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Chapter I. Introduction

The magnetic and thermal properties of transition metals
have been well described by the itinerant electron model, i.e.,

1,2) These properties of transition metals

the band model.
are closely connected with the electronic structure of d-elec-
trons. The band-width 6f d-bands 1is rather narrow so that the
exchange interaction among d-electrons is relatively large

as compared to the kinetic energy. This exchange interaction
is phenomenoclogically treated as an uniform molecular field

in the band model. A microscopic foundation of this model has

3)

been given by the Hubbard Hamiltonian represented by the sum
of the kinetic energy and the intra-atomic Coulomb interaction
which is treated in the Hartree-Fock approximation.

As for the magnetic transition metal alloys, there are
two main theoretical approaches. One is the study for a

)

metallic system with one magnetic impuriy by Friedel,

6)

AndersonS) and Wolff using the Hartree-Fock approximation

and the other is that for concentrated alloys using the

) which assumes

band model and the rigid band approximation
that the band structure does not change by alloying. In the
band model, the mégnetic'and thermal properties of transition
metals and their alloys depend strongly oﬁ their density of

‘ 8)

states. Shimizu and co-workers obtained an empirical density
of states for transition metals and their alloys from the low
temperature specific heat data by the rigid band approximation
and theoretically studied the temperature and concentration

- dependences of their magnetic and thermal properties such as



the paramagnetic susceptibility, the magnetic moment and the
specific heat in the band model using the rigid band approx-
imation.

On the other hand, the electronic structure of a random
system has been one of the important problems in statistical
physics and has been studied extensively. Recently, an useful
approximation called the coherent potential approximation
(CPA)Q—lu) was established within the single site approximation
to calculate the density of states for alloys which contain
random &§-function type potential at atomic sites. This approx-
imation satisfies mathematical demands such as a sum rule and
analyticity and gives satisfactory results in the dilute limit
and atomic limit and well describes the concentration variation
of the density of states for alloys. In addition, the local
density of states for each constituent atom can be calculated
by this approximation. Several calculations of the density of
states for alldys have been carried out using this approx-

") These calculated results show that the density of

imation.l
states for alloys with a large random potential is greatly
distorted as compared to that of the pure metal and depends
on the concentration of the alloy.

The generalization of CPA has been developed in two di-
rections. One is to include the effect of clusﬁersls’l6) and
the other is to include off-diagonal randomness.lT-lg) In |
the former case, the calculated results for the density of
states of one-dimensional alloys when the effect of clusﬁers

is taken into account show a fine structure which does not

exist in that of pure metals and in the calculated densities



of states by the single site approximation. In the latter
case, the transfer integrals between atomic sites depend on
the atomic species at each site and are also random. The
calculated results with off-diagonal randomness show that
the density of states for alloys depends on the value of the
transfer integrals.

In transition metal ailoys, the atomic potentials differ
from site to site and are relatively large as compared to the
band-width. Furthermore the transfer integrals depend on the
species of the constituent atoms because the band-widths of
the transition metals are different from each other. Therefore,
the density of states for the random alloy constituted from
transition metals is expected to be much different from that
of the pure transition metal. Consequently, to study the
magnetic and thermal properties of transition metal alloys,
it is necessary to know about their density of states itself.
CPA instead of the rigid band approximation (which neglects
the concentration variation of the density of states) is very
useful and is a reasonable appfoximation to calculate the
density of states of a realistic random alloy.

Several applications of CPA with diagonal randomness to

20-24) have been carried out and the

transition metal allbys
magnetic properties of these alloys have been studied by
using a model with the Hubbard Hamiltonian and the Hartree-

Fock approximation.25—27)

In this model, the exchange inter-
action varies from site to site and the magnetic moments for
each constituent atom can be calculated. Furthermore, the

“dilute limit of this model gives the same results as those



6) 5)

and Anderson models. These points

obtained by the Wolff
are also an important improvement when compared to the rigid
band approximation.

One of the purposes of this thesis is to calculate the
density of states of transition metal alloys and to study the
magnetic properties at 0 K and the thermal préperties, i.e.,
the concentration dependences of the magnetic moment, para-
magnetic susceptibility and low temperature specific heat co-
efficient, by using CPA and the Hartree-Fock approximation. In
this study, special attention is paid to alloys which confain
Ni atoms and show the transition between ferromagnetic and
paramagnetic states at 0 K. The numerical calculations are
carried out for Fe-Ni, Ni-Cu, Ni-Pd, Ni-Pt and Pd-Pt alloys.
Another purpose 1is to study the temperature and concentration
dependences of the spin susceptibility and electrical resist-
ivity for paramagnetic V-Cr, Nb-Mo, Ta-W and Ni-Pt alloys.

The densiﬁy of states and magnetic properties for Fe-Ni
alloys have been calculated by Hasegawa and KanamoriES) for
both paramagnetic and ferromagnetic states. 1In their calcu-
lation, however, a simple shape is made use of as the density
of states of the host band. In chapter II, a realistic density
of states for Ni obtained by a band calculation is used as the
density of states of the host band and the densities of states
of fce Fe~Ni alloys in the paramagnetic and ferromagnetic
states are calculated. The average and local magnetic moments
at 0 K and the low temperature specific heat coefficienf
are calculated from the calculated densities of states and

.these results are compared with experiment. The calculated



results of the magnetic moments and the low temperature
specific heat coefficient agree well with experiment and

are almost the same as those of Hasegawa and Kanamori.25)

It is found that these physical gquantities are not so sensi-
tive to the detailed structure of the density of states
except near the Fermi level.

The same method as that used for Fe-Ni alloys in chapter
ITI is used to calculate the density of states for ferromag-
netic Ni~Cu alloys in chapter III. A simplified density of
states for the host metal is used for simplicity of numerical
calculation. The expression for the high-field spin suscepti-
bility is obtained and its concentration dependence is calcu-
lated at 0 K. The values of the magnetic moments and the low
temperature specific heat coefficient are also calculated.

Tt is shown that these calculated results agree qualitatively
with experiment except near the critical concentration where

the ferromagﬁetism disappears. The origin of ferromagnetism

in Ni-Cu alloys is discussed.

For Fe-Ni and Ni-Cu alloys, ohly the diagonal randomness
which is the difference of potentials at each atomic site is
taken into account. The off-diagonal randomness, i.e., the
difference of the transfer integral between constituent atoms
in an alloy is not so important as compared to the diagonal
randomness in these ailoys. However, it is necessary to
inciude the off-diagonal randomqess for alloys in which
épnstituent atoms belong to the same column in the periodic

table. Therefore, the densities of states for ferromagnetic

or paramagnetic Ni-Pd, Ni-Pt and Pd-Pt alloys are calculated



by taking account of both the diagonal and off-diagonal
randomnesses in chapter IV. The expression for the paramag-
netic spin susceptibility generalized for alloys with off-
diagonal randomness is obtained and its numerical values are
calculated for these alloys. The concentration dependence of
the magnetic moments and the low temperature specific heat
coefficient are calculated and it is shown that the results
are consistent with experiment.

In chapter V, the density of states for paramagnetic
V-Cr, Nb-Mo and Ta-W alloys are calculated in CPA by making
use of the densities of states for Cr, Nb and W which are
obtained by the band calculation. The concentration variation
of the temperature dependences of the paramagnetic spin
susceptibility and the electrical resistivity is calculated
and qualitative agreement with experiment is obtained. It
is also shown that an enhancement of spin susceptibility
due to exchange‘interactions should be taken into account for
Cr rich V-Cr alloys.

The temperature variation of the paramagnetic spin
susceptibility for Ni-Pt alloys is calculated inlchapter VI.
The densities of states for these alloys are calculated in
CPA with off-diagonal randomness. In this calculation the
exchange interaction between electrons is treated as a
uniform molecular field. The calculated results are compared
with experiment. In chapter VII, summary and conclusion

of this thesis are given.



Chapter II. Density of States for FCC Fe-Ni Alloys

g§1l. Intrcduction

Experimental relation between magnetic moments and elec-
tron numbers per atom for ferromagnetic transition metal alloys
at 0 K is represented by the well-known Slater-Pauling curve.
Local magnetic moments for each constituent atom in alloys
have been also measured by the neutron diffraction experiments.
It is known from the Slater-Pauling curve that the saturation
moment of fcc Fe-Ni alloys decreases rapidly near 70 at.% Fe.
This is due to a first order transition and was explained Dby

29)

Shimizu and Hirooka in the rigid band approximation by

comparing the free energies in the ferromagnetic and paramag-
netic states. However, the local moments of the Ni or Fe atoms
cannot be discussed and the concentration variation of the
densities of states cannot be taken into account in the rigid
band approximafion. These points can be improved by calcu-
lations using the coherent potential approximation (CPA).

* CPA was first introduced to treat the ekcitation spectrum,
for example the electronic density of states or the phonon

spectrum etc., of disordered alloys by Soven,g) Taylor,lo)

1) 12) 13)

Onodera and Toyozawa,l Yonezawa and Leath. A detailed

explanation of CPA for a tight-binding model was given by
i)

. 1
Velicky et al. Many applications to transition metal alloys
have been carried out, e. g., calculations of the electronic
density of states for paramagnetic Ni-Cu alloys by Kirkpatrick

20) 21) 23)

et al. , Stocks et al. and Yamashita et al. , studies

of magnetic properties of ferromagnetic transiton metal



alloys containing Ni or Fe atoms by Hasegawa and Kanamori25)

and for Ni-Cu alloys by Brouers and Vedyayev26) and calcu-
lations of the paramagnetic spin susceptibility for Pt-Pd,
Rh-Pd, Ni-Rh and Ni-Pd alloys by Levin et al.27)

Hasegawa and KanomorigS)‘calculated the concentration
dependence of the density of states, average and local
magnetic moments, the low temperature specific heat coeffi-
cient and the Curie temperature for Fe-Ni alloys in CPA
and the Hartree-Fock approximation by use of a one band
model with the Hubbard Hamiltonian. They obtained good
agreement with experiment except the concentration depend-
ence of the Curie temperature and the value of the local
moments at Fe site for Ni rich Fe-Ni alloys.

They made use of a simple shape of the density of states
for Ni as the host band. However, there are many calculations
of the density of states for Ni. Therefore, we calculate the
densities of stétes for the paramagnetic and ferromagnetic
fce Fe-Ni alloys making use of the realistic density of
states for Ni calculated by Zcrnbergzg)_and study the ferro-
magnetic properties of these alloys in this chapter. The
model and formulation are explained in §2 and the calculated
results are shown and compared with experiment in 8§83. Dis-

cussion and conclusion for the density of states and the

magnetic properties of fcc Fe-Ni alloys are given 1in §l.



§2. Model and Formulation

The electronic structure of transition metals is compli-
cated as the s- and d-bands are mixed with each other. How-
ever, in this calculation, only the d-bands are considered be-
cause the magnetic moment is almost carried by d-electrons.
Furthermore the degeneracy of the d-bands is neglected in this
study. The Hubbard Hamiltonian éf a one band model is assumed
and is given as follows, in the Wannier representation.

+ . +

+ ¥
ti5%i0%50 * g Ujajsag,ay ay > (2-1)

ijo
where a;G or aio is a creation or annihilation operater of an
electron with spin o at i site. The value of ¢ is denoted as
+ or - according as the electron has a majority or minority
spin. The €4 is a 8-function type potential at 1 site, tij
is a transfer integral between i and j sites and Ui is an
intra-atomic Cﬁulomb integral at i site, respectively.

Appling the Hartree-Fock approximation to the last term in

eq. (2-1), the Hamiltonian is written as,

‘ + +
H= Je.a,a,  + ) t_ .a: a., (2-2)
jo 1o ic io 15g 1 10~jo
where
= + . . —
€16 = %1 T UiM (2-3)
Here, n is the average number of d-electrons with spin

i-o

-0 at i site. For A-B alloys, the values of €4 Ui and niU

- 0 ~



are assumed to have one of two values, €y OT €p> UA or UB and

Ny, or nBc’ respectively. The value of tij is assumed not

to be changed by alloying in this chapter.
In CPA, a random allcy is considered as a one impurity
system in a coherent potential X which will be determined

self-consistently as a function of energy by an appropriate

)
9,14) The value of I is spin dependent for ferro-

condition.
magnetic alloys and is denoted as ZU. An effective Green's

function for electrons with spin ¢ in ferromagnetic alloys
14)

was given by Velicky et al. as,
-1 -1
G,(2z) = N Y {z - e(x) - £ (z)} (2-4)
k
= J- p%(e){z - & - ZC(Z)}_lde (2-5)

where e(k) is the Fourier transform of t;, z=E+i0, 0%(e) is
the paramagnetic density of states of a host metal whose
energy-momentum relation is given by the e(k). The Green's
function with spin o at the atomic site i which is considered

as one impurity in a coherent potential EU is given by
= yi-1 - :
Gic(z) = Go(z)[l - {Eio - Ea(z)}GO(z)] s i=A or B.
(2-6)

The I is determined by the following equation,

Go(z) = CAGAG(Z) + CBGBU(Z)’ (2-7)

- 10 -



where Ca and cy are the concentrations of A and B atoms,

respectively. The eq. (2-7) is rewritten as,

= + ¢
ZU(Z) c,€ €

A~ Ao B 4_{€A0.-ZO(Z)}GO(Z)

Bo

x {eg, = i (z)}. (2-8)

The values of Gg(z)-and Eé(z) are obtained by solving eqs.
(2-5) and (2-7) or (2-8) self-consistently. Details of the
numerical calculation are shown in the Appendix.

The local and average densities of states of an alloy
are given by

1

pio(E) = —-q ~Im GiO(E+iO), . i=A or B, (2-9)

pG(E) =,cApAO(E) + cBoBG(E)- (2-10)

In the paramagnetic states, pi+(E)=pi_(E)=pi(E) and p+(E)=
p_(E)=p(E). The local and average numbers of d-electrons

with spin o are given by

oo ¢ . 7 .
n, = f Py, (E)F(E-C)dE, i=A or B, | (2-11)

—CO

n + cun (2-12)

g A Ao B 'Bg?

where f(E-¢) is the Fermi distribution function and 7 is a
chemical potential which is determined from the total number

of d-electrons. The values of n and n are obtained by

Ao Bo

- 11 -



solving egs. (2=4)-(2-11) self-consistently. For ferro-
magnetic alloys, the local and average magnetic moments (pB

per atom), m, and m, are given by
m, = n - N i=A or B, (2-13)
m=c,m, + c.m (2-14)

respectively. The low temperature specific heat coefficient
Y is obtained from the value of the average density of states

at the Fermi level as,

1

Y = 5 mkplo,(8) + o_(D], (2-15)

where kB is the Boltzmann constant. In the preceding formu-

lation, A and B denote Fe and Ni, respectively.

The density of states for fcec Ni calculated by Zornberg29)
is used as that of the host metal. The broad s-band is sub-=.
tracted from the whole density of states and its remaining
part is shown in Fig. 2. Here and hereafter in this chapter
the integrated number of states is normalized as 1 and the
scale of the energy is reduced so that the band-width of Ni
which is 5.08 eV equals to 2.

The number of d-holes in Ni is determined as 0.6 per atom
from the fact that its saturation moment is about 0.6 ug per
atom and that of fcc Fe is determined as 2.8 per atom because

the exterpolated value to Fe of the saturation moment of fcc

Fe-Ni alloys in the Slater-Pauling curve is about 2.8 Mg per

- 12 -



atom. Parameters in the present calculations are éozaFe—eNi’

U. and U... The value of § is determined as 0.603 so that
Fe Ni o)

the value of § defined by

-U ,no (2"16)

becomes 0.317 which is the energy difference between the Fermi
levels of Ni and Fe. Here n;e=0.72 and n§i=0.9u are the

numbers of d-electrons per atom per spin of the paramagnetic

Fe and Ni, respectively, in the one band model. The values of
UNi and UFe are assumed to be the same U for simplicity and de-
termined as U=1.3 so as to get a good agreement between the cal-

culated and experimental values of the average magnetic moment.

§3. Calculated Results for FCC Fe-Ni Alloys
3-1 Density of states in the paramagnetic state

At first; by neglecting the Coulomb interaction terms
in egs. (2-3) and (2-16), the density of states for paramag-
netic fcc Fe-Ni alloys is calculated;, The value of § is
0.317, which equals to 60. The calculated results are shown
in Figs. 3-11. 1In the calculated results the density of
states is smoothened as a Whoie and the peaks are flattened
because of the imaginary part of the self-energy. This
tendency is largé for cbncentrated Fe-Ni alloys. The concen-
tration variation of the shape of the peak at the top of the
bahd is not symmetric with respect to the concentration of
Fe and Ni atoms. This peak is most flattened for 30 at.9%

Fe-Ni alloy but it remains rather clearly in the Fe rich

- 13 -



alloys. As the value of 60 is positive, Fe atoms contribute

to the density of states in the high energy region. Therefore,
the density of states increases in the high energy region and
the upper peak is flattened with increasing Fe concentration

as shown in Figs. 3 and 4. The Fermi level (denoted by a
vertical line) moves to the lower energy region with increasing
Fe concentration, i.e., on decreasing the total number of

electrons.

3-2 Density of states in the ferromagnetic state

The density of states for ferromagnetic fcc Fe-Ni alloys
is calculated by using the-formulation and parameters ex-
plained in §82. The values of the parameters 60 and U are
0.603 and 1.3, respectively. The numbers of electrons of
each spin at each atomic site are calculated self-consistently.
The calculated results of the density of states for ferromag-
netic Fe-Ni allbys are shown in Figs. 12-21. The alloys with
Fe concentration from 0 to 55 at.% are in the saturated
ferromagnetic state. The number of electrons of each spin
at each atomic site does not converge for ferromagnetic alloys
with the concentration larger than 70 at.% Fe. This result
seems to correspond to the fact that the ferromagnetic state
becomes unstable around this concentration and the paramag-
netic state becomes stable. This transition is considered

to be a first order transition.ZS)

It is seen from Figs.
12-21 that the band-width of the minority spin band is broad
and the density of states is smoothened but the density of

states of the majority spin band is almost the same as that

- 14 -



of the host band. The reason is as follows. The value of

8 is large (about 0.6 for minority spin band)

o Feg °Nio

because UFe=UNi and the values of Npet and Nyjs are nearly

1.0. However, 5+ is nearly 0 because the value of U(nFe_—

Nys ) cancels the value of 60, Another feature is the

N
splitting of the minority spin band in the high energy region
because of the large value of 6_; In the sub-band which is

splitted from the main band, the local density of states for

the Fe atom is very large and this correspcnds to a localized

state at the Fe site.

3—-3 Number of electrons

The calculated results of the number of electrons for
each atom and for each spin are shown in Fig. 22. The num-
Fet+’ Oyi- and n, are 1l for alloys with the

Fe concentration varying from 0 to 55 at.% because they are in

bers of electrons n

the saturated'ferromagnetic state. Above 55 at.% Fe, their
values begin to decrease a little because the alloys are in
the weak ferromagnetic state. The Vélue of nNi— is larger
than that of Npo_- This is due to the fact that the value of
pNi_(E) is larger in the low energy region than in the high
energy region but that of QFe_(E)‘is larger in the high energy
region than in the low energy region because the atﬁmic level
of Ni is lower than thaf of Fe.

The value of n increases with increasing Fe concen-

Fe-
fration but that of Nyg - almost does not vary with the con-
centration. This fact is explained as follows. The value

of DFe_(E) is especially large for small Fe concentration in

- 15 -



the high energy region where the Fermi level is located and
is rapidly decreases with increasing Fe concentration, but
the value of pNi_(E) is rather small in this region and does

not vary so much with the concentration.

3-4 Magnetic moments

The calculated and experimental results of the average
and local magnetic moments are shown in Fig. 23. The numer-
ical values of these calculated results are shown in Table I.
The calculated result for the average moment is 5x(2.0-1.44x
cFe—l.BBchi) ug per atom for saturated ferromagnetic alloys
and agrees with the Slater-Pauling curve. In the weak ferro-

magnetic state, as the value of n, begins to decrease, the

+
calculated result for m begins to deviate from the Slater-

Pauling curve.
The calculated results for m,. agree well with experi-

Ni
30,31) L : .
but those for Mpe are slightly larger than the

ment,
experimental values in the low Fe concentration. If charge
neutrality is demanded, the value of Mpe should become 2.8 Hp
per atom but the calculated result is larger than that. This
is because the value of pFe-(E) is large in the high energy
region as mentioned above. It has been shown that this
disagreement at cFezO.l is improved a little by faking into

account the degeneracy of the d—band.EB)

3-5 Low temperature specific heat coefficient
The low temperature specific heat coefficient y is

obtained from eq. (2-15). The calculated and experimentalBg)

- 16 -



results are shown in Fig. 24. The numerical values of the
calculated results for y are shown in Table I. The con-
centration variation of the calculated results agrees
qualitatively with that of experiment, although the experi-
mental values are 1.5-2.0 times as large as the calculated
results because the electron-phonon enhancement is neglected
in the calculation. The value of y is large for Fe dilute
alloys because the Fermi level locates at the peak of the
density of states. With increasing Fe concentration, the
value of y decreases because the p_(E) is smoothened by a
large random potential. The rapid increase of y at higher
concentration than 55 at.% Fe is due to the fact that the

Fermi level begins to touch the majority spin band.

§4. Discussion and Conclusion
The present calculated results for the density of states
and the magnetic moments differ very little from those

obtained by Hasegawa and KanamorizS)

using a simple shape of
the density of states as that of the host metal. This is
because only the shape of the density of states near the Fermi
level contributes to the electronic properties in alloys and
the fine structure is smoothed by thé random potential.

In the single site approximation, the pbtential at one
site is‘treated exactly and the other atomic potentials are
replaced by a coherent potential. Therefore, the configu-
ration of the surrounding atoms is neglected. If the effect

of the surrounding atoms on the density of states or on the

magnetic properties is large, the single site approximation

- 17 -



cannot be applied. However, as the local magnetic moments
in Fe-Ni alloys obtained experimentally do not change much
with concentration, the neglection of the fluctuation of
the random potential may be a good approximation.

In the calculation presented in this chapter, the
difference between the band-widths of Ni and Fe is neglected.
This may not be realistic. Some improvementsl7_19) of this
point have been carried out and its application to magnetic
alloys is treated in chapter IV.

The instability of the ferromagnetic state can be under-
stood as the electrons with majority spin can easily transfer
to the state of minority spin because the Fermi level locates
near the upper edge of the majority spin band. However, it
could not be made clear at which concentration this insta-
bility occurs, because of an ambiguity in the numerical cal-
culation.

There is an explanation that the rapid increase of the
value of y with increasing Fe concentration around 55 at.%

Fe is due to a spin fluctuation. However, this explanation
is not so clear at present because it has not been clarified
whether the transition from the ferromagnetic state is to the
paramagnetic or antiferromagnetic state.

The charge neutrality condition is not satisfied in the
ferromagnetic state. This is due to the neglection of the
screening among electrons. It may be necessary to include the
screening effect to satisfy charge neutrality and this is a
problem to be investigated.

In conclusion, the observed results for the concentration

- 18 -



variations of the magnetic moments at 0 K and of y for fcec
Fe-Ni alloys are in good agreement with the calculated results
in CPA and in the Hartree-Fock approximation and this fact
justifies the calculated densities of staftes for these alloys.
However, the magnetic properties around the concentration
where the ferromagnetism disappears has not been clarified

by the present calculations.

- 19 -



Chapter III. Ferromagnetic Properties of Ni-Cu Alloys

§1. Introduction

The magnetic moment of ferromagnetic Ni-Cu alloys decreases
linearly from the value of 0.606 ug per atom for pure Ni with
increasing Cu concentration. It begins to deviate from
linearity at about 40 at.% Cu and goes to zero at about 60
at.% Cu.33) Local magnetic moments have also been measured
by neutron diffraction experiments.BM—36) From these experi-
mental results it was shown that Cu atoms do not have local
magnetic moments, only the Ni atoms have magnetic moments and
there exists spatlally uniform negative polarization. The
concentration variation of magnetic moments for ferromagnetic

36-38)

Ni-Cu alloys have been discussed by many people in the
Jaccarino-Walker model.gg) In Ni-Cu alloys, the low temperature
specific heat coefficient y shows a peak around the critical
concentration Where the ferromagnetism disappears. To explain
this fact there are two models, i.e., one is due to the cluster
effect and the other is due to the paramagnon effect. According
to the experimental results obtained for the low temperature

40)

specific heat by Gupta et al. and for the magnetic properties

by Robbins et al.ul)

» the former effect is important, Measure-
ments of high-field susceptibility by Acher and Hugﬁeninuz)
also showed that the cluster effect is large around the
critical concentration.

8)

Shimizu and Hirooka2 calculated the Curie temperature,
high-field spin susceptibility and bulk magnetic moment for

ferromagnetic Ni-Cu alloys in the rigid band model. They

- 20 -



made use of the empirical density of states curve determined
from the low temperature specific heat data for Ni alloys.
Their calculated results agreed well with the observed ones
for Ni-Cu alloys.

Recently, however, an electronic structure of random
system has been extensively studied by the coherent potential
approximation (CPA).g’lu) For paramagnetic Ni-Cu alloys,

20) and Stocks et al.2l) calculated the

Kirkpatrick et al.
density of states using that of pure Ni or pure Cu obtained
from their band calculations. Their calculated results were
consistent with the experimental results of photo-emission,
soft X-ray experiments and measurements of y for paramagnetic
Ni-Cu alloys. For Ni rich ferromagnetic Ni-Cu alloys, Brouers

6)

and Vedyayev2 calculated the bulk magnetic moment in a simple
two band model by CPA, but they did not calculate local quan-
tities. Using CPA and the Hartree-Fock approximation for

25) calculated the

electron intefaction, Hasegawa and Kanamori
density of states, low temperature specific heat coefficient
"y and local moments for many ferromagnetic Fe and Ni alloys
except Ni-Cu alloys.

In this chapter the density of states forvferromagnetic
Ni-Cu alloys is calculated by CPA and the magnetic properties
of these alloys are studied by the same method as that of

25) Furthermore, the high-field spin

Hasegawa and Kanamofi.
susceptibility is calculated in CPA for ferromagnetic Ni-Cu
ailoysf The concentration where the high-field spin sus-

ceptibility diverges is determined as the critical concent-

ration. From the calculéted.density of states the bulk and

- 21 -



local magnetic moments and y are calculated for ferromagnetic
Ni-Cu alloys including the region of critical concentration.
The cluster effect which is large near the critical concent-
ration may be small for Ni rich Ni-Cu alloys. Therefore, it
is meaningful to apply CPA to the Ni rich Ni-Cu alloys, as
CPA is a single site approximation. The difference between
band structures of N1 and Cu metals and also cluster effects
are neglected in this chapter. Moreover, the degeneracy of
the d-bands is neglected and whole density of states of the
d- and s-bands is treated as one band.

Recently, an investigation similar to this chapter was

43) They made use of the

reported by Ghosh and Bhattacharyya.
densilty of stafes calculated by Callaway and Wang“u) for pure
Ni and subtracted from it the contribution due to conduction
electrons assuming one d-hole per atom. However, their cal-
culated results for magnetic moments did not explain the
experimental results well and the values of magnetic moments
near the critical concentration are not clear in their calcu-
lations. 1In additlon they did not discuss the high-field
spin susceptibility.

In 82, the formulation and parameters usedAin this
chapter are explained. 1In §3, high-field spin susceptibility
at 0 K is calculated. 1In §4, the calculated results are

shown and compared with experiment. In §5, discussion and

conclusion of this chapter are given,
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§2. Model for Ni-Cu Alloys
In ferromagnetic Ni-Cu alloys, magnetic moments are
carried by almost d-like electrons. However, the conduction
band cannot be ignored, because the contribution to high-
field spin susceptibility from conduction electrons is large.
The whole density of states for d- and s-bands of Ni is
treated as one band.
The one-electron Hamiltonian H with the Hartree—Foék approx-
imation for Coulomb interactions 1s given in the Wannier

representation as follows,

1 yat a. + igg tijaZUajo’ (3-1)
where all notations are the same as those in eq. (2-1).

The formulation for CPA haé been already explained in
§2, chap. II. The local and the average densities of states
for Ni-Cu allbys are calculated by egs. (2-9) and (2-10),
respectively. The number of electrons for each atom and for
“each spin is calculated from eg. (2-11). The local and the
average magnetic moments are given by egs. (2-13) and (2-14),
respectively. The low temperature specific heét coefficient
is given by eq. (2-15). In this‘chapter A and B denote Ni
and Cu atoms, respectively.

The calculated‘density of states by Wakoh and YamashitauS)
for paramagnetic Ni, which 1is shown in Fig. 25, is made use
of asvthe density of states for the host Ni metal, as our
calculation is carried out for Ni rich alloys:

The intra~atomic Coulomb integrals for Ni and Cu atoms
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are assumed to be equal to U. The value of U is determined

as 0.635 eV so that the ferromagnetic Ni has a magnetic

moment of 0.557 ug per atom. The value of U may be too large

for Cu atoms, but it makes Cu still paramagnetic because of

the small value of the density of states at the Fermi level.

The value of the Bohr magneton number of Ni is determined

from the observed magnetic moment by considering the g-factor.a6)
The position of the Fermi level of the majority spin band

for ferromagnetic Ni is determined so that it becomes higher
than the upper edge of the d-band by 0.04 eV.aT)

The € —€p is the difference between potentials at Ni and

A
Cu atoms. In order to exclude the term due to Coulomb inter-
actlon from the € and Ep for pure metals in the Hartree-Fock
approximation, we define the difference between the potentials
at the Ni and Cu atoms as eA—gB+(n%~nZ)U56, where nz and n%

are the number of electrons per atom per spin for paramagnetic
Ni and Cu, respectively. The value of § is determined as

2.353 eV so as to find the critical concentration at 53

at.% Cu. From the values of § and U determined above, the

value of e,-ep becomes 2.040 eV which is similar to the value
of 1.822 eV obtalned in the band calculation by Stocks et al.21)

and used for their calculation of the density_of states for

paramagnetic Ni-Cu alloys.

§3. High-Field Spin Susceptibility

Uniform static paramagnetic spin susceptibility for alloys

has been calculated by Hasegawa and KanamorizS)

1.27)

and Levin et

a Thelr formulation is generalized to ferromagnétic alloys.
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When an external field h is applied, the Zeeman energy 1is

added to the Hamiltonian (3-1) and the local Green's func-

tion Gio(z) given in eq. (2-6), the number of electron for each
atom and each spin Ny g given in eq. (2-11), and the Fermi

distribution function f become dependent on h. The average

spin sgsceptibility Xg is defined by

Xg = CpXp t CpXp (3-2)
with

x; = wg{dng (h)/38h - 8n, (h)/dh}, ., 1i=A or B, (3-3)

n; o (n) = [idef(E—c(h)-ouB§>piUcE,h> (3-1)

where Mg is a Bohr magneton and z(h) is a chemical potential
‘under h. The'anio(h)/ah at 0 K in the 1limit of h=0 is obtained

as follows,

an "dn
io _ 3z (h) ii i-o -
5h - Pigl(E) I+ ougl + I U
} 1j Bn._o
+ £ U=, (3-5)

where ¢ is the chemical potential without h and i or j means

A or B. The term 1im{3n.0(h)/8h} is expressed as 9n, /oh
B o L0 : ig
for abbreviation. The f;J's in eq. (3-5), which are the

27)

same expression as that given by Levin et al. for para-
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magnetic alloys, are written as

@
ij _ -1 , _ -2
£, = -7 "Im J dE f(E~C){1~(eiG ZG)GU}
3G . 9% oL
o 4] 2 g
e =—— + G°(6,, - )} (3-6)
BZG aejg ij Bejo
with
G o
§§E = J dep®(e) (E+10-12 ~e)~2 (3-7)
o . o
and

8>:U/aaig = {ci - GU(EJU—EG)}{1-—‘(6104-630—220)%

+

. . -1
(aic—xd)(ejg—xg)asg/azg} . (3-8)

The energy dependence of G, and & _ are omitted in egs. (3-6),
(3-7) and (3-8) for abbreviation. The 3z(h)/3h is given in

the 1limit of h=0 by
2(h)/h = «pgl[uB{p+(c)—p_(;)} tep(Qyy + QA_D
+ cp(Qp, + Qg )] o (3-9)
where
1

Q, = ft
g

ij
1 Udn, _,/dh + £ “Usn,  /3h : (3-10)
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P (E) = ¢,p, (E) + cpoy (E) (3-11)

pp = p,(2) + p_(2). (3-12)
From egs. (3-5), (3-9) and (3-10), four simultaneous equations

for Bn /Bh (i=A and B and o=%*1) are obtained as follows,

(P; oRi—g Utpp)on, . /3h + (p Ris prG )Jan _g/°h

ridyuan. /an

g/ * (py io JO—DF o j-o

+ pia.j—c j

= OugP, P (3-13)

with

for j=B %ben i=A and j=A when 1i=B, wheré Pig and py are

the values of the local and average densities of states with
spin o at the Fermi level, respectively. The values of
Bnia/ahﬂs are obtained numericélly from eq. (3—13) andlxS
and X; are calculated from'eqs. (3-2) and (3-3). In the
paramagnetic state éq, (3-13) coincides with the formulae

obtained by Hasegawa and Kanamor125) and Levin et at.27)
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§4. Calculated Results and Comparison with Experiment
4-1 Density of states

The electronic density of states for ferromagnetic Ni-Cu
alloys with 90, 80, 70, 65, 60, 55 and 50 at.% Ni are calcu-
lated and the results are shown in Figs. 26-32. The density
of states for paramagnetic Ni-Cu alloys with 47, 45, L0, 35,
30 and 20 at.% Ni are also calculated and these results are
shown in Figs. 33-38. In Figs. 26-38, curves 1 is the average
density of states for each spin and curves 2 and 3 are the
local densities of states of Ni and Cu atoms. The important
feature of the density of states for Ni pNiU(E) is the exist-
ence of a peak at the Fermi level. This peak remains in the
average density of states pG(E) for Ni rich alloys. However,
this peak 1s flattened at large Cu concentration and it almost
disappears at 50 at.% Cu. This result is due to a large value
of § for electrons of both spins.

The po(E) at high energy is almost completely contributed
to by Ni atoms and the one at low energy is contributed to by
Cu atoms because of the large value of §. The local density
of states of Cu atoms pCuo(E) is very different from the
density of states of the host metal at all concentrations, but
pNio(E) always shows a peak similar to that of pure Ni. The
fact that the Fermi level occurs in the neighbourhood of the
peak in pNio(E) is considered as the origin of the ferro-
magnetism in Ni-Cu alloys, even if the corresponding peak
in DG(E) is flattened. The pCuo(E) at the Fermi level is
very small and Cu atoms do not contribute to the magnetic

moment and y. As the Cu concentration increases, the density
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of states near the upper edge of the d-band is smoothened by

the conduction band.

4~2 Magnetic moment

The observed magnetic moment mg/2 of pure Ni is 0.606

4e)

Bohr magneton per atom and the g-factor is 2.18. Then

the observed value of m for pure Ni is 0.557 Hp per atom.

As the magnetic moment of Cu atom is'almost zero as shown

below, the value of the g-factor for Ni-Cu alloys is assumed

to be the same as that of pure Ni.u6)
The calculated results for mg/2 for Ni-Cu alloys are

33-36) The

shown in Fig. 39 with the experimental results.
numerical values of the calculated results for magnetic
moment are shown in Table II. The calculated value of the
average magnetic moment decreases almost linearly until 50
at.% Cu with increasing Cu concéntration as shown by curve 1
in Fig. 39. This agrees with experiment but the rate of
decrease of tﬁe calculated result i1s slightly smaller than the
observed one. Near the critical concentration, the calculated
magnetic moment decreases rapidly andAthis is different from
the observed results. This difference may be due to the
cluster effect which has not been taken into aécount suffi-
ciently in CPA. |

As shown by curves 2 and 3 in Fig. 39, the calculaﬁed
value of the local mégnetic moment of Ni atoms is large and
that of Cﬁ atoms is almost zero. This result is explained by
the calculated results of the local density of states piG(E)
as mentioned above. The experimental value of the local

magnetic moment is the sum of the magnetic moment lobalized
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at each atom and the spatially uniform negative polarization.
The calculated values of the local magnetic moment of Ni atoms
agree with the experimental values,Bq"36) The experimental
values of the local magnetic moment of Cu atom are negative

34-36) These values were

and are about -0.1 UB per atom.
determined from the assumption that Cu atoms have no localized
moment and they have only spatially uniform negative polari-

48)

zation. Mook also concluded by neutron diffraction exper-
iment that a uniform negative polarization exists in Ni. This
negative polarization could not be obtained in our calculation
because 1t 1s Impossible to distinguish the fairly localized
moment and the uniform negative polarization in a one band
model.
4-3 Low temperature specific heat coefficient

Low temperature specific heat coefficient vy can be esti-
mated from the value of the density of states at the Fermi
level by eq. (2415). The calculated result of y is shown in
Fig. 40. The numerical values of the calculated results for
Y are shown in Table II. The value of Yy obtained by Wakoh
45)

and Yamashita for ferromagnetic Ni is lﬂ.lX1O'u cal/mol

degz. For ferromagnetic alloys, the calculated value of Y‘
decreases almost linearly with increasing Cu concentration.
This is explained in the following way. First, the‘peak

of p_(E) in the neighbourhood of the Fermi level.is flattened
as the Cu concentration increases. The peak remains clearly
in the 90 at.% Ni alloy as shown in Fig. 26, but it almost |
disappears in the 50 at.% Ni alloy as shown in Fig. 32. Sec-

ondly, the Fermi level moves to the region of low density
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of states as the average number of electrons per atom in~
creases with increasing Cu concentration. The contribution
from the majority (up) spin band to Y is small, although it
increases a little with increasing Cu concentration. The
density of states at the Fermi level of minority (down) spin
band decreases rapidly and as a whole y decreases with in-
creasing Cu concentration. |

Yul,ﬂ9,50) for ferromagnetic

The observed values of
alloys are larger than the calculated ones, but they decrease
almost linearly until 35 at.% Cu and this qualitatively
coincides with the calculated results as shown in Fig. 40.
The difference between the observed and calculated values
of vy will be explained by the enhancement due to electron-
phonon interactions. The observed values of Yy show a broad
peak around the critical concenfration. This anomaly may be
explained by the cluster effect or paramagnon effect. At
present we caﬁnot assert which effect is correct. The calcu-
lated values of y for paramagnetic Ni-Cu alloys are also
“shown in Fig. 40, but they are 1arger,thén the experimental
values for concentrations lower than 40 at.% Ni.

Curve 2 in Fig. 40 shows the values of y calculated by
making use of the calculated dénsity of states of Zornbergzg)
for Ni and by neglecting the part of the density of stétes
due to the conduction band. "This result apparently shows a
concentration dependence of Y similar.to the observed one
near the critical concentration. This is explained by the

fact that Ni rich alloys are in the saturated ferromagnetic

state below 35 at.% Cu and become weakly ferromagnetic above
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35 at.% Cu and so the value of the density of states at the
Fermi level of the majority (up) spin band increases with
increasing Cu concentration until the critical concentration.
However this result is not correct because the large effect
of s-d hybridization in a real transition metal is neglected
in this case.

Curve 3 in Fig. 40 is the calculated result by Stocks

21) for paramagnetic Ni-Cu alloys and it roughly agrees

et al.
with experiment for Cu rich alloys, but their result cannot
be compared with the observed concentration dependence of Yy
for ferromagnetic Ni rich alloys.
4-4 High-field spin susceptibility

The calculated result of the high-field spin suscepti-
bility Xs at 0 K and in the limit of h=0 is shown in Fig. 41
h2,51-53)

together with the experimental results. The numer-
ical values of the calculated results for Xs are shown in Table
IT. The value bf ¢ is determined above so that Xg diverges at
53 at.% Cu. The broken curve is the result calculated in the

8)

rigid band model by Shimizu and Hirooka2 using an empirical
density of states obtained from low temperature specific heat
data for Ni alloys. Experimental values in Fig. 41 are the
sum of spin and orbital susceptibilities.

For pure Ni, Xs is estimated as 0.748%:10_u emu/mol from
the density of states calculated by Wakoh and Yamashita.u5)
The orbital susceptibility for Ni was estimated as 0.232><10_l’t
emu/mol by Hirooka and Shimizu.5a} Therefore, the total sus-
ceptibility is O.QBOXlO—u emu/mol and this agrees reasonably

with the observed values of 1.13x10"u emu/mol by Foner et at;Bl)
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and l.llxlO—L= emu/mol by Acher and Huguenin.uz) The calculated
result of Hirooka and ShimizuSh) was 1.014><10_J4 emu/mol. The
experimental values are smaller than the calculated values

near the critical concentration as shown in Fig. 41, because

of the high magnetic field applied in the experiments. There-
fore, the agreement between the calculated and observed results

is not so unsatisfactory.

§5., Discussion and Conclusion

The value of the difference between potentiéls at Ni and
Cu atoms 6 used in this chapter is large and consequently Ni
atoms contribute to the density of states in the high energy
region and Cu atoms contribute to it in the low energy region.
The peak in pNiG(E) remains even when the corresponding peak
in pO(E) disappears in concentréted alloys. Then the ferro;
magnetism in concentrated alloys is maintained by the peak
in pNio(E) and the magnetic moment is carried almost completely
by the Ni atoms. It is seen that the local eleétronic struc-
‘ture is important in determining the magﬁetic properties of
Ni-Cu alloys. The calculated values of Yy decrease linearly
with increasing Cu concentration because of the smoothing of
the peak in pG(E). |

In the calculated results by Ghosh and Bhattachary&au3)
for the density of siates fér ferromagnetic Ni-Cu alloy with
50 at.% Cu, the Fermi level is located at the position where
thé dehgity of states is very low. On the contrary, in our
- calculation, as shown in §4, the Fermi level is located in the

d-band. Their calculated result for the concentration vari-
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ation of the average number of d-electrons per atom in the
majority spin band shows a minimum, while in our calculation
it changes monotonically with Cu concentration. Their calcu-
lated results for the magnetic moments did not agree with
experiment.

For paramagnetic Ni-Cu alloys the calculated values of
Y are larger than the experimental ones as shown in Fig. 40.
This is because the mixing between d- and s-bands is over-
estimated in our one band model, so that the value of the
density of states at the Fermi level is large. In real
transition metals, the d-electrons tfansfer to the s-band
through the s-d hybridization and vice versa, but in the one
band model, s~ and d-electrons similarly transfer to the same
band. It wlll be necessary to treat the s-d hybridization
correctly in the calculation of the density of states for
paramagnetic Ni-Cu alloys.

55) proposed the minimum polarity

Lang and Eﬁrenreich
model and Kirkpatrick et al.56) applied it to ferromagnetic
Ni-Cu alloys. They assumed that each local density of states
for an alloy is the same as the density of states of pure
metal and postulated charge neutrality. For Ni-Cu alloys
they assumed that the density of states at the Fermi level
1s contributed to only by Ni atoms and that the states due to
Cu occur far below the Fermi level. Their model .is gualita-
tively consistent with the calculated results by CPA. How-
ever, it may be a shortcoming that their model does not

include the energy and concentration dependences of the local

density of states which are important in calculating the
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magnetic moment and Xg of alloys. In the present results,
the numbers of electrons per atom at each atomic site of Ni
and Cu are about 9.95 and 11.47 at 10 at.% Cu and 9.61 and
11.39 at 50 at.% Cu, respectively. Then the charge neutrality
at each site is not satisfied in the present calculations.
This result may be due to neglecting the screening of the
impurity potential in these alloys. |

The disagreement between the calculated and experimental
results for m, Yy and X near the critical concentration will
be due to the clustering of atoms and spin fluctuations. It
may be considered that the Hartreé—Fock approximation is not
appropriate to take ihto account spin fluctuations near
the critical concentration. The spatially uniform negative
polarization, which are found in neutron diffraction experi-
ments for ferromagnetic Ni-Cu alloys, could not be explained
by the simple model in this chapter. It will require a more
precise model énd complicated calculations.

Finally, it is concluded that the magnetic properties
of ferromagnetic Ni-Cu alloys are qualitafiVely explained by
the density of states obtained by CPA with a large value of

6 except in the critical region.
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Chapter IV. Magnetic Properties of Ni-Pd, Ni-Pt and Pd-Pt

Alloys

§1. Introduction

The electronic structure of random systems has been
extensively studied by the coherent potential approximation
(CPA)g"lk) which has also been applied to study the magnetic

25-27)

properties of alloys of transition metals. The gener-

alization of CPA has been carried out in two directions. One
is to take account of clusters, and the other is to include the
of f-diagonal randomness. As for the former many studies were

carried out.15’16)

17)

- The latter was developed by Blackman

et al. 18)

and Shiba within the single site approximation.

In usual calculations in CPA only diagonal randomness
is taken into account and the band structures of the componenﬁ
metals in an alloy are assumed to be the same. However,
actually the baﬁd structures of pure metals are different from
each other and this difference is important for alloys of
elements which are in the same column in the periodic table.
For example, according to the band calculation, the band-width
of Pt is about 1.8 times as large as that of Ni.. This accounts
for the difference_between the values of the density of states
at the Fermi level, although these metals have neafly the same
number of d-electrons.

Calculations of the magnetic properties of binary alloys

among Ni, Pd and Pt were carried out by Levin et 31.27),

57) 58)

Harris and Zuckermann , Kato and Shimizu and Alben and

thlfaPth.Sg) Levin et a1.27) calculated the paramagnetic
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spin susceptibility for Ni-Pd and Pd-Pt alloys using the
Hartree-Fock approximation and CPA and assuming the same band
structure for pure Ni, Pd and Pt. The values of the intra-
atomic Coulomb interaction was determined for pure metals and
the concentration variation of the susceptibility was accounted
for the change in the density of states and the local density
of states at the Fermi level. On the‘other hand, Harrisvand
Zuckefmann57) and Kato and ShimizuSS) applied CPA to the cal-
culation of x(g, w) obtained in the random phase approximation
and calculated the concentration variation of the suscepti-
bility which is produced by the change of the effective value
of the intra-atomic Coulomb integral in alloys. In their
calculations the variation of the density of states of the

i
alloys was neglected. Alben and Wohlfarth’>)

calculated the
magnetic moment and the low tempegature specific heat coeffi;
cient y for Ni-Pt alloys in CPA, but they did not take account
of the differehce between the band-widths of pure Ni and Pt.
In this chapter, by taking account of the difference
between the band-widths of component metais which was neg-
lected in the previous works, the density of states, the para-
magnetic spin susceptibility X, magnetic moments and y are
calculated for Ni-Pd, Ni-Pt and Pd-Pt alloys. The method
proposed by Shibala) is made‘use of to include the off-diagonal
randomness. The effeét of clustering which may cause the spa-
tial fluctﬁation of the magnetic moment. near the critical con-
centratién where the ferromagnetism disappears is neglected.

This spatial fluctuation may give tailing of the magnetic moment

into the paramagnetic region. This tailing of the magnetic moment
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is large in Ni-Cu alloys, for example, but very small in Ni-
Pd or Ni-Pt alloys.

In 82, the model and the formulation of Shiba's method
are explained briefly and the formulations of x generalized
for the alloys with off-diagonal randomness are presented.
'The parameters used in this calculation are explained in §3.
In 84, the calculated results are shown and compared with the
experimental results. Discussion and conclusion are given

in §5.

§2. Density of States in CPA with Off-Diagonal Randomness
In one band Hubbard model with the Hartree-Fock approx-

imation, the Hamiltonian is given by

n + (M—lj

4
"= § (eg + Uyny 50254240

HeJ

4+
) t..a, a. ,
1 b 13%10%0

where all notaﬁions are the same as those in eq. (2-1). The

values of €,, U, and n are assumed to take one of only two

i io
values, €p OT Eg> UA or UB and Ny, or Npy? respectively,
according as the i site is occupied by A or B atoms.
18) '

The method developed by Shiba is briefly explained

as follows. By assuming a relation among transfer integrals,
2 . ' .

ABstAAtBB’ the Green's function for an alloy is

expanded by locators

i.e., ¢t

Lit(z) = W, (z - eio.)‘l, (4-2)

where z=E+i0, eig=€i+Ui 1-g and Wi represents the ratio of
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the band-width of A or B metal to that of the host metal.

The effective Green's function FO(Z) of the alloy is given by
Fo(2) = [ame®(®) (4 () - B17F, (4-3)

where pO(E) is the density of states of the host metal and
i;l(z) is a coherent locator determined by the following

equation
(J%o B l;)(léc - “%)Fo - J% * CAJ%G * CBIEU =0, (4-4)

where the argument z is neglected for abbreviation and Ca

or ¢, is the concentration of A or B atoms. The local

B
density of states with spin o for A or B atom pAo(E) or pBU(E)
and the average density of states pU(E) with spin o are givén

as,
o, (E) = 1 m {w;l(J;O - 1; + Fgl)‘l}, i=A or B (4-5)

The FO(Z) and l%(z) must be solved self-consistently by egs.
(4-3) and (4-4). Egs. (U4-3)-(4-6) are the results obtained
by Shiba.18) |

The average number of d-electrons N _o appeared in the

expression of ¢ is obtained from

io

n,_ . = f_def(E*g)pi_g(E), =T

i

- 39 -



where f(E-Z) is the Fermi distribution function and ¢ is a

chemical potential. This value of ng_ should be calculated

self-consistently from eqs. (4-5) and (4-7). The local and

i = - nd m=c m
average magnetic moments are given by mi ni+ ni_ a A™a

i

' %= % %* 3
igi/2 and m CAmA+CBmB are used to compare with the

experimental values, where 8 is the g-factor of 1 (A or B)

+cBmB, respectively. Instead of m, and m, the values given

by m¥=m
y my

metal. The paramagnetic spin susceptibility x is given as

X= CAXA + CBXBJ (L‘"8)
2 -

= ZFB{pA(Q)(1+fBBUB) - pp(T)f pUg} (4-9)

AT TTHE, U (IFE L 0,) = T, o7 a0, 0p

where pio(g)ﬁoina(g)ﬁpi(z) with i=A or B and xj is obtained

by exchanging the suffixes A and B in eq. (4-9). Above
expressions are_the same as those obtained by Levin et

al.27>, but the equations for the fij's, where 1 or j is A or B
are different from theirs because the off-diagonal randomness

is included in the present case and are given as follows,

| -1 e BFi
fij = -1 ~Im J-def(E - c)gg; » (4-10)
-1 -1.-1 |
Fyo= WL - L+ F 7T, (4-11)
| “1.-2, -1 23F 5./
553" Wi (Z& - 1:+ F ) {Wi Gij + (F Ez + 1)553}:
(4-12)
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oL _ -1 _ g1
= = (W, sAj{(,LB LIF + ¢, )+ Wy 55

Jd€E .
J
x 1L, =L)F + cpl] x 1L, - L)Ly ,L)%F:
-1
+ (ZZ_LA - ‘[B)F - l} s (4—13)
oF _ 0 -2 ' i

where the spin suffix o is dropped because the alloy is in
the paramagnetic state and the argument z of F, Fi, /[ and [&
are also dropped for abbreviation. By replacing [,by z-%L and
wi by 1, these equations are reduced to the equations ob-

tained by the original CPA.

§3. Simple Models for Ni, Pd and Pt
The values of several parameters, such as the number of

d-holes of each metal, Ui’ W. and € where 1 is Ni, Pd or Pt,

i
are determined for each pure metal except the value of GO=

€p~Eg- In this chapter, A means Ni in Ni-Pd and Ni-Pt alloys

or Pd in Pd-Pt ailoys. The number of d-holes in Ni is deter-

mined as 0.56 per atom by considering that the value of g-

46)

factor is 2.18 and those of Pd and Pt are determined as

0.36 and 0.3 per atom, respectively, from the de Haas-van

60) 1) estimated the

Alphen experiments. Knapp and Jones6
electron phonon enhancement factor of Pd and Pt metal as 1.7
0.1 and 1.6i0.1,krespective1y. For simplicity the electron

phonon enhancement factors of Ni, Pd and Pt ére assumed to be
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the same and equal to 1.6, The values of the density of
states at the Fermi level for each metal are determined from
the electron phonon enhancement factor and the experimental

2 . 4
values of y which are 7.1, 9.53 and 6.57 mJ/mol-K~ for Ni, 9)

62) respectively.

Pd and Pt,
The intra-atomic Coulomb integrals Upy and UPt are
determined as 0.704 and 0.849 eV from the values of the
density of states at the Fermi level and the observed value563)
of x, 7.36 and 2..16><J.O"Ll emu/mol for Pd and Pt, respectively.
The observed values of x for Pd and Pt are assumed to be only
due to spin, because the contributions from orbital and
diamagnetic susceptibilities are almost cancelled out. The
g-factors for Pd and Pt are assumed to be 2.0. The value of

U is determined as 0.745 eV from the fact that the Fermi

Ni
level of the ferromagnetic Ni metal locates at the position}
higher than the upper edge of the majority spin band by

0.04 eV.uT)
The heights of the density of states at the peak near

64) are 5.0 and 2.67 evt

the Fermi level for NiuS) and Pt
per atom, respectively, and the ratio between these values
1.873 is assumed to be equal to the ratio th between the
band-width of Pt and Ni, whose band-width is 4.45 ev. )

A simple shape of pO(E) as shown in Fig. 42 is uéed for d-
electrons in paramagnetic Ni and the shape of the density of
states for d-electrons in pure Pd and Pt is similar to that
of Ni. The band-width for Pd is determined uniquely from-the
simplified density of states, the number of d-holes and the

fixed value of the density of states at the Fermi level.
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Thus the value of Wog is fixed as 1.414.

The values of 60 which is the only adjustable parameter
for the alloys are determined as 0.849, 1.977 and 0.890 eV for
Ni-Pd, Ni-Pt and Pd-Pt alloys, respectively, so that the
eritical concentrations occur at 2.3 at.% Ni for Ni-Pd alloys
and at 42 at.% Ni for Ni-Pt alloys and the calculated values

of y for Pd-Pt alloys agree well with experiment.

g4, Calculated Results and Comparison with Experiment

The average and local densities of states, average and
local magnetic moments, susceptibility and low temperature
specific heat coefficient are numerically calculated by the
formulae given in 82 and the numerical values of thé para-
meters given in §83. At first, to demonstrate the concentration
variation of the density of staﬁes for alloys with off-
diagonal randomness, the calculated results of the average
and local denéities of states p(E) and pi(E) for paramagnetic
Ni-Pt alloys are shown in Figs. 43-51. 1In these figures
curves 1, 2 and 3 are the average and.loﬁal‘densities of
states of Ni and Pt atoms, respectively. Here and hereafter
in this chapter the band—ﬁidth of pure Ni is normalized as
2 and the density of states is‘scaled'so as to normalize the
total number of states as 1. The higher band edge shifts
to 1ower.energy with increasing Pt concentration. As the
band—width increases, the height of p(E) decreases. The
peak in p(E) is not smeared out at any concentration, and
this result differs from the results obtained for Ni-Fe

25)

alleS and Ni-Cu alloys as shown in chapters II and III.
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The peak in pNi(E) or th(E) is similar to that of each pure
metal and th(E) is high at lower energy region in alloys of
low Pt concentration.

The reason why the peak near the Fermi level remains as
sharp even in concentrated alloys is explained by the fact
that the scattering potential for electrons is effectively
small in this energy region. This may be due to the model
made use of in taking account of the off-diagonal randomness.

17) have discussed that their approximation is

Blackman et al.
exact for the first four moments of the density of states
whereas CPA theory with only diagonal randomness is correct
up to the elghth moments.

The variation of p(E) and pi(E) for A6O_BMO alloy with

the change of W, 1ls demonstrated in Fig. 52. The value of 50

B
is 0.3 times the band-width of A metal and the values of U

A
and UB are 0. Note that the peak in p(E) is smoothened when
W.=1.0 but remains clearly with increasing value of W, up to

B
=2.2 The Ni-Pt alloys

B

1.8 and it is smoothened again when Wy

correspond to the case W_=1.8.

B
4-1 Ni-Pd alloys

The calculated results of po(E) and piO(E) for ferro-
magnetic Ni-Pd alloys are shown in Figs. 53-61. Curves 1, 2
‘and 3 in these figures are the average density of states and
local densities of states of Ni and Pd atoms, respectively.
The pU(E) and pig(E) for each spin shows a concentration vari-
ation similar to that of Ni-Pt alloys. The Ni rich Ni-Pd
alloys are saturated ferromagnets up to 60 at.% Ni. It should

be noted that the value of pNi_(E) at the peak increases with

T



increasing Pd concentration. Therefore the number of d-holes
with minority spin at the Ni atoms increases with increasing

Pd concentration. The p(E), pNi(E) and de(E) for paramagnetic
1 at.% Ni-Pd alloy are shown in Fig. 62. The de(E) almost

overlaps with the p(E). In this alloy, the peak of pNi(E) is

also high.
The concentration variation of the calculated'and
observed65_69) values of m¥, mﬁi and m%d for Ni-Pd alloys

are shown by curves 1, 2 and 3, respectively, in Fig. 63.
The calculated values of m¥ agree qualitatively with experi-
ment and they decrease rapidly with increasing Pd concen-
tration near the critical concentration, which is similar to
the result obtained by classical Landau theory.70) The cal-
culated values of m¥ decrease linearly with increasing Pd
concentration from pure Ni to GO at.% Ni as these alloys aré
saturated ferromagnets. The experimental decrement 1s a
little smaller‘than that of the calculated result. This
difference between the experimental and calculated results
may be explained by the transferrof d-eleétfons to the s-
band rather than by a value‘of the number of d-holes in pure
Pd larger than 0.36 per atom. By taking account of the trans-
fer of d-electrons to the s-band, a residual resistivity of

71)

Ni-Pd alloys was calculated by Kimura et al. and a good

agreement with experiment was obtained.
The calculated values of m§i
Pd concentration up to about 80 at.% Pd and decrease rapidly

increase with increasing

near the critical concentration. As for the fact that they

increase with,increasing Pd concentration, the calculated
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results agree qualitatively with the results of neutron
diffraction experiments69) but there is a large quantitative
discrepancy between them. In the Ni rich alloys, this dis-
crepancy is due to a spatially uniform negative polarization
about -0.1 Mg per atomu8), but the reason for the difference
in the Pd rich alloys 1s not clear at present. Even if the
off-diagonal randomness does not exist, the increase of

m¥, with increasing Pd concentration also occurs as long

Ni
as the critical concentration is at 2.3 at.% Ni. However,
if the critical concentration is moved to the region of
higher N1 concentration by changing the value of 60, the

value of m¥. turns out to decrease with increasing Pd concen-

Ni
tration. The reason why the value of m%i increases with
increasing Pd concentration is that the pNi(E) near the Fermi
level increases with increasing Pd concentration as shown in
Figs. 53-61. The large value of the pNi(E) at the Fermi level

as shown in Fig. 62 is also related to the occurrence of

ferromagnetism at low Ni concentration. The calculated value

of m%d agrees well with the experimental_valuéng) except for
Ni rich alloys.
63,65,72,73)

The calculated and experimental values of the
paramagnetic susceptibility are shown in Fig. 64. The calcu-
lated values agree well with experiment except in‘the critical
region where the observed values do not tend to zero at the
critical concentration because of high applied magnetic field.
The calculated values for y and the experimental |

49,62,65,72-74)

ones are shown in Fig. 65. The calculated

values are multiplied by the electron phonon enhancement
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factor 1.6. Near the critical concentration the calculated
values considerably differ from the experimental values and
this difference may be due to the effect of spin fluctuations.
The calculated values of y decrease slighly from the value
for Ni with increasing Pd concentration because Ni rich alloys
are saturated ferromagnets and the p_(E) at the Fermi level
decreases with the increasing band-width of the allbys. The
agreement between the calculated and experimental values»is
not so unsatisfactory except in the case of Pd rich alloys.

The numerical values of the calculated results for the
average and local magnetic moments, Y and paramaghetic spin
susceptibility for Ni-Pd alloys are shown in Table III.
4-2 Ni-Pt alloys |

The calculated results of p(E) and pi(E) for paramag-
netic Ni-Pt alloys are shown in Figs. 43-51. pU(E) and
pig(E) for the ferromagnetic state are shown in Figs. 66-70.
The curves 1, 2 and 3 in these figures are average density of
states and local densities of states of Ni and Pt atoms,
‘respectively. The pio(E) for majority.aﬁd minority spins are
similar to those obtained by splitting the pi(E) in the para-
magnetic state at the same concentration. This is due the
fact that the magnetic moments in‘these alloys are so small
that the difference between potentials in the majority and
minority spin states is not.so different from that in the
paramagnetic staté at the same concentration.

75-80)

The calculated and experimental values for the

concentration variation of m#, mﬁi, mgt'and xwl are shown
as curves 1, 2, 3 and 4, respectively, in Fig. T71. The
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alloys whose Ni concentration is larger than about 90 at.%
are saturated ferromagnets. The values of m*¥ decrease mono-
tonically with increasing Pt concentration and agree gqualita-
tively with the experiments. The concentration dependence

near the critical conéentration is the same as that of Ni-Pd

alloys. The values of m§ are fairly large in Ni rich region

t
and this is due to a large value of UPt' For a smaller value

of U than that adopted in this calculatibn for Ni-Pt alloys

Pt

F *
the values of mPt

concentration variation of the calculated values of )(-1 agree

become smaller than those in Fig. 71. The

qualitatively with the experimental results. However, the
calculated values of x“l are somewhat larger than the exper-
imental values near 20 at.% Ni and the origin of this differ-
ence between the calculated and experimental values is not
clear at present.

l149,62,79,81,82) values

The calculated and experimenta
of vy are shown in Fig. 72. The calculated values are multi-
plied by the electron phonon enhancement factor 1.6. The
value of y increases almost linearly with increasing Ni con-
centration as does the experimental value in the»paramag—

netic state, but the rate of increase of the experimental

value 1s much larger than that of the calculated value.

¥

)

Our calculated results are similar to those obtained by Alben

and Wohlfarth,Sg) but in their results the values calculated
in the ordinary CPA were modified by taking into account the
difference between the densities of states of pure Ni and Pt.

The difference between the calculated and experimental value

Y may be due to the effects of spin fluctuations or clusters.
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The numerical values of the calculated results for m¥,
mﬁi’ mgt’ v and x for Ni-Pt alloys are shown in Table 1IV.
4-3 Pd-Pt alloys

The calculated results for p(E) and pi(E) are shown
in Figs. 73-81. Iﬁ these figures curves 1, 2 and 3 are the
average density of states and local densities of states of
Pd and Pt atoms, respectively. The whole feature is similar
to that of the paramagnetic Ni-Pt alloys except that the
differeﬁce between band-widths of pure Pd and Pt is not so
large and that the peak in the density of states is roundedV '
a little as compared with that of Ni-Pt alloys. The calcu—
lated results for y multiplied by the phonon enhancement factor

2)

1.6 and the experimental values6 are shown in Fig. 82 and
good agreement between them is obtained. The difference
between the values of y of puré Pd and Pt is mainly due to
the difference between their band-widths because the differ-
ence between.the numbers of d-holes in Pd and Pt is small.

62,63) values of x are

The calculated and experimental
shown in Fig. 83. The calculated valués with UPt=O.849 eV
shown by the solid curve in Fig. 83 do not agree well with
the experimental values and this may be due to a relatively

large value of U If we take a smaller value UPt=O.774 eV

Pt”
and the value of 60 as 0.534 eV, better agreement betﬁeen the
calculated and expérimental results is obtained as shown by

broken éurve in Fig. 83. However, the calculated result with
UPt=df774 eV differs a little in Pt rich alloys and this dis-

agreement may be attributed to the concentration variation

of U corresponding to the concentration variation of the
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band-width. The calculated values of y for UPt=O.77& eV also
agree well with the experimental results. The numerical values

of the calculated results for y and y are shown in Table V.

§5. Discuséion and Conclusion

The values defined as 6=60+nZUA-ngUB, where nz and ng
are the numbers of d-electrons in the pure paramagnetic metals
and A means Ni in Ni-Pd and Ni-Pt alloys or Pd in Pd-Pt alloys,
are 1.02, 1.38 and 0.17 eV for Ni-Pd, Ni-Pt and Pd-Pt alloys,
respectively. These values are reasonable, as the atomic
potentials of N1, Pd and Pt atoms become deeper in this order.

The concentration variation obtained in the present éalcu—
lations for the number of d-holes per atom for Ni-Pd, Ni-Pt and
Pd-Pt alloys are shown in Fig. 8U. The condition of charge
neutrality 1s not satisfied 1n ail these alloys. This is dué
to neglecting the screening of the potential by electrons.
However, the number of d-holes at the Pt site in Pd rich Pd-Pt
alloys 1s rather large because the value of § in Pd-Pt alloys
is small. The value of § for UPt=O.774 eV is almost the same
as that for Upt=0.849 eV. The fact that one cannot obtain a
value of 6 which explains the experimental values of y and y
and at the same time satisfies charge neutrality may be due
to the following two reasons. One is that the values of Ui
and P (E) obtained for pure Pd and Pt may be inappropriate
because of the uncertainty in the value of the electron mass
enhancement factor. The other is that the p (E) and pi(E) for.

alloys near the peak may not be obtained correctly because

CPA with off-diagonal randomness is not so good as mentioned
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in the beginning of §4. Thus the results obtained in g4 may
not be quantitatively correct, but the qualitative feature may
be correct.

It should be noted that the concentration variation of the
number of d-holes of Ni atom in Ni-Pd alloys differs from that
in Ni-Pt alloys. This difference will be related to the difference
between the critical concentration of Ni-Pd and Ni-Pt alloys.

We now discuss the dependence of the numher of d—électrons
on the strength of the diagonal and off-diagonal randomnesses.
If we consider the alloy with only diagonal randomness, the
electrons are piled up at the atomic site, the potential of
which is deeper than the other atomic site because the transfer
of electrons does not depend on the atomic species. As the
numbers of d-electrons in pure Ni, Pd and Pt are similar to
each another, the charge neutrality in Ni-Pd, Ni-Pt and Pd—?t
alloys is approximately satisfied when the potential difference
is very small; Then the shape of the local densities of states
of A and B atoms are similar to each other and the charge
density may be considered to be uniform. This case corresponds
to the rigid band approximation.

If the off-diagonal randomness is included and if B metal
has a deeper potential and a Wider band-width than A metal,
the electrons are not so much piled up at the B site because
the probability of'transféring from the B site to another site
is largér than.that from the A site. Therefore, the numbers of
électrons at the A site and the B site can be nearly equal when
there are both the diagonal and off-diagonal randomnesses. Even

1f these numbers of electrons are equal, the shape of pp(E)



and pB(E) are in general different from each other.

The situation described above is shown in Fig. 85
where the relation between the potential difference 60=5A—€B
and the band-width WB for A6O'BMO alloys is indicated. The
value of WA is taken as 1.0. The numbers of d-electrons of the
A and B metals are taken as those of Ni and Pt, respectively.
As this calculation has been carried out for UA=UB=d, the
value of & equals to that of §. 1In Fig. 85(a) the depen-
of the numbers of electrons per atom at

B
A and B sites 1s shown. For each value of 60, the value of

dence on 60 and W

np
decreases. This is because the top of the band of the B metal

increases with increasing value of WB whereas that. of ng

becomes higher than that of the A metal with increasing values

of Wy. The change in the densities of states for 60=D.6 with

respect to the change of WB is shown in Fig. 52. The value

of n, becomes equal to that of ng at the value of WB where

A

the curve of nA‘crosses that of n_, for each value 60 in Fig.

B

85(a). It is found that with increasing value of W,, the

B.’

relation that n, is equal to n, can be satisfied at a larger

A B
value of 60. This fact is clearly shown in Fig. 85(b) where
the solid line is the case where n,=ng and the broken line is
the case where nA=nz and nB=ng. As the value of WB approaches
1, the value of 6@ approaches 0. |

In the calculations of this thesis, it is assumed that
the values of Ui do not change in alloys. However, these
values must change by alloying because of the change of the
band-width and the electron correlation,57f58’83) If the

change of the value of U on alloying is included, better
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agreement will be obtained. As mentioned already, the approxi-
mation used to take account of the off-diagonal randomness 1is
not so satisfactory and this is a possible reason for the fact
that the peak in the density of states remains very sharp even
in concentrated alloys. So it may be necessary tovstudy the
concentration variation of the density of states by a better
approximation such as the cluster approkimation for the off-
diagonal randomness.

Next, we discuss the differences between the calculated

27) and those in this chapter.

results obtained by Levin et al.
Almost the same results for X as those in this chapter were
obtained by them for Ni-Pd alloys. They also found that the

Ni atoms are responsible for the occurrence of the ferromagnetic
states in Ni-Pd alloys. However, there is a difference between
the values of § used by Levin et al. and in this chapter.

Their value of § was 0.38 eV but ours is 1.02 eV which may be
more reasonable than the former as the corresponding value

was obtained as 1.86 eV by Hodges et al.BM)

For P4d-Pt alloys,
Levin et al. obtained good agreement betweén the calculated
results and experiment for ¥X. As they assumed that Pd and Pt
have the same numbers of d-electrons and the same band-width,
the values of the density of states at the Fermi level for Pd
and Pt are the same. Therefore, their calculated results'of

Y for Pd and Pt were the same and the concentration variation
of Y_showed a shallow minimum which does. not agree with experi-
ment because the contribution from spin fluctuations may be

Small in these alloys.

The calculated results for y for Ni-Pd and Ni-Pt alloys
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in this chapter could not explain the experimental values
satisfactorily. Recently, Jacobs and Zamanas} calculated

the concentration variation of y for Ni-Pt alloys by including
the effect of clusters and obtained good agreement with
experiment in the paramagnetic state. It may be necessary

to include the effect of clusters for Ni-Pt alloys. The
gquantitative disagreement between the calculated values in
this chapter and experimental ones for m¥ and x"l may also

be explained by the effect of clusters.

The merits of the calculations including the off-diagonal
randomness are as follows. First, it can consistently treat
the alloys with any concentration of atoms with different
band-width. Therefore, for example, the magnetic properties
of N1-Pt alloys in the ferromagnetic and paramagnetic states
can be calculated consistently. Secondly, as mentioned at the
beginning of this section, this calculation including the
off-diagonal randomness is better than the corresponding
calculation in the ordinary CPA when the numbers of electrons
of the constituent atoms are the same. Finally, the con-
centration variation of y can be well explained in Pd-Pt alloys.

It 1s concluded that by taking account of the off-diagonal
randomness, the concentration variation of m¥, mﬁ, mg, vy and
X can be explained satisfactorily, at least qualitatively,
for Ni-Pd, Ni-Pt and Pd-Pt alloys except for the value of vy in
Pd rich Ni-Pd alloys and Ni-Pt alloys, where the effect of

spin fluctuations or clusters may be important.
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Chapter V. . Temperature Dependences of Electrical Resistivity
and Magnetic Susceptibility for V-Cr, Nb-Mo and

Ta-W Alloys at High Temperature

§1. Introduction

It is well-known that in certain transition metals the
paramagnetic susceptibility x increaseé with increésing temper-
atures, whereas in others it decreases with increasing temper-
atufes. In the former metals the electrical resistivity R at
high temperature increases more rapidly than the linear depen—.
dence on T with increasing temperature and in the latter cones
less rapidly than T. The former and the latter metals were *
defined as "plus group" and "minus group", respectively, by

8)

Shimizu. Temperature dependences of R and yx at high tem-

perature for many transition metals were theoretically studied

8,86,87) It was shown that

in detail by the band picture.
these temperature dependences were strongly dependent on the
shape of the density of states p(E) for d-electrons and on the
pbsition of the Fermi level EF‘v |
The relation between the temperature variation of R or
the unenhanced paramagnetic spin susceptibility X and the

shape of p(E) and the position of E was explained in the

F
following way. At low temperature as compared with the degen-
eracy temperature of d-electrons, R/T and X, can be expanded

8)

as power series of T up to T2 term as

(R/T)/(R/T), = 1 = (nkgT)(3v5-v,)/6 , (5-1)
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= 2u2p(Bp) L - (mkgD)Z(vi-v,)/6) (5-2)

=
|

where

(a"p(ER)/GER)/p(Ep) (5-3)

<
I

(R/T)O is the value of R/T at a reference temperature and g

is the Bohr magneton. In the plus group metals, as EF occurs
in the neighbourhood of a minimum of p(E), v2>v§z0 and A=3u§—v2
and B=v§—v2 are negative, R/T and Xo increase with increasing
temperature. On the other hand, in the minus group metals,

as EF occurs in the neighbourhood of a maximum of p(E), v2<0
and A and B are positive, R/T and X, decrease with increasing
temperature. From the measured temperature variations of ¥

88,89) it is seen that these

for V-Cr, Nb-Mo and Ta-W alloys,
alloys are in the minus or plus group with large or small

concentration of V, Nb and Ta. The theoretical study of the
temperature dependence of x for these alloys was carried out

8)

by Shimizu et al. using the rigid band approximation and

qualitative agreement between the calculated and observed
results was obtained. Recently, the R for V—Crgo) and Ta—wgl)
alloys was measured at high temperature and it was shown that
the values of A for these alloys change from positi#e values
to negative values with increasing Cr or W concentration.

The purpose of this chapter is to calculate the temper-

ature dependences of X, and R/T for V-Cr, Nb-Mo and Ta-W

alloys by using egs. (5-1)-(5-3) and to investigate their

- 56 -



dependenée on the shape of p(E). As these alloys become the
minus or plus group according to the concentration of alloys
the relation between the temperature dependences of Xo and
R/T and the shape of p(E) can be more clearly understood than
for pure metals.

By making use of the calculated p(E) for pure metals the
p(E) for alloys can be calculated in the coherent potential
approximation (CPA). %) 1In §2, p(E)'s for V-Cr, Nb-Mo and
Ta-W alloys are calculated in CPA. 1In §3, the calculated
values of A and B are shown and compared with experiment.
In §4, the molecular field is taken into account to compare

the calculated value of ¥ with experiment for Cr and Cr rich~

V-Cr alloys. Discussion and conclusion are given in §5.

§2. Density of States for Alloys

The densities of states p(E) for paramagnetic V-Cr, Nb-Mo
and Ta-W alloys are calculated in CPA using the formulation
explained in §2, chap. II. The degeneracy of the d-bands is
neglected and the whble density of states is treated as one

band. The calculated p(E) by Connollygz)
l)

for Cr, by MattheissgB)

for Nb and by Petroff and Viswanathan for W are used to
calculate p(E) for V-Cr, Nb-Mo ahd.Ta—W'alloys, respectively.
In numerical calculations, the fictitious bumps in the histo—
gram of the calculated p(E) fér Nb and W are smoothened.

The molecular field coefficients for V, Cr, Nb, Mo, Ta
and W aré estimated previously and they were found to be zero

8)

or small except for W. Therefore, the molecular field co-

efficients in V-Cr, Nb-Mo and Ta-W alloys are neglected in
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this section, i.e., the Coulomb interaction terms in egs.

(2-3) and (2-16) are neglected. The potential difference
between the constituent atoms of the alloys is determined so
that charge neutrality is nearly satisfied, i.e., the number

of d-electrons on V, Nb and Ta atoms is about 5 per atom and
that on Cr, Mo and W atoms is about 6 per atom. The values

of the potential difference for the V-Cr, Nb-Mo and Ta-W alloys
determined as above are 0.05, 0.052 and 0.06 Ryd, respectively.
The calculated results of p(E) for these allcys are shown in
Figs. 86-88.

The whole shape of the calculated p(E) for an alloy is
similar to that of the pure metal, but the height of the peaks~
in the alloys 1s lower than that of the pure metals, as shown
in Figs. 86-88. The minimum in p(E) of the pure metals does
not disappear by alloying, because the potential difference
between constituent atoms is small compared with the band-width
for alloys. Frém this fact it may be said that the rigid band

approximation is not so bad for these alloys.

§3. Temperature Dependence of R énd X

The coefficients A and B of T2 terms in the series expansion
of R/T and Xo with respect to 'I‘2 in eqgs. (5-1) and (5-2) afe
numerically calculated. The p(E) calculated for allo‘y‘s in §2

are made use of and the energy derivatives of p(E) at E. are

F
calculated numerically. The calculated results of A for R/T

and B for x  are shown in Figs. 89 and 90. The experimental
90)

values of A for V-Cr and Ta-wgl) and those of B for V-Cr,

Nb)—Mo and Ta-W alloys are also shown in the same figures.
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These values change their sign from positive to negative with
increasing values of the electron per atom ratio e/a. The
experimental values of B are estimated from the observed

88,89)

results of ¥ at T>1000 K by the formula X=a-u§p(EF)

x(nkBT)ZB/S where a is a constant. The values of B for Cr and

2

—Cr.,. alloy were found to be so large (-67.7 and -57.4 eV %,

Vo575 4
respectively) that these values are not plotted in Fig. 90.

The calculated values of A and B for V-Cr and Ta-W alloys
are positive for the V or Ta rich region and negative for the
Cr or W rich region. Although the dependences on the concen-
tration of the calculated values are not very smooth, they agree
gualitatively with the experimental results. These results are
explained from the shape of p(E) and the position of Ep in the
following way. For V or Ta alloys, as EF occurs hear the
maximum of p(E), Vs, is negative and A or B is positive. Wifh
increasing value of e/a, Vs becomes negative and |u1| becomes
small, so that A or B of these alloys becomes negative.

The reason why the calculated values of A and B for V
or Ta rich alloys are larger than the experimental ones 1is
that the peak in p(E) near EF is very sharp and the value of
|[vo| 1is very large in these alloys. Other calculated values
of A and B for V-Cr and Ta-W alloys, where the calculated p(E)

v 2na 1a9%)

for pure instead of Cr and W are made use of,
are also shown in Figs. 89 and 90. These values at the V and

Ta rich regions are small because the values of |v,|.are

5|
small. These calculated values of A and B may be more adequate
than those shown by the thick curves in Figs. ‘89 and 90 in

comparing with experiment, because the calculated deﬁsity

- 59 -~



of states for pure metals of high concentration is used.
To explain a large difference between the calculated and
experimental values of B for Cr and Cr rich V-Cr alloys,
it is necessary to take into account the enhancement of
B by the molecular field, as discussed in the next section.

For Mo rich Nb-Mo alloys the calculated values ’of A
and B are negative and those of B agree qualitatively with
experiment as shown in Figs. 89 and 90. However, for Nb
rich alloys the values of A and B are also negative and this
is in contradiction to the experimental results for x. This
result 1s due to the fact that the value of Vs at EFk is largely
positive in pure Nb because of a rapid change of the calculated

p(Ll) near E When the concentration of Mo atom becomes

P
larger than 20 at.%, the value of Vs becomes positive and
consequently A and B become positive and this is in agreement
with experiment.

The value of A for V-Cr alloys are somewhat larger than
those of Nb-Mo and Ta-W alloys. This fact is attributed to
the fact that the d-band of Cr is narrower than that of Nb or
W. The error in the numerical calculation of dgp(EF)/dEg is
somewhat large and this is one of the reasons that the curves
of A and B in Figs. 89 and 90 are not so smooth. Therefore,
the numerical values of A and B themselves are not so

important, but the qualitative feature of the concentration

variation of A and B will be correct.

§4. Temperature Dependence of y for Cr

As discussed in §3, the calculated value of B for Cr
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differs considerably from the experimental values. This
difference can be explained by the enhancement due to the
molecular field. To see this, the full temperature dependence
of Xq for Cr is calculated at first by using the p(E) calculated

92) 8,86,87) e

by Connolly and using the well-known method.
calculated value of y given by x=xo(l-axo)~l+xc, where o is

a molecular field coefficient and Xe @ temperature independent
susceptibility, and the experimental data for Cr are shown in
Fig. 91. The numerical values of the calculated results for x
are shown in Table VI. The values of a and X, are determined
as 2.552x10u mol/emu and 0.8614><10-LI emu/mol, respectively, so
thaﬁ the calculated values coincide with the experimental ones
at 400 K and 1500 K. The calculated results agree well with
experiment above the Néel temperature.

The value of the Stoner enhancement factor I=(l—axo)_l-
is obtained as 3.05 at 0 K for Cr. This value is similar to
the value of 2.53 obtained by Oh et al.97), but is larger
than the value of 1.69 obtained by the method given above
from the empirical density of states shown in reference 8.

The disagreement between the values of I obtained here and
before is attributed to the difference betweenrthe band-widths
in p(E) used to calculate Xo

By including the enhancement factor, y is expanded as

power series of T as
= 2u2p(E.) T{1-(mk.T)°(vo=v_)I/6} + (5-14)
X HpPlEg B 17V2 Xe - -

The coefficient of T° term in eq. (5-4) is proportional to 12,
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so that the absolute value of the coefficient of T2 for Cr
becomes about 9 times as large as that obtained without o.
Therefore the value of B estimated from experiment becomes
the same order as the calculated value. This fact is also

true for Cr rich V-Cr alloys.

§5. Discussion and Conclusion

In eq. (5-1) only the scattering of electrons due to the
electron phonon interaction is taken into account and it is
assumed that the random potential only contributes to the
residual resistivity which is not so dependent on the temper-
ature. This assumption may not be unreasonable because the
temperature in question 1s much higher than the Debye temper-
ature so that the scattering of electrons by phonons is much
greater than by the random potential.

It 1s concluded that the concentration variations of the
temperature coefficients of R/T and X for V-Cr, Nb-Mo and
Ta-W alloys at high temperature are strongly dependent on the
shape of the density of states near EF’- Furthermore it is
found that o is important for the temperature dependence of
X for Cr and Cr rich V-Cr alloys. In these alloys, EF moves
from the position near the peak to the broad bottom of p(E)
with increasing value of e/a and consequently the valué of
\31 changes from a negative value to a positive one. The value
of Vs has a large negative or a positive value whe'n EF ocecurs
in the neighbourhood of a peak or a minimum of p(E). The .fact

that the concentration variations of A and B obtained as above

for V-Cr, Nb-Mo and Ta-W alloys agree qualitatively with .
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experiment may be considered as the appropriateness of the
shape of the calculated density of states for these alloys

and of the band model.
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Chapter VI. Temperature Variation of Spin Susceptibility

for Ni-Pt Alloys

§1. Introduction

The temperature variation of paramagnetic spin suscepti-
bility x(T) for alloys is in general enhancéd locally and
affected by the change of the density of states with temper-
ature because the random potential in an alloy varies with
temperature. However, with regard to the first point it has
been shown that the susceptibility at 0 K can be approximately
represented by the uniform enhancement model for Pd-Pt and
Ni-Rh alloy527) and for the Ni-Pt alloy as will be found from
1;he results in chap. IV. The second effect will be quite
small. Therefore, x(T) for Ni-Pt alloys can be calculated

by the usual method as for pure metal in the band model.

§2, Calculated Results, Discussion and Conclusion

The densities of states for Ni-Pt alloys are calculated
by CPA including the diagonal and off—diagonal randomnesses.lB)
The formulation is explained in chap. IV. The Coulomb
interaction term in the Hamiltonian given by eq. (4-1) is
neglected. The density of states for Pt calculated by

6!4), which is shown in Fig. 92, is used as that

Mueller et al.
of the host metal. The height of the peak near the Fermi »
level in the density of states for Ni calculated by Zornbergzg)
is 4.87 evt per atom and that of Pt6u) is 2.67 ev™t per atom

and the inverse of the ratio between these values is taken

as the ratio between the band-widths of Ni and Pt. The
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difference between the atomic potentials of Ni and Pt is
determined as 2.0 eV so as to nearly satisfy charge neu-
trality at 42.9 at.% Ni. The calculated densities of states
for Ni-Pt alloys are shown in Figs. 93-96. The height of the
density of states increases and the band-width decreases with
increasing Ni concentration. The shape of the density of
states is smoothened except near the Fermi level and the peak
near the Fermi level becomes high and narrow with igcreasing
Ni concentration.

The calculated results and experimental Value588’98—101)
of 1/x(T)=1/xO(T)—a for Pt, Ni and Ni-Pt alloys are shown in
Fig. 97,‘where XO(T) is the Pauli spin susceptibility and a
is a molecular field coefficient. The numerical values of
x(T) calculated using the density of states for Pt6q) are
shown in Table VIII. The solid curves are the calculated
results for Pt and Ni-Pt alloys. The values of xO(T) for Pt
is calculated'from the density of states calculated for Pt by

Mueller et al.6u)

However, the Fermi level must be located
0.09 eV lower than the position obtained in the a pricri cal-
culation by Mueller et al. to get a good agreement with experi-
ment. Therefore,'the number of electrons decreases by 0.20
per atom and the value of the density of states at the Fermi

level becomes 2.65 eV"l

per atom. The agreement between the
calculated and experimental values of 1/x(T) for Pt is satis-
factory except below 200 K. The value of o for Pt is 0.687
x10" mol/emu. . The X, (T) are calculated for 24.1, 32.6, 42.9
and 90.9 at.% Ni and the values of a are 0.919, 0.912, 0.885

and O.SSBXIOu mol/emu, respectively. The value of a 1s treated
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as an adjustable parameter and the concentration variation

of o for these alloys cannot be explained at present. The
calculated results for these alloys show good agreement

with experiment. However, they do not agree below 100 K
because the calculated results show a T2 dependence but the
experimental values show a almost linear dependence on T

very near to 0 K. The slope of the calculated 1/x(T) is
independent of concentration and is found to be rather
insensitive to the value of the potential difference in. the
alloys above about 500 K. It is also insensitive to the
position of the Fermi level at high temperature in so far as
1t 1s located near the peak, but its value at low temperature
is sensltive to the position of the Fermi level. It should
be noted that the calculated results of 1/x(T) show a weak
downwards bend at high temperature, as is observed in Pt.88)
Although the calculations of 1/x(T) have been carried out
for only four alloys, similar results will be obtained for
other concentrations.

The broken curves in Fig. 97 are the caléulated results
for a 90.9 at.% Ni alloy and pure Ni using the density of
‘states obtained by Shimizu and Hiroo.kagg). The result for Ni
is that reported by themSL‘) before, wheré o is 0.783><‘3.Oi4 mol/
emu and the value of the temperature independent suscepti-
bility x, 1is 0.594><10_]4 emu/mol. These Calculated results

100,101)  por Pt ang

are in good agreement with experiment.
Ni-Pt alloys, Xo is not included but it may be necessary for
Ni rich alloys.

In conclusion, the calculated results of x(T) for Pt
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and Ni-~-Pt alloys agree well with experiment except at very
low temperature. The slope of 1/x(T) at high temperature
does not perceptibly change with concentration and is rela-
tively insensitive to the position of the Fermi level. It
would be interesting to measure the temperature variation of

x(T) at high temperature'for Ni-Pt alloys.
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Chapter VII. Summary and Conclusion

In this thesis, CPA was applied to calculate the density
of states for some transition metal alloys and to explain the
magnetic and thermal properties for these alloys in the band
model. This work is divided into two parts. One is a study
for alloys in the ground state and the other is that for
alloys at finite temperature.

In the first point, CPA and the Hartree-Fock approxi-
mation for the electron interaction have been combined and
the numerical calculation on the density of states and the
magnetic and thermal properties have been carried out for
Fe-Ni, Ni-Cu, Ni-Pd, Ni-Pt and Pd-Pt alloys. Both the
diagonal and off-diagonal randomnesses have been taken into
account for Ni-Pd, Ni-Pt and Pd-Pt alloys. The density of
states and the concentration variation of the low temperature
specifiic heat céefficient have been calculated for all these
alloys and the average and local magnetic moments have been
calculated except for Pd-Pt alloys which are paramagnetic at
all compositions. The concentration variation of the high-
field spin susceptibility for the ferromagnetic Ni-Cu alloys
and that of the paramagnetic spin susceptibility for Ni-Pd,
Ni-Pt and Pd-Pt alloys have been also calculated.

In the second point, the densities of states for alloys
have been calculated by CPA neglecting the electron inter- -
action which is treated as an uniform molecular field. 'These
calculations have been carried out for V-Cr, Nb-Mo, Ta-W and

Ni-Pt alloys. The temperature coefficients of the T2

- 68 -



term in the series expansion of the paramagnetic spin suscepti-
bility and the electrical resistivity have been calculated
for V-Cr, Nb-Mo and Ta-W alloys and the temperature variation
of the paramagnetic spin susceptibility for Ni-Pt alloys has
been calculated. A realistic shape of the density of states
for the host metal has been taken into account for these alloys.
The comparison with experiment and the conclusions are
summarized as follows. Ferromagnetic Fe-Ni and Ni-Cu alloys
are treated in chapter II and chapter III, respectively. The
calculated densities of states for these alloys are 1in general'
considerably smoothened except those for the majority spin band
for Fe-Ni alloys. The difference between the shapes of the
density of states for majority and minority spin bands for
Fe-Ni alloys is large but that for Ni-Cu alloys 1is small. The
smallness of this difference for Ni-Cu alloys is due to the
smallness of the magnetic moment. The calculated results of
the average aﬁd local magnetic moments and the low temperature
specific heat coefficient afe in agreement with experiment
gualitatively except near the critical concentration where
the ferromagnetism disappears. For Fe-Ni alloys, difficulty
in the numerical calculations prevents comparison with experi-
ment at the critical concentration. As fér the Ni-Cu alloys,
the enhancement of the low temperature specific heat coeffi-
cient and the tailing of, the magnetic moments which were
observed near critical concentration are not explained well
by the present calculated results. These phenomena may be
‘due to clusters or spin fluctuations which are not included

in this thesis. The calculated result of the high-field
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spin susceptibility for Ni-Cu alloys agrees qualitatively
with experiment.

In chapter IV, the ferromagnetic or paramagnetic Ni-Pd,
Ni~Pt and Pd-Pt alloys have been treated. The off-diagonal
randomness has been taken into account. The shapes of the
calculated densities of states are similar to each other
but their band-width and height change with concentration.
The agreement between the calculated results and the experi-
ments for the average and local magnetic moments and the
paramagnetic spin susceptibility are satisfactory. However,
the calculated results for the low temperature specific heat
coefficient are considerably different from the experimental
values at the critical concentration and in the paramagnetic
region for Ni-Pd and Ni1-Pt alloys. This fact may be due to
spin fluctuations or clusters.

In chapter V, the densities of states for V-Cr, Nb-Mo
and Ta-W alloys>have been calculated in CPA and it has been
found that their calculated results do not differ much from
that of the host metal and consequently the rigid band approxi-
mation is not so bad for these alloys. By making use of the
calculated results of the densities of states for these alloys,
the temperature coefficients of the T2 term in the series
expansion of the paramagnetic spin~susceptibi1ity,’and the
electrical resistivity have been calculated. It has been
found that these coefficients depend strongly on the shape
of the density of states at the Fermi level and the quali-
tative agreement between their calculated resuits and ﬁhe

experimental values shows the validity of the band model.

- 70 -



It has also been found that to explain the observed temperature
variation of the magnetic susceptibility the molecular field
should be taken into account in Cr rich alloys. By taking
into account the molecular field and the temperature indepen-
dent susceptibility, the temperature variation of the spin
susceptibility for Cr has been calculated and a very good
agreement with experiment has been obtained.

In chapter VI, the densities of states for Ni~Pt alloys
have been calculated in CPA using the realistic density of
states of Pt as that of the host metal and the temperature
variation of the paramagnetic spin susceptibility has been
calculated by assuming a uniform molecular field. The agree-
ment between the calculated results and the observed data
for Pt is satisfactory but the agreement for the alloys is
qualitatively satisfactory except at very low temperature.
It has been found that the slope of the calculated spin
Susceptibility with respect to temperature is almost inde-
pendent of the concentration.

It is concluded that qualitative agreement between the
caléulated and experimental results for the magnetic and
thermal properties of these alloys except the critical con-
centration indicates the validity of the model and of the
approximation to treat the randomness for concentrated alloys

except in the critical region.
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Appendix. Method of Numerical Calculation of the Green's

Function

A numerical method to solve the egs. (2-5) and (2-8)
self-consistently and its program are explained in this
Appendix.

The function DO(E) is approximated by a linear inter-
polation connecting the points pO(ei). Then, the integration

in eq. (2-5) is carried out to obtain

-1 0® _p° 00 _p°
+ i—
G(z) = ) ( Ei l_gi - Ei_gl L ){Z—Z(Z)~€i}
i=2 i+l i i i-1
x 1n{z—2(z)—ei}, (A-1)

where pg is the value of the density of states at €:5 and

€, and en-l represent the lowest and highest energy in QG{E},
respectively.' The suffix o is neglected for simplicity.

The value G(z) is put into eq. (2-8), which is solved by the
Newton Raphson method as follows. The egs. (2-8) and (A-1)

are considered as functions of ¥ for each z and a function

() is defined as,
() = {z —(EA+EB} +€AEB}G(E) + 5 - (CA€A+CB€B)‘ (-2}

For an initial value of I, the final value of I represented
as I, is given by
ar{t)

Ep =1 - £(z)/ i - (A-13)



The value of £ for each z is calculated by iterating egs.
(A-2) and (A-3) using eq. (A-1) and its derivative with
respect to I until the desired accuracy is obtained. These
equations are first solved at an energy sufficiently below
the band by using CA€A+CBEB as the initial value of I to
obtain a good first approximation for ¥ for successive
procedures. At each step, the value of I obtained by the
proceeding step is used as the initial value for a given

value of z. In the program, the procedure to determine the

Fermi level is also included.

List of the name for the physical gquantities.
A Value of the density of states for the host

band: po(e).

DE Energy point for the host band: €.
NDE Number of energy points: n.

ENA Electron numbers of pure A metal: nz.
ENB Electron numbers of pure B metal: ng
DELTA Potential difference: §.

CA Atomic concentration of A metal: Cp-
CB Atomic concentration of B metal: CB;
VA Potential value at A sité: €

VB Potential value at B site: €g-

EL Lowest energy edge of the host band.
EH Highest energy edge of the host band.
'A% Average value of the potentials.

H Energy mesh.

Z Energy value: z.
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EN Average value of the electron numbers.

SC Self-energy: L.

GC Green's function: G(z).

DS Average density of states for alloys: p(E).
DSA Local density of states for A atom: pA(E).
DSB Local density of states for B atom: pB(E).
ZFE -~ Fermi energy: EF'

DSFE Value of the density of states at the Fermi level.
ANE Electron numbers of A atom in alloys: Ny -

BNE Electron numbers of B atom in alloys: Ng.

COMPLEX sc,GC, DG,ZC, SPC,SQC, SRC, SSC
DIMENSION A(500),DE(500), Z(500),DS(500),DSA(500),DSB(500)
PAI=3.14159265
DATA H, ENA,ENB,NDE/0.01,0.86,0,96,7/
READ(5,100)(A(I),DE(I),I=1,NDE)
100 FORMAT(6F12.0)
DELTA=0.5
CA=0.3 =
CB=1-CA
VA=0
VB=-DELTA
VV=CA#VA+CB*VB
EL=DE(2) -
EH=DE (NDE-1)
JEL=(0.5#(VA+VB-ABS(VA-VB))+EL)/H
JEH=(0.5#(VA+VB+ABS (VA-VB) )+EH) /H
JMX=JEH-JEL+10
DO 5000 J=1,JMX
Z(J)=(JEL+J-5)#H
IF(J-1) 10,10,20
10 SC=VV
GO TO 30
20 ZCRT=Z(J)-REAL(SC) )
IF(ZCRT.GE.EL-5#H.AND. ZCRT. LT.EL+5#H) SC=CMPLX(REAL(SC),
#-0.005) -
30 M=1
40 CONTINUE
GC=DG=(0.0,0.0)
DO 1000 I=2,NDE-1
ZC=Z(J)-SC-DE(I)
AH=(A(I+1)-A(I))/(DE(I+1)-DE(I))-(A(I)-A(I-1))/(DE(I)-
#DE(I-1))
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1000

50
200
60

70
300

400
5000

6000

90

7000

500

GC=GC+AH#*ZC#CLOG(ZC)

DG=DG~AH#CLOG(ZC)

CONTINUE

SPC=SC##2~ (VA+VB)%SC+VA*VB

SQC=SPC#CGC+3C-VV

SRC=SPC#DG+(2. O*SC-VA—VB)%GC+1 0

SSC=SQC/SRC

SA=ABS(REAL(SSC))

TF(ABS(REAL(SC)).GE.1.0E-5) SA=ABS(REAL(SSC)/REAL(SC))
SB=ABS(AIMAG(SSC))

IF(ABS(AIMAG(SC)).GE.1.0E-5) SB=ABS(AIMAG(SSC)/AIMAG(SC))
IF(SA.LT.1.0E-5.AND.SB.LT.1.0E-5) GO TO 60

SC=8C-SSC

M=M+1

IF(M-10) 40,40,50

WRITE(6,200)

FORMAT (1H+, 125X, 3HILL)

CONTINUE

DSA(J)=-AIMAG(GC/(1.0-(VA-SC)*GC))/PAI
DSB(J)=-AIMAG(GC/(1.0- (VB—SC)*GC))/PAI
DS(J)=CA%DSA(J)+CB«#DSB(J)

JM=J-(J/50) %50

IF(JM) 80,70,80

WRITE(6, 300)

FORMAT(lﬂl /,5X1HZ12X2HDS 11X 3HDSA 11X 3HDSB24X2HGC 24X 21SC)
WRITE(6, MOO) 72(J),DS(J),DSA(J),DSB(J),GC,SC
FORMAT(IH ,4F12.4,2X,2(2F12.5,2X))

CONTINUE

EN=CA#ENA+CB#ENB

SDS=0 -

DO 6000 J=2,JMX

SDSS=SDS+(DS(J)+DS(J~1))#H/2

IF(SDS.LE.EN AND.SDSS.GE.EN) GO TO 90

SDS=SDSS

CONTINUE

CONTINUE

JF=J

JFE=J-1

SSS=EN-SDS

DDD=DS(JF)-DS(JFE)

YANAS (SQRT((H*DS(JFE))**2+2*DDD*H*SSS)~H*DS(JFE))/DDD
ZFE=2(JFE)+Z27%

DSFE=DS(JFE)+DDD/H#ZZ7

AEN=(DSA(1)+DSA(JFE))

BEN=(DSB(1)+DSB(JFE))

DO 7000 J=2,JFE-1

AEN=AEN+DSA(J)

BEN=BEN+DSB(J)

CONTINUE

AEN=AEN#H+DSA (JFE) %#2ZZ+0. 5*(DSA(JF)~DSA(JFE))*ZZZ**Z/H
BEN=BEN#H+DSB(JFE) #ZZZ+0. 5*(DSB(JF)-DSB(JFE))*ZZZ**2/H
WRITE(6,500) DSFE,AEN,BEN,ZFE

PORMAT(IH ,/,UF12.6 /)

STOP

END
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Table TI.

moments and low temperature specific heat coefficient

for Fe-Ni alloys.

Calculated values of average and local magnetic

concen. m Mpe Myy lO&Y
Ni at.% pB/AtOm uB/Atom uB/Atom cal/mol K2
100 0.60 —_— 0.60 10. 44
95 0.72 3.25 0.58 9.35
90 0.84 3.22 0.56 9.25
80 1.09 3.13 0.53 6.05
70 1.26 2.96 0.55 5.32
60 1.49 2.84 0.58 5.58
50 1.71 2.78 0.62 5.97
Is 1.81 2.78 0.65 6.60
bo 1.92 2.75 0.65 8.94
35 1.99 2.71 0.66 11.33
30 2.03 2.61 0.64 14.42
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Table II. Calculated values of average and local magnetic moments, low temperature
specific heat coefficient and high-field spin susceptibility for ferromagnetic

Ni-Cu alloys. g=2.18

concen. - mg/2 mNig/2 mCug/z quXS 10uy
Ni at.% uB/Atom uB/Atom uB/Atom emu/mol cal/mol K2
100 0.606 0.606 0.748 14.10
90 0.499 0.554 0.0052 0.933 13.34
80 0.399 0:496 ’ 0.0112 1.260 12.42
70 0.295 0.419 0.0064 1.860 11.71
65 0.244 0.371 0.0059 2.494 11.25
60 0.190 ~ 0.31% 0.0035 3.629 10.87
55 0:133 0.240 0.0028 6.518 10.45

50 0.072 0.143 0.0013 16.879 9.86




Table III.

Calculated values of average and local magnetic

moments, low temperature specific heat coefficient and

paramagnetic spin susceptibility for Ni-Pd alloys.

£y1=2-18, Bpy=2-0

concen.  {mg/2> Mg Bni/2  MpgBpg’/? Y 10ux

Ni at.%  yug/Atom  ug/Atom  pg/Atom  mJ/mol kK%  emu/mol

100 0.606 0.606 _— 7.1 —
0 0.586 0.621 0.273 7.06 —_—
80 0.562 0.634 0.274 6.99 —
70 0.538 0.650 0.276 6.90 S
60 0.513 0.669 0.279 6.84 R
50 0.487 0.692 0.282 7.08 —
4o 0.455 0.714 0.282 7.39 —_—
30 0.415 0.735 0.278 7.80 —
20 0.357 0.744 0.261 8.35 _
15 0.315 0.733 0.241 8.72 _—
10 0.255 0.696 0.206 9.11 e —
5 0.152 0.555 0.130 ° 9.51 —
2 _— —_ -_ 9.68 T4 .49
1.5 _— —_— _— 9.64 25.02
1.0 — —_— — 9.60 14.54
0.5 E— E— — 9.57 9.95
0.0 —_— S —_— 9753

7.36
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Table IV. Calculated values of average and local magnetic
moments, low temperature specific heat coefficient and
paramagnetic spin susceptibility for Ni-Pt alloys.

gyy=2-18, 2.0

Epg~

. 4
concen. <mg/2> My By /2 mPtgPt/2 Y 10 'y

Ni at.% uB/Atom uB/Atom uB/Atom mJ /mol Ka emu/mol

100 0.606 0.606 — 7.1 —
90 0.578 0.596 0.423 7.06 —_—
80 0.541 0.572 0.416 7.66 —
70 0.484 0.525 0.390 8.37 —_
60 ’ 0.405 0.447 0.340 8.98 -_—
50 0.284 0.319 0.249 9.48 —
45 0.177 - 0.199 0.158 9.47 —
4o- —_ — 9.24 51.49
35- s —_— —_ 8.83 14,24
30 —_— — E— 8.44 8.22
25 — — 8.08 5.75
20 — —_— — T.Th 4.39
15 — — _— 7.42 3.53
10 —_ C e 7.12 2.94

5 _— _— — 6.84 2.50
0 —_ e 6.57 2.16
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Table V. Calculated values of low temperature specific heat

coefficient and paramagnetic spin susceptibility for Pd-Pt

alloys.
concen. Y 10ux* 10ux**
Pd at.% mJ /mol K2 emu/mol emu/mol
0 6.57 2.16 1;73
10 6.62 2.4y 1.89
20 6.65 2.72 2.06
30 6.68 3.04 2.23
4o 6.72 3.37 2.1
50 6.80 3.72 2.62
60 6.95 b, 21 2.89
70 7.21 4.88 3.31
80 7.64 5.77 3.94
90 8.34 . 6.92 5.07
100 9.53 7.36 7.36
*. UPt=O.849eV
*H UPt=O.7TUeV
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Table VI. Calculated values of X(T) for Cr, where the mole-
cular field coefficient u=2.5518X10a mol/emu and the temper-
ature independent susceptibility )(C=O.8678><10"l4 emu/mol

are assumed.

T K 10 (T) T K 10% (1)

emu/mol emu/mol
0 1.6727 1000 1.8680
100 1.6696 1100 1.9053
200 1.6707 1200 1.9447
300 1.6785 1300 1.9863
hoo 1.6940 1400 2.0298
500 1.7149 1500 2.0755
600 1.7402 1600 2.1232
700 1.7685 1700 2.1729
800 1.7995 | 1800 2.0047
900 1.8327 1900 2.2780
' 2000 2.3330
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Table VII. Calculated values of 1/XO(T)—a (102 mol/emu)
for Ni-Pt alloys.
oncen. Ni
at.? 0.0 24,1 32.6 42.9 90.9
T K

0 48.00 7.38 2.78 —_ e

100 50.62 9.80 5.20 2.08 —
200 54.10 13.06 8.46 5.35  —
300 57.53 16.48 11.91 8.85 —
“Loo 61.12 20.11 15.57 12.54 —
500 64.83 23.82 19.28 16.24 —
600 68.56 27.48 22.91 19.84 2.00
700 72.24 31.04 26.43 23.30 5.21
800 75.82 34.48 29.82 26.63 8.29
900 79.30 37.80 33.09 29.84 11.26
1000 82.68  41.02  36.25  32.95  14.15
1100 85.96 by, 14 39.33 35.97 16.98
1200 89.15 47.18 42.33 38.92 19.75
1300 92.26 50.16 45.27 ©  L41.82 22.47
1400 95.32 53.09 48.16 4u .66 25.15
1500 98.32 55.98 51.01 h7.47 27.79
1600 101.29°  58.83 53.83 50.25  30.40
1700 104.23 61.66 56.62 53.01 32.97
1800 107.14 64.48 59.40 55.75 35.52
1900 | 110.04 67.28 62.17 58.&6 38.04
2000 112.94 70.08 64.94 61. 40.53
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Figure Captions

Fig. 1. Slater-Pauling curve. The dependence of the satu-

rated moment on the number of electrons per atom is shown,

¥ Ni-Zn, O Ni-Co, O Ni-Fe, A Ni-Cu,
O Ni-Mn, O Ni-Cr, v Ni-V, ® Co-Te,
O Co-Mn, A Co-Cr, + Fe-Cr, @ Fe-v,

® pure metal.

Fig. 2. Density of states for Ni taken as that of the
host band. The density of states for s-band is cut off.
The density of states is scaled so that the whole number
of states is normalized as 1 and the band-width 1s reduced

as 2. The vertical line shows the Fermi level for the

paramagnetic state.

Figs. 3-11. Calculated results of the densities of states
for the paramagnetic fcc Fe-Ni alloys. The value of x
denotes the atomic concentration of Fe. In this calculation,
the Coulomb interaction is neglected and the‘ value of 60

is 0.32. Each‘vértical line shows the Fermi level.

Figs. 12-21. Calculated results of the densities of states
.for the ferromagnetic fcc Fe~Ni alloys. The values of §
and U are 0.603 and 1.3, respectively. The value of x
denotes the atomic concentration of Fe. Majority and

minority spin states are indicated by t+ and'¢, respectively.
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Fig. 22. Calculated results of the concentration variations
of the average and local numbers of electrons for each

spin per atom per band.

Fig. 23. Calculated results (solid curves) of the average
and local magnetic moments per atom for the ferromagnetic
fce Fe-Ni alloys. The experimental values are shown by

039 ana A3V

Fig. 24. Concentration variation of the low temperature
specific heat coefficient Y. A solid curve 1is the calcu-

lated result and a broken curve 1is the experimental one?g)

Fig. 25. Density of states for pure Ni. The histogram is

45) and the

the calculated result of Wakoh and Yamashita
solid curve is the simplified density of states used in the
calculation fbr Ni-Cu alloys. The broken line denotes the
Fermi level in the paramagnetic state and the chained lines

denote that in the ferromagnetic state.

Figs. 26-32. Densities of states for the ferromagnetic Ni-Cu
alloys. Curve 1 is the average density of states and curves -
2 and 3 are the local densities of states for Ni and Cu
atoms, respectively. The vertiéal line shows the Fermi level.
Majority and minority spin states are indicated by % and +,

respectively.
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Figs. 33-38. Densities of states for praramagnetic Ni-Cu
alloys. Curve 1 is the average density of states and
curve 2 and 3 are the local densities of states for Ni and

Cu atoms, respectively. The vertical line shows the Fermi

level.

Fig. 39. Magnetic moments for Ni-Cu alloys. Curve 1, 2 and
3 are the calculated results of average magnetic moment
and local magnetic moments of Ni and Cu atoms. ﬁ?’?’)
O‘:’% &3’5) and 535} are the experimental data.

Fig. 40. Low temperature specific heat coefficient of Ni-Cu
alloys. Curve 1 is the calculated result from the density
of states with the conduction band and curve 2 is that from
the density of states without the conduction band. Curve

3 is the calculated result by Stocks et 31.21) c)el)

0“9) and Ijso)

are the experimental data.
Fig. 41. High-field spin susceptibility of Ni-Cu alloys.
' Solid curve is the calculated result by CPA and broken

curve is the calculated result by the rigid band modelSu)

and 0?2) D?z) 051.) and .53) are the experlmental

data.

Fig. 42. Density of states used as that of the host band
in the calculation for Ni-Pd, Ni-Pt and Pd-Pt alloys.
The band-width is reduced as 2 and the density of states

is scaled sb as to normalize the total numbers of state as 1.
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Figs. 43-51. Average (curve 1) and local (curve 2 for Ni
and curve 3 for Pt) densities of states for paramagnetic

Ni-Pt alloys. The vertical line shows the Fermi level.

Fig. 52. Dependence of the average (solid curves) and
local (broken curves for A atom and chained curves for B
atom) densities of states for A6O‘Bu0 alloys on the ratio

of the band-width W, to that of A metal. The band-width

B
of A (Ni) metal is reduced to 2. The value of 60 is

0.3 times the band-width of Ni.

Figs. 53-61. Average (curve 1) énd'local (curve 2 for Ni
and curve 3 for Pd) densities of states for ferromagnetic
Ni-Pd alloys. Majority and minority spin states are indi-
cated by 4 and ¥, respectively. The vertical line shows |

the Fermi level.

Fig. 62. Average (curve 1) and local (curve 2 for Ni and
curve 3 for Pd) densities of states for a paramagnetic

Ni-Pd alloy. The vertical line shows the Fermi level.

.Fig. 63. Calculated results of the average (curve 1) and
local (curve 2 for Ni and curve 3 for Pd) magnetic moments
for Ni-Pd alloys. The experimehtal data of the average
moments are indicated by 0?6) l§7) ‘f’iB) .v?S) and O‘§9)
Those69) of the local moments are indicated by O, O for
Ni and v, A for Pd. The data indicated by O and' A are

obtained by neutron diffuse scattering and O and V by
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neutron Bragg scattering.

Fig. 64. Calculated result {so0lid curve) and the experi-
mental data ( G?B) 0":’5} 0?2) and &TE)} of the inverse

of the paramagnetic spin susceptibility for Ni-Pd alloys.

Fig. 65. Calculated result (solid curve) and the experimental
data ( Oéz) E}l}g) 07;2) DZS} OM’) and aéS}) of vy for

Ni-Pd alloys.

Figs. 66-70. Average {(curve 1) and local (curve 2 for Ni
and curve 3 for Pt) densities of states for ferromagnetic
Ni-Pt alloys. Majority and minority spin states are indi-

cated by + and +. The vertical line shows the Fermi level.

Fig. 71. Calculated results of the average (curve 1) and
local magneﬁic moments (curve 2 for Ni and curve 3 for Pt)

and the inverse of the paramagnetic spin susceptibility
275 o760 7T) Lng o78)
80)

(curve 4) for Ni-Pt alloys.

are the experimental data of m and ‘;Z?) -79) and @

are those of Xml.

Fig. 72. Calculated results (solid curve) and the experi-

. mental data ( 039) Q?l) B?Z) ‘149) and A62)) of y for

Ni-Pt alloys.

Pigs. 73-81. Average (curve 1) and local (curve 2 for Pd and

curve 3 for Pt) densities of states for Pd-Pt alloys.
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The vertical line shows the Fermi level.

Fig. 82. Calculated result (solid curve) for UPt=O.8ﬂ9 eV

62) of y for Pd-Pt alloys.

and the experimental data @
Fig. 83. Calculated results (solid curve for UPt=0.849 eV
and broken curve for U_,=0.774 eV) and the experimental

Pt
62) and C)63)) of X for Pd-Pt alloys.

data ( @
Fig. 84. Calculated results for the concentration variation

of the number of d-holes at A or B atom in A-B alloys, for

Ni-Pd (solid curves), Ni-Pt (chained curveé) and Pd-Pt

(broken curves).

Fig. 85. (a); Dependences of the numbers of electrons at
A and B sites, n, (broken curves) and ng (so0lid curves),
on the potential difference 50 and on the ratio of the

band-width W, to that of A metal. (b); Relation

B

between WB and 60 when n,=ng (solid line) and nA=9.MM

and nB=9.7 (broken 1line).

Fig. 86. Densities of states for pure Cr and V-Cr alloys.

The vertical line shows the Fermi level.

Fig. 87. Densities of states for pure Nb and Nb-Mo alloys.

The vertical line shows the Fermli level.
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Fig. 88. Densities of states for pure W and Ta-W alloys.

The vertical line shows the Fermi level.

Fig. 89. Calculated and experimental values of A=3v§—v2.
Thick so0lid, chained and broken curves are the calculated
results for Cr based V-Cr, Nb based Nb-Mo and W base Ta-
W alloys, respectively, and fine solid and broken curves
for V based V-Cr and Ta base Ta-W ailoys, respectively.
Small circles and squares are the experimental values for

V—Cr,gD) and Ta-w9l) alloys, respectively.

Fig. 90. Calculated and experimental valués of B=v§—v2.
The notation for five curves is the same as that shown in
Fig. 89. Small cicles, triangles and squares are the

88,89)

experimental values for V-Cr, Nb-Mo and Ta-W alloys,

respectively.

Fig. 91. Temperature dependence of X for Cr. Solid curve
is the calculated result and small circles are the observed

96)

values.

: . . }

Fig. 92. Calculated density of states by Mueller et al.64)
for Pt. A vertical solid line shows the Fermi level
obtained a priori calculation by Mueller et al. and a

chained line is that used in chapter VII.

Figs. 93-96. Average (curve 1) and local (curve 2 for Ni

and curve 3 for Pt) densities of states for paramagnetic
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Ni-Pt alloys. The density of states for Pt shown in Fig.

92 was used as that of the host band.

Fig. 97. Calculated (solid and broken curves) and observed
(0?8) ‘?9) 0 ?8) ‘}OO) [_\,101)) temperature variation
of 1/X(T) for Pt, Ni and Ni-Pt alloys. Solid curves 1, 2,
3, 4 and 5 are the calculated results for Pt, 24.1, 32.6,
42.9, and 90.9 at.% Ni-Pt, and broken curves 6 and 7 are
the ones for 90.9 at.% Ni-Pt and Ni, respectively. Insert

is the enlargement of the low temperature results.
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