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Abstract—This paper is devoted to a novel characterization
of singular values of nonlinear operators. Although eigenvalue
and spectrum analysis for nonlinear operators has been stud-
ied by many researchers in mathematics literature, singular
value analysis has not been investigated so much. In this paper,
a novel framework of singular value analysis is proposed which
is closely related to the operator gain. The proposed singular
value analysis is based on the eigenvalue analysis of a special
class of nonlinear operators called differentially self-adjoint.
Some properties of those operators are clarified which are
natural generalization of the linear case results. Furthermore,
a sufficient condition for the existence of singular values is
provided. The proposed analysis tools are expected to play an
important role in nonlinear control systems theory as in the
linear case.

I. INTRODUCTION

Eigenvalue analysis with the related techniques is one

of the most beneficial tools in many scientific research

fields. In particular, eigenvalue and singular value analysis

plays a crucial role in linear control systems theory. It

is quite natural to consider how to generalize these tools

for nonlinear operators, whereas they are originally used

for linear operators. In fact, there are several papers on

eigenvalue and spectrum analysis for nonlinear operators
in mathematics literature [1], [2], [3], [4].

Let us consider a Banach space X with a field K and

a linear operator A : X → X . Its eigenvalue λ and the
corresponding eigenvector x are obtained by solving

Ax = λx, λ ∈ K, x(�= 0) ∈ X.

Here λ rendering A−λI non-invertible is called a spectrum
of A. The nonlinear version of this eigenvalue problem is
formulated in a similar way as follows. Consider a nonlinear

operator f : X0 → X with X0 ⊂ X . Its eigenvalue λ and
the corresponding eigenvector x are obtained by solving

f(x) = λx, λ ∈ K, x(�= 0) ∈ X.

Here λ rendering f−λI non-invertible is called a spectrum
of f . The above nonlinear eigenvalue problem is a natural
generalization of the linear case.

On the other hand, nonlinear versions of singular value

problems were not investigated so much. This is because

the definition of a nonlinear version of adjoint operators are
not clear. In the linear case, singular vectors x’s of a linear
operator A are characterized by the eigenvectors of A∗A
with A∗ the adjoint of A, and the corresponding singular
values are given by square roots of the eigenvalues of A∗A.
See e.g. [5]. Although there are some research on adjoints
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of nonlinear operators [6], [7], [8], [9], its direct application

does not derive any framework for singular value analysis

so profitable as that in the linear case.

The objective of this paper is to provide a natural

definition of singular values of nonlinear operators and to

clarify some of their properties. First of all, recall that

singular values in the linear case has a close relationship

to the operator gain. A new definition of singular values

of nonlinear operators is proposed based on their gain

analysis. Then it is shown that thus defined singular values

can be calculated by solving a special class of nonlinear

eigenvalue problems with respect to a differentially self-
adjoint operator which is a nonlinear counterpart of a self-
adjoint operator in the linear case. Furthermore, some of

their properties related to the existence of singular values

are clarified.

In this paper, K ∈ {R, C} denotes a field where R and

C denote the space of real numbers and that of complex

numbers, respectively. The symbol N denotes the space

of natural numbers. The operators d(·) and d(·) denote
Fréchet derivative (for conventional operators) and exterior

derivative (for differential forms), respectively, and the

word ‘differentiable’ stands for ‘Fréchet differentiable’. The

symbols Re(x) and Im(x) with a complex number x ∈ C

denote its real part and the imaginary part, respectively. The

product 〈·, ·〉 denotes the inner product for the correspond-
ing Hilbert space with the field K. The symbols Sr and Dr

denote a sphere Sr(X) := {x ∈ X | ‖x‖ = r} and a disk
Dr(X) := {x ∈ X | ‖x‖ ≤ r}, respectively. The symbol
TxM denotes the tangent space of M at x.

II. SINGULAR VALUES OF NONLINEAR OPERATORS

First of all, recall the definition of singular values in

the linear case in order to show the line of thinking in

the nonlinear case. In the linear case, singular values and

singular vectors of a linear (compact) operator A : X → Y
with Hilbert spaces X and Y are characterized by the

eigenvalue problem of A∗A : X → X

A∗Ax = λx, λ ∈ K, x(�= 0) ∈ X. (1)

Here the solution x is called a (right) singular vector
of A. The eigenvalue λ is always real and non-negative
because A∗A is self-adjoint and positive semi-definite. So
the corresponding singular value can be defined by

σ =
√

λ

(
=

‖Ax‖
‖x‖

)
. (2)
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Singular values are important because it characterizes the

operator gain by

‖A‖ := sup
x �=0

‖Ax‖
‖x‖ = sup

‖x‖=1

‖Ax‖
‖x‖ = sup σ. (3)

How can we define singular values for nonlinear oper-

ators? Recall also that, when x is a singular vector corre-
sponding to a nonzero singular value, then it is a critical

point of the square of the input-output ratio ‖Ax‖2/‖x‖2

under the constraint x ∈ S1(X) [5], that is,

d

(‖Ax‖2

‖x‖2

)
(dx) = 0, ∀dx s.t. (x, dx) ∈ TxS1(X).

Here we adopt this relationship as the starting point to define

singular vectors of nonlinear operators. Consider a nonlinear

operator g : X0 → Y with an open set X0 ⊂ X containing
0. Take an arbitrary positive constant r > 0 and consider a
similar problem finding critical points of the square of the

input-output ratio under a constraint x ∈ Sr(X) ∩ X0.

d

(‖g(x)‖2

‖x‖2

)
(dx) = 0

∀dx s.t. (x, dx) ∈ Tx(Sr(X) ∩ X0). (4)

Here an additional parameter r is introduced because the
input-output ratio of a nonlinear operator varies according

to the input magnitude r, differently from the linear case.
In the nonlinear case, the singular vectors satisfying

(4) is characterized by the following nonlinear eigenvalue

problem.

Theorem 1: Consider Hilbert spaces X and Y with a
field K, and a bounded nonlinear operator g : X0 → Y
with an open set X0 satisfying 0 ∈ X0 ⊂ X . Suppose that
g is differentiable. Then x is a solution of (4) if and only if
it satisfies

(dg(x))∗g(x) = λ x, λ ∈ R, x(�= 0) ∈ X0. (5)

Proof: The problem (4) is to find a critical point of
‖g(x)‖2/‖x‖2 under a constraint ‖x‖ = r. We start from

d

(‖g(x)‖2

‖x‖2

)
(dx)

=
〈g(x), dg(x)(dx)〉 + 〈dg(x)(dx), g(x)〉

r2

=
2

r2
Re〈(dg(x))∗g(x), dx〉 = 0.

By differentiating the constraint ‖x‖ = r of Sr(X), we
obtain

Re〈x, dx〉 = 0.

Hence Equation (4) is equivalent to

Re〈(dg(x))∗g(x), ξ〉 = 0, ∀ξ ∈ X s.t. Re〈x, ξ〉 = 0

Sufficiency of the theorem is proved first. If λ ∈ R and

x ∈ X0 satisfy Equation (5), then

Re〈(dg(x))∗g(x), ξ〉 = Re〈λx, ξ〉 = Re (λ · 〈x, ξ〉)
= Reλ · Re〈x, ξ〉 − Imλ · Im〈x, ξ〉
≡ 0.

This proves the sufficiency.

Necessity is proved then. Note thatX can be decomposed
into two orthogonal subspaces

X = X‖x ⊕ X⊥x

X‖x := {νx | ν ∈ K}
X⊥x := {ξ ∈ X | 〈x, ξ〉 = 0}.

Further, using an expression ν = λ+iµ,X‖x can be divided

into two sets

X‖x = XRx ∪ XiRx

{0} = XRx ∩ XiRx

XRx := {λx | λ ∈ R}
XiRx := {iµx | µ ∈ R}

Then we obtain a unique decomposition

(dg(x))∗g(x) = λx + iµx + x⊥x,

λx ∈ XRx, iµx ∈ XiRx, x⊥x ∈ X⊥x.

This yields

Re〈(dg(x))∗g(x), ξ〉
= Re〈λx + iµx + x⊥x, ξ〉
= Re〈λx, ξ〉 − iIm〈µx, ξ〉 + Re〈x⊥x, ξ〉
= −µ · Im〈x, ξ〉 + Re〈x⊥x, ξ〉
≡ 0, ∀ξ s.t. Re〈x, ξ〉 = 0.

Since Im〈x, ξ〉 can be an arbitrary (non-zero) value, µ = 0.
Moreover, we have

x⊥x ∈ X⊥x ⊂ {ξ ∈ X | Re〈x, ξ〉 = 0},
that is, x⊥x can be taken as ξ. Therefore x⊥x = 0 has to
hold, which proves the necessity. This completes the proof.

This property motivates us to characterize singular values

and singular vectors of nonlinear operators as follows.

Definition 1: Consider Hilbert spaces X and Y with a
field K, and a differentiable bounded nonlinear operator

g : X0 → Y with an open set X0 satisfying 0 ∈ X0 ⊂ X .
An eigenvector of the operator x �→ (dg(x))∗g(x) corre-
sponding to a real eigenvalue, that is, x ∈ X0 satisfying

(5) is called a singular vector of g and the corresponding
input-output ratio defined by

σ =
‖g(x)‖
‖x‖

with the singular vector x is called a singular value of g.
Note that Equation (5) is a natural nonlinear general-

ization of the singular value problem in the linear case

(1). The reason why we adopt the second equation of (2)

as the definition of singular values of nonlinear operators

instead of the first one, is because λ in (5) can be negative.
Furthermore, this definition yields the property

‖g‖ := sup
x∈X0

‖g(x)‖
‖x‖ = sup σ
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as in the linear case (3), because the input maximizing

the input-output ratio arg sup(‖g(x)‖/‖x‖) has to satisfy
Equation (4). Namely, nonlinear singular values are also

closely related to the operator gain.
Remark 1: The author has provided a similar definition
of singular values for nonlinear Hankel operators in [10].

This definition works quite nicely for Hankel operators,

and nonlinear balanced realization and model reduction

procedure are obtained consequently [11], [12]. Another

important example of the proposed singular values can be

found in L2 gain analysis [13]. In fact, investigating the

singular values for L2 stable nonlinear input-output systems

is equivalent to analyzing the solution of the corresponding

Hamiltonian extension giving the solution of L2 gain anal-

ysis of the original operator [12].

III. DIFFERENTIALLY SELF-ADJOINT OPERATORS

In order to investigate the solution of (5), we need to

characterize a nonlinear version of a self-adjoint operator,
since the eigenstructure of such operators play an important

role in investigating singular values of linear operators. Let

us define differentially self-adjoint operators as follows.
Definition 2: Consider a Hilbert space X with a field K,

and a bounded nonlinear operator f : X0 → X with an

open set X0 satisfying 0 ∈ X0 ⊂ X . The operator f is said
to be differentially self-adjoint if it is differentiable and if
df(x) : X → X is self-adjoint for all x ∈ X0.
An intuitive motivation of this definition is explained by

the following lemma and corollary.
Lemma 1: Consider a Hilbert space X with a field K,
and a bounded nonlinear operator h : X0 → R with an
open set X0 satisfying 0 ∈ X0 ⊂ X . Suppose that h is
continuously differentiable and that there there exists an
operator f : X0 → X satisfying

dh(x)(dx) = Re〈f(x), dx〉. (6)

Then the operator f is differentially self-adjoint.
Proof: First of all, the second order derivative of h is

given by

d2h(x)(dx)(dx)

= d(dh(x)(dx))(dx)

= d(Re〈f(x), dx〉)(dx)

=
1

2
d(〈f(x), dx〉 + 〈dx, f(x)〉)(dx)

=
1

2
(〈df(x)(dx), dx〉 + 〈dx, df(x)(dx)〉)

= Re〈df(x)(dx), dx〉.
The definition of Fréchet derivative implies that the second

order derivative d2h(x) : X × X → R is symmetric with

respect to the two variables, that is,

d2h(x)(ξ)(η) = d2h(x)(η)(ξ), x ∈ X0, ξ, η ∈ X.

Therefore, we obtain

Re〈df(x)(η), ξ〉 = Re〈df(x)(ξ), η〉 = Re〈η, df(x)(ξ)〉
= Re〈η, df(x)(ξ)〉, x ∈ X0, ξ, η ∈ X

because d2h(x)(ξ)(η) ∈ R. Further, substituting η = iζ,
ζ ∈ X ,

Im〈df(x)(ζ), ξ〉 = Im〈ζ, df(x)(ξ)〉.
Namely, df(x) is self-adjoint for all x ∈ X0. This proves

the lemma.

Corollary 1: Consider Hilbert spaces X and Y with a
fieldK, and a bounded nonlinear operator g : X0 → Y with
an open set X0 satisfying 0 ∈ X0 ⊂ X . Suppose that g is
continuously differentiable. Then the operator f : X0 → X
defined by

f(x) := (dg(x))∗g(x) (7)

is differentially self-adjoint.
Proof: Corollary follows directly from Lemma 1 by

defining h : X0 → R as

h(x) :=
1

2
‖g(x)‖2

because

dh(x)(dx) =
1

2
(〈g(x), dg(x)(dx)〉 + 〈dg(x)(dx), g(x)〉)

= Re〈g(x), dg(x)(dx)〉
= Re〈(dg(x))∗g(x), dx〉

which implies (6).

Therefore, any singular value problem reduces down to

an eigenvalue problem with respect to a special class of

operators called differentially self-adjoint.

The final objective of this section is to provide a converse

result of of Lemma 1. To this end, let us state the following

lemma.

Lemma 2: Consider a Hilbert space X with a field K,
and a bounded nonlinear operator f : X0 → X with any
simply connected open set X0 satisfying 0 ∈ X0 ⊂ X .
Suppose that f is differentially self-adjoint. Then

〈f(x), x〉 ∈ R, ∀x ∈ X0.

Proof: Suppose that X0 is convex without loss of

generality, since a simply connected set is homeomorphic

to a convex one. Hence we can define an operator F :
X0 × X → X by

F (x)(ξ) :=

∫ 1

0

df(tx)(ξ) dt.

F (x) : X → X is linear and self-adjoint for all x ∈ X0,

because

〈η, F (x)(ξ)〉 =

∫ 1

0

〈df(tx)(ξ), η〉dt

=

∫ 1

0

〈ξ, df(tx)(η)〉dt

= 〈ξ, F (x)(η)〉.
Then we have

f(x) =

∫ 1

0

df(tx)

dt
dt + f(0) =

∫ 1

0

df(tx)(x)dt

= F (x)(x).
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Here we use the relation f(0) = 0, which is implied by
boundedness of f . Since F (x) is self-adjoint,

〈f(x), x〉 = 〈F (x)(x), x〉 = 〈x, F (x)(x)〉
= 〈x, f(x)〉 = 〈f(x), x〉

holds for all x ∈ X0. That is, 〈f(x), x〉 is real for all x ∈ X0

which is the claim of the lemma.

Using this lemma, we can prove a converse result of

Lemma 1, which is a variation of Stokes’s theorem.

Theorem 2: Consider a Hilbert space X with a field K,
and a bounded nonlinear operator f : X0 → X with a
simply connected open set X0 satisfying 0 ∈ X0 ⊂ X .
Suppose that f is differentiable. Then f is differentially self-
adjoint if and only if there exists an operator h : X0 → R

satisfying
dh(x)(dx) = Re〈f(x), dx〉. (8)

Proof: Since sufficiency is proved in Lemma 1,

only necessity is proved here. Consider a curve C in X0

connecting 0 and x. Define an operator hC : X → R by

hC(x) :=

∫
C

Re〈f(x), dx〉 (9)

which depends on the choice of the curve C. Let {ek},
k ∈ N denote a set of orthonormal basis of the space X .
Here let us define a sequence of sets {Kl}, l ∈ N as follows

K1 = {1}
K2 = {2, . . . , k2}
K3 = {k2 + 1, . . . , k3}

...

such that each setKl contains finite elements and ∪∞
l=1Kl =

N. Take an arbitrary curve C = {c(t) | t ∈ [0, 1]} in X0

connecting 0 and x

c(t) =

∞∑
k

ck(t)ek.

Here we suppose that e1 = x/‖x‖ holds without loss of
generality. Then the following relations hold.

ck(0) = 0, k ∈ N

c1(1) = 1

ck(1) = 0, k(�= 1) ∈ N

Define a set of curves Cl = {cl(t) | t ∈ [0, 1]},
cl(t) :=

∑
k∈Kl

ck(t)ek.

Then we have a relation∫
C

Re〈f(x), dx〉 =

∞∑
l=1

∫
Cl

Re〈f(x), dx〉

because Cl’s are contained inX0 due to its convexity (which

can be assumed without loss of generality as in the proof

of Lemma 2). Let us represent f(x) using the basis {ek}
as

f(x) =
∞∑

k=1

fk(x)ek

which yields∫
Cl

Re〈f(x), dx〉 =

∫
Cl

Re
∑

k∈Kl

fk(x) dxk

where x =
∑∞

k=1 xkek. Since f is differentially self-
adjoint, gradient of the vector {fk(x)}, k ∈ Kl with respect

the variables {xk}, k ∈ Kl is symmetric, that is, the

differential 1-form
∑

k∈Kl
fk(x) dxk is closed

d{xk}k∈K
l

∑
k∈Kl

fk(x) dxk = 0

where d{xk}k∈K
l

denotes the exterior derivative for differ-

ential forms with respect to {xk}, k ∈ Kl. Furthermore, for

l ≥ 2, Cl is a closed curve because each set Kl contains

a finite number of the basis. Hence we can define compact

connected sets C̃l’s such that

∂C̃l = Cl

holds. Stokes’s theorem implies that∫
Cl

Re
∑

k∈Kl

fk(x) dxk

=

∫
C̃l

Re d{xk}k∈K
l

∑
k∈Kl

fk(x) dxk

= 0

for any l ≥ 2. Finally we obtain∫
C

Re〈f(x), dx〉 =

∫
C1

Re f1(x) dx1 (10)

which implies that the integral hC in (9) does not depend on

the choice of the curve C. (It depends only on the terminal
point x.) It is obvious that h = hC satisfies (8). This proves

the theorem.

IV. EIGENVALUE ANALYSIS OF DIFFERENTIALLY

SELF-ADJOINT OPERATORS

This section investigates the solution structure of the

eigenvalue problems of differentially self-adjoint operators

based on the results derived in the previous sections, which

is particularly useful for singular value analysis of nonlinear

operators as explained in Theorem 1.

Theorem 3: Consider a Hilbert space X with a field K,
and a bounded nonlinear operator f : X0 → X with
a simply connected open set X0 satisfying 0 ∈ X0 ⊂
X . Suppose that f is differentially self-adjoint. Then all
eigenvalues of f are real. Furthermore, if f satisfies (7),
then all eigenvectors of f are singular vectors of g.
Proof: Former part is proved first. If λ ∈ K is an

eigenvalue of f , then Lemma 2 implies that

λ‖x‖2 = 〈λx, x〉 = 〈f(x), x〉 ∈ R
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holds with the corresponding eigenvector x. Since x �= 0,
the eigenvalue λ has to be real, which is the claim of the
former part. The latter part follows readily from the former

part and Definition 1.

This theorem allows us to concentrate on real eigenvalues
when we treat differentially self-adjoint nonlinear operators,

as in the linear case.

The final objective of this paper is to obtain a some

conditions on the existence of singular values of nonlinear

operators (i.e., eigenvectors of differentially self-adjoint

operators).

Theorem 4: Consider the Hilbert spaceX = Rn with the
field K = R, and a bounded nonlinear operator f : X0 →
X with a simply connected open set X0 satisfying 0 ∈
X0 ⊂ X . Suppose that f is differentially self-adjoint, and
that df(0) : X → X has n distinct eigenvalues. Then there
exists a set Dr(R) ⊂ R satisfying {x | ‖x‖ ∈ Dr(R)} ⊂
X0, and a set of differentiable operators λi : Dr(R) → R’s
and xi : Dr(R) → X0’s satisfying

f(xi(s)) = λi(s) xi(s), ‖xi(s)‖ = |s|, s ∈ Dr(R). (11)

Proof: Theorem 2 implies that there exists a differen-
tiable operator h : X0 → R satisfying

dh(x)(dx) = Re〈f(x), dx〉.
The operator h also satisfies

d2h(x)(dx)(dx) = 〈df(x)(dx), dx〉
Therefore we have

h(x) = 〈f(0), x〉 + 〈df(0)(x), x〉 + o(‖x‖2)

= 〈df(0)(x), x〉 + o(‖x‖2)

= ĥ(x) + o(‖x‖2)

with ĥ(x) := 〈df(0)(x), x〉 a quadratic approximation of
h(x). Now let λ̂1 > . . . > λ̂n denote the eigenvalues

of df(0) : X → X and x̂1, . . . , x̂n, ‖x̂i‖ = 1 denote
the corresponding normalized eigenvectors. Since df(0) :
X → X is self-adjoint, the upper and lower bounds of the
ratio ĥ/‖x‖2 on a sphere Sr(X) coincide with λ̂1 and λ̂n,

respectively.

sup
x∈Sr(X)

ĥ(x)

‖x‖2
= λ̂1, inf

x∈Sr(X)

ĥ(x)

‖x‖2
= λ̂n.

In fact, we have

dĥ(±rx̂i)(dx) = 0, ∀dx s.t. (x, dx) ∈ TxSr(X)

d2ĥ(±rx̂1)(dx)(dx) < 0, ∀dx s.t. (x, dx) ∈ TxSr(X)

d2ĥ(±rx̂n)(dx)(dx) > 0, ∀dx s.t. (x, dx) ∈ TxSr(X).

Namely, the operator ĥ(x)/‖x‖2 restricted to the set Sr(X)
has its maximum value λ̂1 at x = ±rx̂1 and its minimum λ̂n

at x = ±rx̂n. Recall that the set Sr(X) is compact, so the
operator h(x)/‖x‖2 also have its maximum and minimum

on each set Sr(X). Since ĥ is a quadratic approximation
of h at 0, there exists a neighborhood of 0 on which

the operator h(x)/‖x‖2 restricted to the set Sr(X) has
its (local) maximum at the points x = x1(r) ≈ rx̂1 and

x = x1(−r) ≈ −rx̂1, and its minimum at the points

x = xn(r) ≈ rx̂n and x = xn(−r) ≈ −rx̂n. This proves

the theorem in the case n = 2 indeed.
As h is continuously differentiable, x1(s) and xn(s)
smoothly depends on s (in a neighborhood of 0). Since
there exists an isometric diffeomorphism converting x1(s)
and xn(s) into the coordinate axes [11], we can assume that
x1(s) and xn(s) coincide with the coordinate axes without
loss of generality.
The proof is completed by induction with respect to the

dimension n.
(i) The case n = 1 is trivial, and the case n = 2 follows
readily from the above discussion.

(ii) The case n = k > 2: Suppose that the theorem in the
case n = k−1 holds and that the coordinate axes x1 and xn

are chosen in the above way. Consider a plane x1 = t. Then
the case n = k−1 implies that there exists a neighborhood
of 0 on which there exist k−1 independent solutions of (11),
that is, there exist functions λ̃i(s̃)’s and x̃i(s̃)’s satisfying

f j(x̃i(s̃)) = λ̃i(s̃)x̃
j
i (s̃), j = 2, . . . , k

‖x̃i(s̃)‖2 = s̃2 + t2

with x = (x1, . . . , xk) and f(x) = (f1(x), . . . , fk(x))
the expressions in local coordinates. Here what we need

to prove is the existence of t and λ satisfying

f1(t) = λ t⎛
⎝ k∑

j=2

f j(x̃(s̃))2

⎞
⎠

1

2

= λ s̃

This problem reduces to the eigenvalue problem in the case

n = 2 by regarding (s̃, t) as local coordinates. Hence there
exists an eigenvector (s̃, t) = (s̃(s), t(s)) for each i whose
corresponding eigenvalue has to coincide with λ̃i(s̃(s)).
This proves the theorem in the case n = k.
The steps (i) and (ii) imply the theorem.
Furthermore, we can prove a relationship between the

eigenvalues of f and the singular values of g. Recall the
linear case and let σi’s and λi’s denote the singular values

of A : X → Y and the eigenvalues of A∗A : X → X .
Then clearly we have

λi = σ2
i (12)

due to the definition (2). The nonlinear counterpart of this

equation is given by the following theorem.

Theorem 5: Consider Hilbert spaces X = Rn and Y
with a field K, and a bounded nonlinear operator g :
X0 → Y with an open set X0 satisfying 0 ∈ X0 ⊂ X .
Suppose that the operator f defined by (7) satisfies the
assumptions in Theorem 4. Then the singular values σi(s)’s
of g defined by σi(s) := ‖g(xi(s))‖/‖xi(s)‖ and the
eigenvalues λi(s)’s of f satisfy

λi(s) = σi(s)
2 + s σi(s)

dσi(s)

ds
. (13)
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Further, the converse relation is given by

σi(s)
2 =

2

s2

∫ s

0

s λi(s)ds. (14)

Proof: First of all, the second equation in (11) is

s2 = ‖xi(s)‖2

which implies

2 s ds = d(‖xi(s)‖2)(ds) = 2〈xi, dxi(s)(ds)〉. (15)

We have another relation

σi(s)
2 =

‖g(xi(s))‖2

‖xi(s)‖2
.

This reduces to

d(σi(s)
2)(ds)

= d

(‖g(xi(s))‖2

‖xi(s)‖2

)
(ds)

=
2‖xi‖2〈g(xi), dg(xi)(dx)〉 − 2‖g(xi)‖2〈xi, dx〉

‖xi‖4

=
2〈(dg(xi))

∗g(xi) − σ2
i xi, dx〉

‖xi‖2

=
2〈f(xi) − σ2

i xi, dx〉
s2

=
2(λi − σ2

i )〈xi, dxi(s)(ds)〉
s2

=
2(λi − σ2

i )

s
ds.

Here we use the relation (15). Therefore,

λi(s) = σi(s)
2 +

s

2

dσi(s)
2

ds
= σi(s)

2 + s σi(s)
dσi(s)

ds
(16)

which is equivalent to (13). Moreover, multiplying the above

(left) equation by s, we obtain a form

s λi(s) =
1

2

d(s2σi(s)
2)

ds
.

Hence, integrating this equation, we obtain

σi(s)
2 =

2

s2

∫ s

0

s λi(s)ds + c

with a constant c. Further, Equation (16) implies that c = 0
which reduces the above equation to Equation (14). This

completes the proof.

Theorem 5 shows the fact that there is a one-to-one

relationship between λi(s) and σi(s). In the linear case,
both σi(s)’s and λi(s)’s are constant, so Equations (13)
and (14) recover the straightforward relationship (12).

V. CONCLUSION

This paper proposed a novel framework for singular value

analysis of nonlinear operators. First of all, a natural defini-

tion of nonlinear singular values is proposed. Second, it is

shown that the singular values thus defined can be obtained

by solving a special class of nonlinear eigenvalue problems

with respect to differentially self-adjoint operators. Third,

some properties of singular values are clarified. Finally, a

sufficient condition for the existence of singular values is

proved. It is expected that this framework will provide a

useful analysis tools for nonlinear control systems theory

as in the linear case.
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