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On the Structural Controllability of
Compartmental Systems

YOSHIKAZU HAYAKAWA, SHIGEYUKI HOSOE, MUTSUMI HAYASHI, AND MASAMI ITO

Abstract —In this paper compartmental systems are modeled by a class
of linearly parameterized matrix pairs and the controllability characteristics
are expressed in terms of a compartmental graph. The result gives intuitive
and physical information about the controllability and it extends the
well-known result on the single-sink case to the multisink case..Further-
more, this result is applied to more special models, called undirected
compartmental models, by which physical systems such as a class of liquid
systems and of network systems, ete., can be concisely modeled.

L INTRODUCTION
C ONSIDER the linear time-invariant system
x(1)=A,x(¢)+B, u(t) . 6]

where x(t) € R" and u(t) € R™. The matrices 4, and B, are
parameterized by a set of physical parameters P to reflect a pnmt
structural information of the physical system. In this framework
it is sometimes of interest to know whether or not the matrix pair
B,) is controllable for all but an exceptional set of values of
?’arametenzed matrix pairs with this property are called struct-
-urally controllable. The concept was first introduced by Lin who
in [1] developed graph-theoretic conditions for certain linearly

—ky — kg 0
by — ko~ k3
0 ) ks
Ap = 'k41 0
0 0
0 0
0 0

and independently parameterized matrix (called structural ma-
trix) pairs with single-input to be structurally controllable. Since
then, the subject attracted considerable interest [2]-[8]. One

" obvious importance of the study lies in the fact.that structural
controllability is a property that is as useful as controllability and
can be determined free from numerical computations. However, a
more important and interesting point would be the fact that it is
sometimes possible to know structural controllability directly
from the information about physical systems (e:g., connections
between certain parts of a system). Stressing the second view-
point, in this paper we shall also discuss the structural controlla-
bility of linearly parameterized matrix pairs but of more re-
stricted systems, called compartmental models. .
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Fig. 1.

A compartmental system.

Compartmental models have been widely used in -studying
biological, biomedical, ecological, chemical, and economical sys-
tems [9]-[11]. A priori structural information of this class of
systems is usually given by a certain kind of digraph called a
compartmental graph. For example, consider a compartmental
model whose structure is represented by the compartmental graph
in Fig. 1. Denoting by x, the amount of the material in compart-
ment / and taking x,, - - -, X5 as a state variable, the matrices A
and B, in (1) can be represented as .

0 0 0 0 0
ks o 0 0 0
""k23""k53 O 0 O O
O ““k64 0 . 0 0
sy o 0 0 0
0 k64 0 _k76 kﬁ7
0 0 0 k76 _k67
and
bll
0
0
B,=| o (2)
0
0
0
where

P= {kZI’ k41! kOZ! k32! k23’ k539 k64'9 k769 k67’ bll}'

(For detailed explanations about the compartmenfal graph and
the state -equation (1) of the compartmental models, see Section
IIL) Clearly the matrix pair (4, B,) in (2) can easily be shown.to
belong to the class of linearly parameterized matrix pairs defined
in 7} Thus, applying the result of [7] the condmons for. the
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Fig. 2. Examples of undirected compartmental systems. (a) A liquid
system. (b) A network system. (c) An undirected compartmental graph,

structural controllability can be represented by making use of a
certain graph (see Section II) and by some matrix rank condi-
tions. Unfortunately, however, the graph used in [7] and the
compartmental graph are not the same.
To obtain intuitive and physical information about the control-
lability, it is of course desirable to represent conditions in terms
. of the original graph which directly reflects a priori information
of the physical systems. In this paper it will be shown that this is
possible for compartmental models. The result extends the one of
[13] to the multisink case. The result will be applied to more
special models, called undirected compartmental models, by which
physical systems such as liquid system in Fig. 2(a) and a network
system in Fig. 2(b), etc., can be concisely modeled.

II. PRELIMINARIES
Before considering the structural controllability of compart-

mental models, we will summarize the concepts that are devel-
oped in [7] and sorne lemmas that will be used subsequently.

‘A system (4, B,) in (1) is said to be linearly parametenzed by
P, if the funcuonal relationship between P and (4,, B,) can be
expressed as.

k
=40+ ¥ BPG,
i=1
: k
B,=By+ ), B,PD, (3).

i=1

where the matrices Ay, By, B;, C;, and D are fixed and indepen-
dent of P, and the elements of Py, -, P, are assumed to be
a]gebra.tcally independent parameters. Associated with this
parametenzatxon II= (AO,BO,B,,C,,D,,k} the transfer func-
tion H;; from node j to node / is defined as

C/(A,— 4,)"'B,, i, jek
flij(}\)""" x( n 0)—1 f J (4)
Ci(\I,—Ay) By+ D, i€k, j=0

“where k= {1,2,---,k}, and the graph of II, denoted by Gy, is
defined to be the dlrected graph which has 1) the set k, of k+1
nodes, labeled 0,1,2, - - -, k, and 2) edges [ j — i] that correspond
in a one-to-one way to the nonzero transfer functions.

IfSisa nonempty subset of k with elements 7,75, ,i,
ordered so that iy <i, <--- <i_, then B, C, and Ds are defined
so0 that

i is

If § is the empty set, then Bg, Cg, and Dg each are the 0X0
matrix. Furthermore, denote by k — S the complement of S in &
and by k* the power set of k.

Then the result obtained by Corfmat and Morse (7] is the
following,.

Lemma 1 [7]: Let II= {Ag, BO,B,,C,,D,,k} be a fixed
parameterization of (4,, B,). Then (4, B,) is structurally con-

trollable if and only if:

1) for each i € k there exists a path! in Gn from node 0 to
node /, and
2) for all A in the (complex) spectrum of Ag;

A,—Ay, By B

rank >n
Cu-s Dp_s O

for vVSek*. (6)

To transform condition 2) of Lemma 1 to certain graphical
conditions in the case of compartmental models we will need the
following lemma, the first part of which was proven in [15]
geometrically.

Lemma 2: Let #,,%,,- - -, and %, be linear subspaces in R".

For a subset S of k let # be the subspace Fg = 2, ¢ ¢ F,; and let
= {0} where ¢ denotes the empty set, Then
1) ifk<n,

dim Zs>|S] for VSeEk* )
if and only if there exists b€ %, for i=1,2, .. -, k such that
by, -+, b, are linearly independent, and

i) if k> n,

dim%Bs>|S|—k+n for VSek* ®)
if and only if there exists b, € %, for i=1,2, -,k such that
bi,---, b, span R", where |-| denotes the number of elements in
the mdlcated set.

Proof of ii): The assertlon i) is an easy consequence of i),
Indeed, let &,=%,®R*~" in R"®R*~" where ® denotes an
external dxrect sum.

Then (8) is equivalent to the following:

dim%s>|S| for VSek* 9) -
for dim % = dim B + k — . Therefore, by 1) of Lemma 2,9
holds 1f .and only if there exist b, € &, for { = , k such that
bi," - -, by, are linear mdependent and 'from the deﬁmtmn of #;’s
this is equlvalent to that there exists b, € &, for i =1, - -,k such
thatby,---, b, span R". ’ QED

Remark: Although we omit the detail here, we want to point
out that the above lemma is a direct result of the Konig~Egervary
theorem in matroid theory [12].

III. COMPARTMENTAL MODELS

Compartmental models are typically used to represent systems
‘which can be viewed as a finite number of compartments inter-
connected by flow channels where each compartment contains
some uniformly distributed material of interest. The rate of flow
of material from compartment j to compartment ;i is assumed

!A path in G from node #; to node i ' can be mterpreted as a sequence
of nodes iy, iy, ,i, such that there exist edges lig-1—i,] for g=
2,3, f.
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proportional to the amount of material in compartment j. There
may be flow called excretion from some compartments to the
model’s environment. Flows from the environment to the model
are assumed to be known or under the control of the model
designer, and thus can be regarded as inputs to the model.

Now consider a compartmental system which is composed of n
compartments, and give these n compartments a numbering from
1 to » in an arbitrary but fixed way. For the easiness of explana-
tion, the environment will be conveniently called compartment 0.

Now let x; be the state variable which denotes the amount of
material in compartment j; k;; be the proportionality parameter
which characterizes the rate of flow from compartment j to
compartment i; and kg; be the proportionality parameter which
characterizes the rate of flow from compartment j to compart-
ment O (the envuonment) Then the compartmental system can
be modeled by x=A4,x + B,u where, denoting (7, j) entry of 4,

(resp. B,) by a;; (tesp. b,,),

D’J~
= .
o
vl-‘

=

N’

(10-1)
j =0
J#*i

a--=k,-j (,}j:l’.t.

i S i) (10-2)
and b, is the flow rate parameter from the jth input to compart-
ment 7. It is assumed that a number of the model parameters k;;
are fixed zeros and the rest are indeterminate and unrelated. Noté
that if kg; = 0, the sum of all the entries in the ith column of 4,
is zero. Furthermore, without loss of generality we restrict our
consideration to a compartmental system (4,, B,) where each
row of B, contains at most one nonfixed element and each
column of B contains exactly one nonfixed element [13]. For such
a system, its structure is usually. characterized by the compart-
. mental graph [13] denoted by G.. For the terminology about the
compartmental graph, please refer to {13].

Corresponding to the flow rates k;; (i # 0), k;, and the weight
b, of input edge, that are regarded as mdependent parameters,
define n-dimensional vectors e; ;, e, ¢, as follows:

0 0
0 :
-1} jth 0
o ~1|/jth
kyj: 0 (i=e;), k&, 0 (:=ep,)
1] ith ;
0 - 0
0 0
(11)
and
0
0
bt |1]kth (i=e) (I=1,---,m)
0
0

Furthermore, denote by K| the set of all the flow rates on
outgoing edges from compartment J(j=L2,---,n) and define
matrices B;’s and vectors P,’s as follows. If K is a nonempty set,
say

ki)

then

kilj
B=[eyaey],  B=| (12-1)
ki,
If K, is the empty set, then
0
B;=|'|, P: scalar parameter. (12-2)
0

Finally, let the set of all the excited compartments be E=
{fy,--+,1,} and define B, and P, forj=1,2,---,m as

B,.;= s Puyj ='b/,j- (12-3)

Example: Consider the compartmental system in Fig. 1, whose
state space equation is given by (2). Then

={ku,ka}, Ki={ko,ks}, Ky={ku,ks},

= {kéd,} Ks @ Kﬁ {k'lﬁ} and K—, {k(ﬂ}
Furthermore E= {1}.
Thus, B;’s and P,’s are, respectively, given by
-1 -1 0 0 0 0
1 0 -1 -1 1 0
0 0 0 1 -1 =1
By=| 0 1], By= 0 0}, By= 0 01,
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0
0 0 0 0
0 -0 0 0
B4 =1 -11, B5 =101, B5 = 0 s B'] = 01,
0 0 0 0
1 0 -1 1
0 0 1 -1
ko koz) (kza)
P = ’ E] P - ]
! (km ) (kaz ks
=(kes)s Ps, Ps=(ks), P;=(ke).
Now it is clearly seen that the vector B;P; (resp. B, P,.;)
commdes with the ith (resp. jth) column of A (resp. B,) for

i=1,+-,n (resp. j=1,---,m), and thus the compartmental
system (A, B,) can be expressed in the followmg linearly para-
meterized form:

n+m
= Z B, P.C;
i=1
n+m‘
= Z B;P;D; (13)
i=1
where
ith
. 1 )
= 0,---,0,1,0,--+,0); 1xn fori=1,2,---,n
0, v ver e 0); IXn fori=n+l,---,n+m
(14-1)
and
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sources

transits

: sinks

Fig. 3. An example of structurally controllable compartmental systems.

(0,... RN 1)
(i —n)th
{

(0’...’0’1,0,...,

IXm fori=1,---,n

0); 1xm fori=n+1,---,n+m.

(14-2)

Therefore, by applying Lemmas 1 and 2 in Section II we can
obtain the following theorem.

Theorem 1: Without loss of generality assume that the com-
partmental graph does not split into two or more disjoint sub-
graphs. A compartmental system (A, B,) is structurally control-
lable if and only if in its corresponding compartmental graph G,

1) a compartment from each source is excited, and

2) sinks with no excretions are connected with some excited
compartments by mutually disjoint paths (Fig. 3). -

If the graph G, is strongly connected, it should be regarded as a
source in the condition 1) while as a sink in the condition 2).

Remark: This theorem extends Zazworsky and Knudsen’s re-
sults [13] on the single-sink case to the multisink case,

Proof of Theorem 1: A compartmental system (4, B,) has
the parameterization II = {0,0, B;, C;, D;, n + m} with B, and C,,
D; being g1ven respectively, by (12) and (14). Smce D;+0
(j =n+1,-++,n+ m), Gy has edges [0 — j} by the definition of
the graph Gp;. Furthermore, since C;(A1,) ~*B; P =k, / A<,
jsn, i# ), Gy has edge [j — ] if and only it G. does. There-
fore, it is obvious that the condition 1) of Lemma 1 is equivalent
to the condition 1) of Theorem 1. It remains to prove that the
condition 2) of Lemma 1 is equivalent to the condition 2) of
Theorem 1.

To show this we need the followmg remarks. First, observe that
for the parameterization Il = {0,0, B,, C;, D;, n + m} with B, and
C;, D, being given by (12) and (14), the condition 2) of Lemma 1
is equivalent to

rank Bg > |S|—m  for VS&(n+m)*,
Thus, it follows from ii) of Lemma 2 that the condition 2) of
Lemma 1 is equivalent to the following. Denote by Z the collec-
tion of n X (n + m) matrices whose i th column is a column vector
of B, ie.,

‘7-= <Tkl/\'2 n+m ( ;‘ 5‘22)’

b2"+"0

ntn

)[of:
the k;th column of B,-}. (15)

Then there exists a T € Jsuch that rank T = n.

Secondly, recall that the matrices B,’s are composed of the
column vectors of the form €y €g;, OL €}, and there are one-to-one
correspondences between the’ edges [ j — i], the flow rate &, b;,
and the vectors e, e;, €;. From this fact and the definition of 7

Oma OO,

(3)
®
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(type 1-1 with excitations)

@
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®
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(directed trees and a directed circuit)
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{e) type 1-3
1 directed tree whose
reference node has an excretion

Fig. 4. Examples of type i-f subgraphs.

{e) tvpe 2-2
(type 1-2 with excitations)

() type 2-3
(type 1-3 with excitations)

f

it is clearly seen that each matrix T € J corresponds also in a
one-to-one way to a subgraph of G, each compartment of which
has at most one outgoing edge

Lastly, let us notice that in a subgraph of G, if every compart~
ment has at most one outgoing edge, then the subgraph consists
of mutually disjoint subgraphs which can be classified into at
most six types. They are type 1-1, 1-2, 1-3, 2-1, 2-2, and 2-3
subgraphs whose definitions are as follows (Fig. 4). Type 1-1 is a
subgraph which has directed tree structure [14]. Type 1-2 is a
subgraph which consists of directed trees and a directed circuit
[14], in which the reference nodes of directed trees are nodes of
the directed circuit. If type 1-1 has an excretion at its reference
node, it is called type 1-3. If type 1-1, type 1-2, and type 1-3 have
at least one excitation, they are called type 2-1, type 2-2, and type
2-3, respectively.

Now assume first that the condition 2) of Theorem 1 is
satisfied. We assert that under the condition 2) of Theorem 1, G,
is spaned? by a subgraph consisting of mutually disjoint sub—
graphs of type 1-3, 2-1, 2-2, 2-3. For this note that sinks are
strongly connected components of G. by the definition, and
therefore if a sink is composed of more than one compartment, it
has at least one directed circuit.

Let us assume that G, has a simple smks S11s* * 5 81 Without
excretions, 8 nonsxmple sinks Sy, -+, Shp w1thout excretions,
and v sinks Sy;, - - -, S5, with excretions. Denote by H, ; any one
of the directed circuits contained in S,; (j=1,---,8) and by
Hy, any one of the compartments in 5‘ that have excretions

(k=1,---,v). Finally, set H;,; =Sy, ({= 1 -+, a). Now the as-

sumption implies that there are disjoint paths Py, -- le

Py, P2 8 leading from some excited compartments to Hu, .
e , Hyp. Define

If the compartments set of a subgraph H of G, coincides with the
compartments set of G,, G, is said to be spaned by 4

3A simple sink means a Sink which is composed of only one compart-
ment.
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Hyy -« Fia Hap - Hp Hay - - Hay
Fig. 5. A structure of the subgraph H,.

Hy=(H;;UP)U - U(H U P )U(Hy U Py)U -
U(HypUPyp)UH, U - UH,,.

Note that H, is composed of type 2-1, 2-2, and 1-3 subgraphs.
Therefore, if G, is spaned by H, then H, is the desired subgraph.
On the other hand, assume that Vg 2V}, where Vi and Vj,
respectively, denote the compartments set of G- and Hf ,and let v
be an arbitrary compartment contained in V;_— V};,. Since any
compartment of G, is connected with some sink through a path,
it can be seen that a path P, exists such that the initial compart-
ment of P, is the compartment v and P, has exactly one compart-
ment in common with H,. If the common belongs, for instance,
to Hj;, then write

Hy=(Hy U Py)U - U(H, Y P)U(Hy U Py)U -
U(HypV Pypg)U(Hy UPYUH,HU -+ U Hy,.

Note that this is composed of type 2-1, 2-2, 2-3, 1-3 subgraphs
(see Fig. 5). Clearly the same procedure can be applied succes-
sively until we obtain a subgraph H, such that Vg =V}, . There-
fore, the assertion was verified.

Now observe that every compartment of subgraph H, has at
most one outgoing edge, and thus the subgraph corresponds in a
one-to-one way to a matrix in . By renumbering the compart-
ments and inputs appropriately, it will be easy to see that the
matrix, denoted by T}, can be put into the following form:

Tll3
13
O
T121
TZI
a
Tyu,= T2
22
O g
‘ . 7}2134 1

where T%’s and [T/ UUTs [(i, j)# (1,3)] represent, respec-
tively, the matrices which are uniquely determined corresponding

to the subgraphs type 1-3 and type i~/ [(i, /) # (1,3)] of H,
(regarding the subgraphs as the compartmental graphs by them-
selves). For instance, the matrices corresponding to the graphs in
Fig. 4 are given by

COOOHMHFO ODOQOMHO

QO OOOC QOHFOOO

TP =

P OOOOO R OOOOoO
|
T HFOOOOOO

|
COCOHOH OO OM

O OOrHFOO0 OFROOMOO

[ T/\‘21 U, k21 ] =

Ot OO OO OMr OO0

coocoocoo

COFHOOOO
e =

| ' |
OO OO O OOOOr O M
|

(12 uP]=

|
COCOHHO OO O
|

O OOF OO0 OMFHOOMOO

|

OFHMFEF OO0 OO OOO

[ uP]=

OHHHEODOOD OFFOOOO

HHEOOOOD HHOOOOD
|
CODOODD HHEODOOOD

-1 -

COHODODOOD OOHOOOD

0

Now let us observe that each matrix in the above example is of
full row rank. It is straightforward to verify that this is true in the
general case. Therefore, the matrix Ty, given by (16) is also of full
row rank, ie., rank 7y, = n. Thus, the condition 2) of Lemma 1
holds.

Conversely, assume that the condition 2) of Lemma 1 holds, or

1

§ UOZI ' O

UaZI

U122

v+l

T3 | . U.,23
(16)

equivalently, a matrix T € Jexists such that rank 7= n, Then we
assert that the subgraph of G, which corresponds to' T, denoted
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by Hr, consists of mutually disjoint subgraphs of type 1-3, 2-1,
2-2, 2-3. For if Hy contains a subgraph of type 1-1 or 1-2, by
renumbering the compartments and inputs appropriately, T is
transformed to

(i,/)=(@1,1) or (1,2) 1an

where T [(i, j)=(1,1) or (1,2)] represents the matrix which is
uniquely determined corresponding to the subgraphs type 1-1 or
1-2. For instance, the matrix corresponding to the graphs in Fig,
4 is given by ‘

-1 0 0 0 0 0 0

0 -1 0 0 0 0 o0

1 1 -1 0 0 0 0
™=| 0 0 0 -1 0 0 of,

0 0 0 1 -1 0 0

0 0 1 0 1 -1 0

0 0 0 0 o0 1 0

-1 0 0 0 0 0 0

0 -1 0 0 0 0 o0

1 1 -1 0 0 0 o0
=1 o 0 0 -1 0 0 01.

0 0 0 1 -1 0 0

0 0 1 0 1 -1 1

0 0 0 0 o 1 -1

The above matrices are not of full row rank and it is straightfor-
ward to verify that this is true in the general case. Thus, the
matrix T given by (17) cannot be of full row rank. This is a
contradiction. Therefore, the assertion was verified. Now since Ge
is spaned by subgraphs type 1-3, 2-1, 2-2, and 2-3, the result
follows. Q.E.D.

IV.  UNDIRECTED COMPARTMENTAL MODELS |

In the real world, it is quite usual that compartmental models
have bidirectional flows in the sense that if there is a flow from
compartment j to compartment i, then there is also a flow of
reversed direction. Such a compartmental model will be called an
undirected compartmental model. This terminology was moti-
vated by the fact that-the behavior of such models can be
expressed by an undirected graph. ,

Example 2: Consider a liquid system in Fig. 2(a) and a net-
work system in Fig. 2(b). If one regards the tunk 1, 2, 3 and the
capacitor 1, 2, 3, respectively; as compartments, and one regards
water in the tunk and charge in the capacitor as the material of
_ interest, these systems are undirected compartmental models.
Furthermore, the behavior of these systems can be expressed by
an undirected graph in Fig. 2(c).

This section aims at giving a criterion for undirected compart-
mental models to be structurally controllable in terms of undi-
rected compartmental graph. :

In undirected compartmental models each compartment ; has a
parameter c; representing the capacity. If there is a flow between
the two compartments / and j, the rate of flow of material from
compartment / to compartment j (resp. from compartment j to
compartment ) is assumed to be proportional to x;/c; — X;/¢
(resp. x,/¢; — x;/c;) where x; and x ; are, respectively, the amount
of material in compartment / and j (In the case of the liquid
system in Fig. 2(a), c; is the area of tunk i and x, / ¢; is the water
level in tunk . Similarly, in the case of the network system in Fig,
2(b), ¢; is the capacitance of capacitor i and x; /¢, is the voltage in
capacitor i.) Furthermore, like compartmental models in Section
ITI, there may be flows called excretions from some compart-
ments to the model’s environment. The flows from the environ-
ment to the model can be regraded as inputs to the model.

An undirected compartmental model is composed of a set V of
compartments, a set I' of undire¢ted flow channels which inter-
connect compartments, a subset E of V representing excited
compartments, and a subset F of ¥ whose elements are the
compartments with excretions. Consequently, a model can be
characterized by the triple (D, E, F) where D is an undirected
graph D= (V,T). This triple (D, E, F) will be called an undi-
rected compartmental graph [see Fig. 2(c)].

Now consider an undirected compartmental system which is
composed of n compartments and give. these n compartments a
numbering from 1 to » in an arbitrary but fixed way. Let x; be
the state variable which denotes the amount of material in
compartment j, /;; be the proportionality parameter which char-
acterizes the rate of flow between compartment / and J so that
l;j=1;, and I;; be the proportionality parameter which char-
acterizes the rate of flow from compartment J to compartment 0
(the environment). Then defining k; ; by

kij‘=1ij/cj for i=0s1s"':n> J=L,---,n (18)

the undirected compartmental system can be modeled by

x=Apx+Bpu (19)
where P = {1/¢,, li»b;;}, each element of A, is given by (10) and
(18), and b, represents the flow rate parameter from the kth
input to compartment /. It is assumed that a number of the model
parameters /;;, b, are fixed zeros, but the rest of them and all the
¢;’s are independent and unrelated. Furthermore, without loss of
generality, we restrict our consideration to an undirected com-
partmental system (4, B,) where each row of B, contains at
most one nonfixed element and each column of B, contains
exactly one nonfixed element. This is due to the same reasoning
as in the case of compartmental systems in Section III.

Now from the above definitions the undirected compartmental
system has the following features: F1) Nonfixed flow rates ki;’s
are not mutually independent since /; ;=1 in (18), and F2) k,; is
not fixed zero if and only if k;; is not fixed zero. Note that the
former constraint does not allow us the direct use of Theorem 1
to determine whether or not undirected compartmental systems
are structurally controllable.

Theorem 2: Without loss of generality assume that the undi- _
rected compartmental graph does not split into two or more
disjoint subgraphs. An undirected compartmental system (4, B,)
is structurally controllable if and only if the corresponding undi-
rected compartmental graph G, contains at least one excited
compartment.

Proof: The necessity is obviously true. Thus, we shall prove
only the sufficiency part. Below it will be shown that it is possible
to fix some of the parameters to zeros and the resulting system is
still structurally controllable. For this recall that any undirected,
connected graph can be spaned by a tree [14]. Suppose here that
Gy is spaned by a tree G, Now fix /;; (=1;) to zero if edge
(i, j) is not contained in G}, and set all the parameters b;; but
an arbitrary one to zeros. Denote the nonzero one by b. Denote
by P’ the subset of P which is composed of parameters in P not
being fixed to zeros. Finally, by [4}, B;)] denote the matrix
obtained from [A4 »» B,1 by fixing its parameters as above. Note
that the undirected compartmental graph corresponding (4}, B;)
is given by G|, We shall show that (45, B,)) is stmcturaﬁy
controllable. From now on we shall drop prime from P’ for
notational convenience.

First, observe that if elements k; j=1ij/¢; of A, were regarded
as mutually independent and if (19) were regarded as a usual
compartmental system, then the assumptions of the theorem
imply that the system would be structurally controllable (Theo-
rem 1). This implies that there is a proper algebraic variety V in
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the paramefer space {k;;, b} defined by a polynomial ¥ (k;;, b)
as .

v={(kyb) R "p(k;;,b)=0] - (20)
such that for all (kij,b)ER* "=V, (4 », Bp) is controllable.
Next substitute k;; =/;; /c; into (20). Then it is possible to show

that, under the assumption of G, being a tree,
¥(l;/¢,6)=0 (21)

defines an nontrivial algebraic variety W in the parameter space

REVZITEEEIN VIR ,b}. This is the direct consequence
of Lemma 3 below. Therefore, since (4,, B,) is controllable for
all (k;;, b)e€ R* "1 —V, it is controllable for all
(1/(.‘1, e ,1/(.’,,, ) 1ij9 Ty b) € R*"—W. These lmply that

(4,,B,) is structurally controllable.
Therefore, the theorem was completely proven. Q.ED.
Lemma 3: Suppose that edges (1,i;), {2,i3), -+, and (n—
1,i,.,) form a tree spaning Gy, and let /,; be the proportional-
ity parameter of edge (1,i,) for t=1,2,---,n—1; ¢ be the
capacity of compartment j for j=1,2,--,n; b be the weight of
input edge. Let ¢: R*" — R*" ™%

(1/(319 e ’1/611,111'1’ T ln——li,,-p b)
—)‘(llil/clillil/cila Tt In-—li,,_,/cn—-l’In-—li,,_.l/ci,,_l: b)

23

that the image of ¢ includes some open set in R*" %, or equiva-
lently, Jacobi matrix (9¢(p))/dp is generically of full row rank.
We illustrate this by the following example: -~

b
ly l L
@ 12 CAE 23 @ 34@
25 l3g

In this case,

p=Q1/c;,1/¢3,1/¢5,1/cq,1/ 5,1/ 651/ €3,1/cs,
[125123:134’1259136’167’168’b)
e(p)= (ha/crsha/casls/casln /el /c3s
Isg/Carlas/Caslas/ €55 136/ €35 136/ Cos
ler/ces 161/ €2 les/ Cor Les/ Cas b)

and
L, 0 0 0 0 0 00 '1/¢q O 0 0 0 0 010
0 4, 0 0 0 0 0O ! 1/e, 0 0 0 0 0 0! 0
0 I, 0 0 0 0 00, 0 1/c; O 0 0 0 00
0 0 I, 0 0 0 O 0} 0 1/c; O 0 0 0 010
0 0 4 0 0 O 00 ! 0 0. 1/¢5 0 0 0 0! 0
0o 0 0 &, 0 0 00, 0 0 1/¢s O 0 0 010
0 I, 0 0 0 0000 0 0 1/ 0 0 0,0
dp(p) _ 0 0 0 0 [ 0 0O ! 0 0 0 1/es O 0 0! 0
ap 0 0 b 0 0 0 00 : 0 0 0 0 1/¢; O 0 IO
0 0 0 0 0.l 00 | 0 0 0 0 1/¢s O 0 IO-
0 0 0 0 0 Iz 00, 0 0 0o -0 0 1/¢g 0 0
0 0 0 0 0 0 /70! 0. 0 0 0 0 1/¢; 0 O
0 0 0 0 0 Iyig O O: 0 0 0 0 0 0 l/cﬁl 0
(0°0 0 0 0 0 O0ldg 0 0 0 0 0 0 1760
0 0 0 0 0 0 00} O 0 0 0 0 0 U

Then the inverse image W -of any proper algebraic variety V' in

R2=1 ie, W=g~\(V), is a proper algebraic variety in R*".
Proof: Clearly the inverse image of any algebraic variety in

R*"~1is an algebraic variety in R*". Thus, it is enough to show

I, /e, 0 0 0

0 l/Cz 112 0. O

0 0 [23 1/(,‘2 0

0 0 0 1/03 123

0 0 0 0 Iy

0 0 0 0 0

0 0 Ly 0 0

dp(p) ®g)_|0 0 0 0 0
dp dq =10 0 0 0 I
0 0 0 0 0

0o 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

[

Now introduce a permutation mappfng @, Poqg=01/c, l12,

1/¢y, Iz, 1/¢3, laas 1/Cas las, 1/¢sy I3y 1/C65 Lers 1/, Lgs,
1/cg, b). Note that the order of elements in g corresponds to the
tree structure spaning G,. Then we obtain

o 0o 0 0 O 0 0 0 0 0}0
o 0 0 0 0 0 0 0 0 010
o 0 0 0 0 0 0 0 0 00
o o 0 0 O 0 0 0 0 0}0
J; 0 0 0 0O 0 0 0 0 010
Jey ly 0 0 0 0 0 0 0 00
00 1/cc 0 0 0 0 0 0 00
0 O 1/cs Iy 0 0 0 0 0 010
0 0 ©0 0 1/cg 0 0 0 0 00
0 0 0 0 1/cg s O 0-0 00
0 0 0 0 0 [gl/cg0 0 0,0
0 0 0 0 0 0 1/c;lg 0 010
0 0 0 0 0 lg 0 01/¢010
0 0 0 0 0 0 0 01/cglgi0
0 0 0 0 0o o o 0 0 Ol1
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and thus it is clear that (do(p))/dp is generically of full row
rank. It is'straightforward to verify that this is true in the general
case. In fact, the essential point of the above derivation is that by

a permutation mapping 6, the Jacobi matrix (do(p))/dp can be

transformed into the following form:

2,
x ® 2o\
e O
X ) 2,-1
.................. ®:0
0 0]

where ®’s are generically nonzeros.

Permutation mapping 0 for the general case is also obtainable
by making use of the tree structure spaning G, and the way for
the constructron of- 6 would be clear from the above example.

QED.

V. CONCLUSIONS

In this paper, a criterion for compartmental models to be
structurally controllable was obtained in terms of a compartmen-
tal graph. This criterion extends the well-known result on the
single-sink case to the multisink case. Moreover, the above result
was applied to undirected compartmental models and a criterion
for this class of models to be structurally controllable was also
obtained in terms of undirected compartmental graph. From this
result we can obtain intuitive and physical information about the
controllability of some liquid systems and some network systems.

* There are some. physical systems whose parameterizations are
outside the class of linear. parameterization. Further work is
needed for such systems.
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