D. Thesis, Information Science Division, University of Tokyo, 2001.

[64] V. Kumar, A. Grama, A. Gupta and G. Karypis: Introduction to Parallel Comput-
ing, The Benjamin/Cummings Publishing Company, CA, 1994.

(65] H. Kuroda T. Katagiri, and Y. Kanada: Performance of Automatically Tuned Par-
allel GMRES(m) method on Distributed Memory Machines, Proceedings of Vector
and Parallel Processing 2000, pp. 251-264, Portugal, June 2000.

[66] LINPACK Benchmark homepage: http://www.top500.0rg/lists/linpack.php

[67] J. W. H. Liu: The Multifrontal Method for Sparse Matrix Solution: Theory and
Practice, STAM Review, Vol. 34, No. 1, pp. 82-109 (1992).

[68] K. Murata, R. Oguni and Y. Karaki: Supercomputers: Applications to Scientific
and Engineering Compuling, Maruzen, Tokyo, 1985.

[69] K. Nakazawa, H. Nakamura, H. Imori and S. Kawabe: Pseudo Vector Processor
Based on Register-Windowed Superscalar Pipeline, Proceedings of Supercomputing
‘92, pp. 642-651 (1992).

[70] K. Naono, Y. Yamamoto, M. Igai and H. Hirayama: High Performance Imlemen-
tation of Tri-diagonalization on the SR8000, Proceedings of HPC-ASIA2000, Vol. 1,
pp. 206-219, IEEE Computer Society, 2000.

114

[71] K. Naono, Y. Yamamoto, M. Igai, H. Hirayama and N. Ioki: A Multi-color Inverse
Iteration for a High Performance Real Symmetric Eigensolver, in Ludwig, B. and
Wismuller, K. (eds.), Proc. of Euro-Par 2000, Lecture Notes in Computer Science
1900, pp. 527-531, Springer-Verlag, 2000.

[72] T. Ogita, S. Oishi and Y. Ushiro: Fast Verification of Solutions for Sparse Monotone
Matrix Equations, Computing, Supplement 15, pp. 175-187 (2001).

[73] T. Ogita, S. Oishi and Y. Ushiro: Computation of Sharp Rigorous Component-
wise Error Bounds for the Approximate Solutions of Systems of Linear Equations,
Reliable Computing, Vol. 9, No. 3, pp. 229-239 (2003).

(74] S. Oishi: Fast Enclosure of Matrix Eigenvalues and Singular Values via Round-
ing Mode Controlled Computation, Linear Algebra and its Applications, Vol. 324,
pp. 133-146 (2001).

(75] PARASOL homepage: http://www.parallab.uib.no/parasol
[76] B. N. Parlett: The symmetric Eigenvalue Problem, SIAM, Philadelphia, 1998.

[77] A. Pothen, H. Simon and K. Liou: Partitioning Sparse Matrices with Eigenvectors of
Graphs, SIAM Journal on Matriz Analysis and Applications, Vol. 11, pp. 430-452.

[78] PSPACES homepage: http://www-users.cs.umn.edu/ mjoshi/pspaces

[79] C. H. Reinsch: Smoothing by Spline Functions, Numerische Mathematik, Vol. 10,
pp. 177-183 (1967).

[80] S. H. Roosta: Parallel Processing and Parallel Algorithms: Theory and Computa-
tion, Springer-Verlag, 2000.

[81] E. Rothberg and A. Gupta: An Evaluation of Left-looking, Right-looking and Mul-
tifrontal Approaches to Sparse Cholesky Factorization on Hierarchical Memory Ma-
chines, International Journal of High Speed Computing, Vol. 5, pp. 537-593 (1993).

[82] E. Rothberg and A. Gupta: An Efficient Block-oriented Approach to Parallel Sparse
Cholesky Factorization, SIAM Journal on Scientific Computing, Vol. 15, No. 6,
pp. 1413-1439 (1993).

[83] E. Rothberg: Performance of panel and Block Approaches to Parallel Sparse
Cholesky Factorization on the iPSC/860 and paragon Multicomputers, SIAM Jour-
nal on Scientific Computing, Vol. 17, No. 3, pp. 699-713 (1996).

115

[84] S. A. Salvini and L. S. Mulholland: The NAG FORTRAN Library, Proceedings
of the Ninth SIAM Conference on Parallel Processing and Scientific Computing,
SIAM, Philadelphia, 1999.

[85] H. Samukawa: A Parallel Tridiagonal Solver Based on ETC Ordering, Proceed-
ings of JSPP (Joint Symposium on Parallel Processing) 2000, pp. 83-90 (2000), in

Japanese.

[86] R.S. Schreiber and B. N. Parlett: Block Reflectors: Theory and Compuation, STAM
Journal on Numerical Analysis, Vol. 25, pp. 189-205 (1987).

[87] R. S. Schreiber and C. F. van Loan: A Storage-efficient WY Representation for
Products of Householder Transformations, SIAM Journal on Scientific and Statis-
tical Computing, Vol. 10, pp. 52-57 (1989).

[88] K. S. Stanley: Ezecution Time of Symmetric Eigensolvers, Ph. D Thesis, Computer
Science Division, University of California at Berkeley, 1997.

[89] G. W. Stewart: Matriz Algorithms, Vol. I: Basic Decompositions, SIAM, Philadel-
phia, 1998.

[90] G. W. Stewart: Matriz Algorithms, Vol. II: Eigensystems, SIAM Philadelphia, 2001.

[91] H. S. Stone: An Efficient Parallel Algorithm for the Solution of a Tridiagonal Linear
System of Equations, J. Assoc. Comput. Mach., Vol. 20, pp. 27-38 (1973).

[92] K. Sumiyoshi and T. Ebisuzaki: Performance of Parallel Solution of a Block Tridi-
agonal Linear System on Fujitsu VPP 500, Parallel Computing, Vol. 24, pp. 287-304
(1998).

[93] P. N. Swarztrauber: Multiprocessor FFTs, Parallel Computing, Vol. 5, pp. 197-210
(1987).

[94] D. Takahashi: Parallel FFT Algorithms for the Distributed-Memory Parallel Com-
puter Hitachi SR8000, Proc. of JSPP2000, pp. 91-98, 2000 (in Japanese).

[95] Y. Tamaki, N. Sukegawa, M. Ito, Y. Tanaka, M. Fukagawa, T. Sumimoto, and
N. Ioki: Node Architecture and Performance Evaluation of the Hitachi Super Tech-
nical Server SR8000, Proceedings of the 12th International Conference on Parallel
and Distributed Computing Systems, pp. 487-493 (1999).

|96] F. Tisseur and J. J. Dongarra: A Parallel Divide and Conquer Algorithm for the
Symmetric Eigenvalue Problem on Distributed Memory Architectures, SIAM Jour-
nal on Scientific Computing, Vol. 20, No. 6, pp. 2223-2236 (1999).

116

(97]

[98]

[99]

[100]
[101]

[102]

(103]

[104]

[105]

[106]

[107]

[108]

C. Van Loan: Computational Frameworks for the Fast Fourier Transform, SIAM,
Philadelphia, 1992.

R. S. Varga: Matriz Iterative Analysis, Prentice-Hall, 1962.

J. H. Wilkinson: Rounding Errors in Algebraic Processes, Her Majesty’s Stationary
Office, London, 1963.

J. H. Wilkinson: The Algebraic Eigenvalue Problem, Claredon Press, Oxford, 1965.
J. H. Wilkinson. and C. Reinsch(eds.): Linear Algebra, Springer Verlag, 1971.

B. Wilkinson, C. M. Allen and M. Allen: Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers, Prentice-Hall,
1998.

Y. Yamamoto and T. Fujiwara: Numerical Stabilization of the First-Principles
Molecular-Dynamics Method for Metals, Physical Review B, Vol. 46, No. 20,
pp. 13596-13598 (1992).

Y. Yamamoto and T. Okochi: Optimization of the Gaussian Elimination Method for
Massively Parallel Processors, Proceedings of JSPP (Joint Symposium on Parallel
Processing) 95, pp. 217-224 (1995), in Japanese.

Y. Yamamoto and T. Okochi: A New Variant of the Gaussian Elimination Method
Optimized for RISC-based Distributed-Memory Parallel Processors, presented at
HPC-Asia '95, Taipei, Oct. 1995.

Y. Yamamoto, M. Igai and K. Naono: Development and Evaluation of a Sparse
Direct Solver for Distributed-Memory Parallel Processors, Proceedings of the Riken
Symposium on Linear Algebra and its Applications, The Institute of Physical and
Chemical Research (Riken), Nov. 1999.

Y. Yamamoto, M. Igai and K. Naono: Development and Evaluation of a Di-
rect Solver for Sparse Symmetric Systems on Distributed-Memory Parallel Proces-
sors, Transactions of the Information Processing Society of Japan, Vol. 41, No. 5,
pp. 1567-1576 (2000), in Japanese.

Y. Yamamoto, M. Igai and K. Naono: A New Algorithm for Accurate Computation
of Eigenvectors on Shared-Memory Parallel Processors and its Evaluation on the
SR8000, Journal of the Information Processing Society of Japan, Vol. 42, No. 4,
pp- 771-778 (2001), in Japanese.

117

(109]

[110]

[111]

[112]

Y. Yamamoto, M. Igai and K. Naono: A Parallel Linear Equation Solver for Non-
symmetric Tridiagonal Matrices, Journal of the Information Processing Soctety of
Japan, Vol. 42, No. SIG9 (HPS), pp. 19-27 (2001), in Japanese.

Y. Yamamoto, M. Igai and K. Naono: A Vector-Parallel FFT with a User-Specifiable
Data Distribution Scheme, in M. Guo and L. T. Yang, eds., Parallel and Distributed
Processing and Applications, Lecture Notes in Computer Science 2745, Springer-
Verlag, pp. 362-374, 2003.

Y. Yamamoto, M. Igai and K. Naono: A Parallel Direct Linear Equation Solver
for Nonsymmetric Tridiagonal Matrices, Proceedings of the SIAM Conference on
Applied Linear Algebra, Williamsburg, VA, July 2003.

Y. Yamamoto, M. Igai and K. Naono: A New BLAS-3 Based Parallel Algorithm for
Computing the Eigenvectors of Real Symmetric Matrices, in L. T. Yang and Y. Pan,
eds., High Performance Scientific and Engineering Computing - Hardware /Software
Support, Kluwer Academic Publishers, to appear in Oct. 2003.

Y. Yamamoto, M. Igai and K. Naono: Vector-Parallel Algorithms for 1-Dimensional
Fast Fourier Transform, in M. Guo and L. T. Yang, eds., Parallel/Distributed pro-
cessing with applications, Kluwer Academic Publishers, to appear in Dec. 2003.

Y. Yasuda, H. Fujii, H. Akashi, Y. Inagami, T. Tanaka, J. Nakagoshi, H. Wada
and T. Sumimoto: Deadlock-Free Fault-Tolerant Routing in the Multi-Dimensional
Crossbar Network and its Implementation for the Hitachi SR2201, Proceedings of
IPPS '97, pp. 346-352, 1997.

118

