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Unstable Suboptimal Periodic Control of a Certain \

Chemical Reactor

MASAKAZU MATSUBARA anp KATSUAKI ONOGI

Abstract—The suboptimal periodic control of a CSTR (continuous
stirred tank reactor) in which two reactions are occurring in parallel is
sought by use of a computer simulation technique. The results indicate that
the corresponding suboptimal periodic state may be unstable under open-
loop control and, consequently, some stabilization technique which will be
proposed in another work is required. Structure amalysis based on the
stroboscopic approach is successfully applied for determining the periodic
state which might be unstable.

1. PROBLEM DESCRIPTION

Suppose that two irreversible, exothermic reactions A—B and A—~C
of the ath order and of the first order, respectively, are taking place in a

| CSTR equipped with a jacket or a coil to which a coolant is fed for -
< temperature control. The products B and C are the desired product and

the waste product, respectively. The state equation can be written as

J'c,=_1—x,-ae“/"ﬂx{’—be""/ﬁx,y (1a)

Xy= -‘x2+ ae~ Y/ *xf ‘ (1b)
x3=NAjae~/Faxf+Aybe P/ % — (x3— O u—(x3—6;)  (Ic)
where

0<x <1, 0<x,<1, %320, u>0, 4,>0, §,>0 )
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and g, b, @, ¢, p, Ay, and A, are parameters with positive values. The x;
and x, are the normalized concentrations of 4 and B, respectively, while
the x3, §,, and §; are the normalized temperatures of reactor content,
coolant feed, and raw material feed (4 only), respectively. The « which
is proportional to the overall heat transfer coefficient can be adjusted by
changing the coolant flow rate. When the reactor is subject to a periodic
control with period + satisfying the constraint
U SULSU®,

©)

it is assumed that there exists at least one periodic state (or periodic

regime) with period mr, m=1,2,- -+ such that
x(0)=2x(mr), x(0)=ux,(m7), x3(0) ='x3(m'r ). O]
Then, it is desired to maximize the average yield of B
i mr
J(u)= 7"-;_-1; Xy dt (5)

subject to the conditions (1)~(4), where the value of m will, in most
cases, be equal to one.

The above optimal periodic control problem has already been studied
in detail [1] for the case of §; lower than §,. Although such a case seems
unusual, the resulting optimal periodic state is usually stable. In this
paper the case of 6; higher than 6, is studied and it is observed that the
optimal periodic state is apt to be unstable in such a situation. Since the
general analytical solution of our problem is impossible, only some
numerical solutions are sought. Structure analysis based on the strobo-
scopic approach [2] which has recently been proposed by the present
authors is used for determining the existence and location of periodic
states which might be unstable.

The optimal steady control of the above problem, #°, is an internal
control such that u, <#° <u* if and only if the condition

6

is satisfied in addition to a suitable choice of u, and u* [1]. When #° is
an internal control, the optimal periodic control must be proper if the
condition

ap>1

O

is satisfied [1]. Since our interest is only in the case of the optimal
periodic control being proper, the values of parameters and control
bounds were so chosen as to satisfy these conditions. They are

p<l1

a=2, p=085 a=10%%, b=10%%,
e=10%, A;=10, A,=12 8)
and

uy=00 and u*=5.0, ®

respectively. The feed conditions satisfying 6;>8, were chosen as
0=2.1, 6.=2.5. (10

The optimal steady control can easily be determined as

#°=0.5534. (1

There exist three singular points (equilibrium states) and no limit cycle in
the state space of the reactor, subject to the optimal steady control (11).
The singular points are a stable node, a stable focus, and a saddle. The
optimal steady state corresponds to the saddle for which

J(@°)=0.1917. (12)

II. SusoprTIMAL PERIODIC CONTROL

It is known that the optimal periodic control must be a bang-bang
control under the conditions u, <#° <u* and (7) [1]. So, we assume the
type of the optimal periodic control as
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u*,

u(f)= { e,

kr<t<(k+o)r

(k+o)yr<t<(k+1)r, K=

=1,0,1,-++; 0<o

and seek the values of v and o which maximize the value of J(u)
subject to (1), (2), and (4). The sought control will be suboptxmal wif
respect to the original optimal periodic control problem:be
bang-bang control with more frequent switching in each perxod A
optimal. ‘

Now, our problem reduces to a nonlinear programming proble
two decision variables, 7 and ¢ which are constrained in a ban -shaj
area

{(r,0)|0<r< o0 and O<o< 1}.

Care must, however, be taken about the fact that J(u) is in gen
many-valued function of + and ¢ because there can exist many peri
states corresponding to a specific control. In addition, some pe
state may be unstable. So, it will not be so easy to determine ac
optimal values of 7 and ¢. To help smooth determination of these v
the contour map of J(x) in the ra-plane will in the first step be ro ghl
anticipated from the value of J(u) at the boundary of (14) whic
easily be determined. Similar technique has recently been used by Sinci
and Bailey [3], [4].
At the boundaries ¢=0 and o=1 of (14) the bang-bang control
reduces to the steady controls #=u, =0 and 7= u*=5.0, respectivel
is easy to show that there exists for each of these steady.contr
unique singular point being a stable node and no limit cycle. The v
of J(u) becomes 0.009504. for #i=1wu, and 0.001044 for G=u*. At
boundary r—o0 the state of the reactor tends to the stable node
corresponding to #=u* and #=u, in the interval kr<t<(k-+0)7.
(ke + 0)T <1< (k+1)7, respectively. Hence, there appears a unique qu
steady state for which the value of J(u) is equal to aJ(u*)+(1=a)J(
=0.009504 —0.0084600. At the remaining boundary 7=0, the bang-b
control reduces to a relaxed control in which the value of u'is switc
infinitely fast between u* and u, at the time ratio of ‘¢ to 1—o
known for a system being linear with respect to v as in (1) that a ste
control 7= au"‘+(l —a)u, =50 is equivalent to such a relaxed co'
So, there exist relaxed singular points and relaxed limit' cycles fc
relaxed control which just agree with singular points and limit cyc|
the corresponding steady control. Along these lines it can be'ascer
that there exist three relaxed singular points for 0.003870<0<
and a unique relaxed singular point for 0 <o <0.003870 and 0.11
I and that there exists no relaxed limit cycle for 0 <o < 1. In'the
of o having three relaxed singular points the value of J(u) is maxin
the relaxed singular point of the saddle mode and a jump in the ma
value of J(u) occurs at two extremes of that interval.
If the value of 7 is increased from zero to infinity for a fixed valu
in the interval 0.003870 <o < 0.1164, the number of periodic sta
change from three to one at a certain value of 7 because the nu
equal to three and one for 7=0 and r—»co0, respectively. On the
hand, if the fixed value of o does not belong to the above interva
change in the number of periodic states will not necessanly
because the number is equal to one for both r=0 and 7~
considerations suggest that there exists a curve dividing the region i
into two subregions where the number of periodic states is equal
and three, respectively, and -that the two ends of the curve are ly
the points corresponding to 6=0,003870 and 0.1164 on'the li ;
Further, the contour map of J(u) in the ro-plane will indicate a fau
just along that curve. Also, it is likely that the maximal value of J(‘
occur within the subregion inside the fault line.
Keeping the above-stated points in mind, a rough contour map 0
was made out as shown in Fig, 1. This map indicates that the
point is certainly lying in the subregion inside the fault line and th
map is unimodal within the subregion. Based on these observati
more accurate determination of the optimal point was attempt
applying the complex method [5] to a small rectangular region incl
the forecasted optimal point. The resulting optimal point is given

7==0.8874 and ¢=0.1053.
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Fig. 2. The equiphase trajectories and the periodic states for the optimal periodic
control (v=0.8874 and ¢=0.1053). L: Stable node, J{u)=0.005500; M: Saddle, J(1)=
0.1946; H: Stable focus, J(1)=0.1656.

In the state equation (1) the x, is included only in (Ib) and in the
consequence the system behavior in the x,x5-space is not dependent on
the x,. The equiphase trajectories [2] in the xx;-space corresponding to
the optimal bang-bang control in (15) are depicted in Fig. 2. The
trajectories are determined for the phase when the control is switched
from u, to u*. The discrete equiphase system has three discrete singular
points L, M, and H corresponding to three periodic states of the original
system which are also indicated in Fig. 2. Stability analysis [2] indicates
that these discrete singular points or the corresponding periodic states
are a stable node, a saddle, and a stable focus, respectively. The values
of J(u) for these points are 0.00550, 0.1946, and 0.1656, respectively, and
‘therefore the periodic state of the saddle mode corresponding to the
point M is optimal. The value of J(«) is improved by about 1.5 percent
relative to the value in (12) corresponding to the optimal steady control
in (11).

To illustrate . the change in the optimal point due to change in the
control bounds, the values of J(u) for the suboptimal periodic control
and the optimal steady control versus the value of u* are indicated in
Fig. 3. In the interval of u* less than #° in (11), the optimal periodic
control is not proper but a steady boundary control #= u*. The subopti-
mal periodic state or the optimal steady state is of the saddle mode for
0.01935 <u* < oo and of the stable nodal mode for 0 <u* <0.01935.
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Contour map of J(u) in To-plane. (a) The entire picture. (b) Details of the subregion inside the fault line.
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Fig. 3. The maximal values of J(1) for the optimal periodic control and the optimal
steady control versus the value of »* (the value of «, is fixed at zero).

III. CONCLUDING REMARKS

The suboptimal periodic state of the reactor corresponding to the
suboptimal periodic control is apt to be unstable under the usual feed
condition such that §;>0, and, in addition, it may be of the saddle
mode. Use of the structure analysis based on the stroboscopic approach
is not only indispensable for finding a periodic state of the saddle mode
but also useful for determining the optimal periodic state under the
existence of multiple periodic states.

Stabilization of the unstable optimal periodic state will be proposed in
another work [6].
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