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On Almost Invariant Subspaces of Structured
Systems and Decentralized Control

YOSHIKAZU HAYAKAWA, MEMBER, IEEE, AND DRAGOSLAYV D. SILJAK, FELLOW, IEEE

Abstraci—Graph-theoretic conditions are obtained for a structured
system to have a property that the supremal £ -almeost invariant
(controllability) subspace is generically the entire state space and that the
infimal £,-almost conditional invariant (complementary observability)
subspace is generically the zero subspace. The conditions are used to
determine stabilizability of structured interconnected systems via decen-
tralized feedback control. Although the obtained graph-theoretic condi-
tions are conservative, they are considered satisfactory to the extent that
the benefits of easy testability involving only binary calculations outweigh
the conservativeness in the results.

1. INTRODUCTION

N formulatiig decentralized control strategies for linear
time-invariant systems, there has been a considerable effort to
- obtain stabilizability conditions via the concept of structural
controllability [1], [2], which are parameter independent. The
notion of structiirally fixed modes has been introduced [3] and a
number of results have been obtained [4], [5]~[7], which provide
conditions for existence of decentralized controllers [8] for
stabilization of linear systems. Although the stabilizability condi-
tions are parameter independent, the resulting stability of the
closed-loop system is not. In the case of interconnected systems,
the lack of robustness causes concern due to essential parameter
uncertainty in the interconnections among the subsystems.

When a system is composed of interconnected subsystems, it
can be stabilized by local state or output control proyided certain
conditions ‘are satisfied involving the local feedback gains and
structure of interconnections (e.g., [9]-[13]). Stability of the

overall closed-loop system established in this way is invariant to’

arbitrary (bounded) values of the interconnection parameters. The
approach, however, requires that each subsystem be transformed
into a canonical form, which makes the parameter independence a
conditional property of the resulting closed-loop system.
Recently, some new and promising results have been obtained
for decentralized stabilization [14], [15], which utilize the concept
of almost disturbance decoupling and small gain theorems in the
context of almost invariant subspaces formulated in [16] and [17].
These results are free of canonical form restrictions and guarantee
a type of connective stability of the closed-loop system,
-which tolerates parameter uncertainty in the interconnections
among the subsystems. The stabilizability conditions, however,
are parameter dependent because the relevant subspaces vary as
functions of system parameters. One way to overcome this
dependency is to select the cases in which the relevant subspaces
are invariant under perturbations of system parameters. This leads
to investigation of the subspaces in the framework of structured
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systems. Although the general problem is difficult, if not
impossible, it can be solved effectively when the subspaces are
equal to either the entire state space or the zero space.

In this paper, we introduce the conditions for a structured
system to have the property that the supremal £ ,-almost invariant
(controllability) subspace is generically the entire state space and
that the infimal £,-almost conditional invariant (complementary
observability) subspace is generically the zero space. The
conditions are formulated in terms of directed graphs using the
concept of generic rank of system matrices. In this way, we
consider interconnection terms as disturbances of decoupled
subsystems and use the conditions to determine stabilizability of
structured interconnected systems by decentralized controllers.
Although the obtained graph-theoretic conditions are conserva-
tive, they are considered satisfactory to the extent that the
conservativeness is outweighed by easy testability of the condi-
tions which require only binary combinatorial calculations.

II. ALMOST INVARIANT SUBSPACES AND SYSTEM MATRICES
Consider a linear time-invariant system
S: x=Ax+ Bu,
y=Cx 2.1

where x(f) € X := R", u(t) € W:= R",and y(t) € Y:= R’
are the state, input, and output of S at time ¢ € R, and &, U, and
Y are normed vector spaces. With S we associate the following
almost invariant subspaces [16], [17]:

V) e c—the supremal &£,-almost invariant subspace ‘‘con-
tained’’ in Ker C; (R;;kxer ~—the supremal- £ ,-almost controllabil-
ity subspace ‘‘contained” in Ker C; 8}  ,—the infimal £,-
almost conditional invariant subspace ‘‘containing’’ Im B;
9t ¥, ;—the infimal £,-almost complementary observability sub-
space ‘‘containing’’ Im B.

These spaces can be computed by the well-known algorithms

Vppi=Ker C N A-1(Ve+Im B), V=%  (2.2)
Sep=Im B+A (Ker C N 8),  S={0}  @3)
and
Vi kerc= Vn+Su, 2.4)
R kor 0= S 2.5)
85 ma="n N 8y 2.6)
Nf mp= Vo @.7)

We recall that the triple (4, B, C), or the system §, is called
standard when the matrix B has full column rank and C has full
row rank, and state the following result [18]. :

Lemma 2.8: Let a triple (4, B, C) be standard. Then, the
state-space X can be decomposed into four independent subspaces
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Xy, Xy, Xy, and Xy e, X = X, 0 X, ® X3 & Xy) such that
2.9
(2.10)
where V, and 8, are defined in (2.2) and (2.3). Furthermore,

XL 0 L=V,
xL; @ HI4=S,,

there exist three nonsingular matrices T, H, G and two matrices .

F, J such that

-t 1| |st,-4 Bl T o
| o & c ollFr ¢

sl — Ay O § 0
: sly,— Az i B,
8l — A, {' 0 0
=1 O sl A4§ 0 B
o T S 0 o o
| 0 0 0 C; 10 0|
2.11)
where the n; X n; matrix A; corresponds to T-'A4 |, T, i = 1, 2,

3, 4, and B,, By, C;, and C4 have dimensions ny X mc, ny X mp,
10 X n, and/, X n4. In (2 11), the matrle, is the rational form,
the pairs (A4,, Bz) and (47, CT) are in Brunovsky canonical form,
and the triple (Cy, A4, By) is in the prime canonical form.

Remark 2.12: We note that m, = I, because (Cy, Ay, By) is
prime.

From the above facts and, in partlcular (2.4)-(2.10), we can get
the relations

Vikerc=L1 @ Xy @ Xy, (2.13)
Rfkerc=L2 @ Xy, (2.14)
SiimB= Xa, (2.15)
RNfmp=L1 ® Xa. (2.16)

By p(+) we denote the rank of the indicated matrix and prove
the following. :

Theorem 2.17: Let the system S be standard. Then

i) ’erc &L iff

p ([SIE,A g]>=n+1 for almost all s € C; (2.18)

i) ¥ = X iff

bKer C

p<[sfg4 g]>=n+1 foralls € C;  (2.19)

iif) 8, 5 = {0} iff

p<[SIZ,A g]>=n+m for almost all s € C; (2.20)

iv) 9L, = {0} iff

p<[s15A §]>=~+m foralls € C. (2.21)

Proofs of lemmas, theorems, and corollaries are given in the
Appendix.

Remark 2.22: Even if § is not standard, parts i) and ii) of
Theorem 2.17 hold when C = 0. In fact, if C = 0, i) is trivial
because’W‘K o = X and (2.18) holds for[ = (), Furthermore ii)
becomes the well-known rank condition for controllability be-
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cause R ¥ bxer o 18 the controllable subspace. Similarly, iii) and iv)
hold when B = 0, because iii) becomes a trivial statement and iv)
becomes the rank condition for observability, since 9 bim o 18 the

' unobservable subspace.

Theorem 2.17 establishes the relationships between the almost
invariant subspaces and system matrices for an important special
case which is of interest in this paper. In partlcular the
relationships are useful in formulating the generic properties of
these subspaces in the graph-theoretic framework.

In the context of structural analysis, instead of a_system .S and a
triple (4, B, C), we consider a structured system § described by a
triple of structured matrices (4, B, C) each having a number of ,
fixed zero elements while the rest of the elements are independent
free parameters. The parameter space R’ has the dimension »
equal to the total number of the indeterminate entries of A, B, C.
When A, B, and C are numeric matrices obtained from A4, B and
Cby ﬁxmg their indeterminates at some specific values in a set @
CR*, we write (4, B, C) € @®.

Definition 2.23: Given a structured triple (4, B, ), we deﬁne
the following.

i) The supremal £p-almost invariant (controllability) subspace
contained in Ker C is said to be generlcally equal to the whole
state-space X, which is denoted by V¥ bker o = X G £ X),
if there exists a proper algebraic variety i’cC Ry sucﬁ tbat for any
(A, B, C) € V¢ we have V. —SXI((R*‘ = 9).

ii) The infimal £,-almost condltlonally mvarlant (complemen—
tary observability) subspace containing Im B is said to be
generncally equal to the zero space {0}, which is denoted by
Sims £ {0} (9} o £ {0}), if there exists a proper algebralc
varlety VCR" suc tﬁat for any (A4, B, C) € V*°wehave §F bim B

{0} (mblmg = {O})

Let us recall the notion of generic rank 5(*) (e.g., [2]). For a
structured matrix M with associated parameter space R, 5(0M)
= r if there exists a proper algebraic variety ¥.C R" such that
oM ) = rforany M € V°. When we consider a structured triple
(A, B, C) with a parameter space R” and state that

5( SIEA g >=r - for almostalls € C  (2.24)

we mean that there exists a proper algebraic variety ¥ C R” such
that for any (4, B, C) € V* we have

si-4 B]
P c o0

) =r for almost all s € C. (2.25)

We also say that a trlple 4, B, C), or a system S, is a standard if
B has generic full column rank and € has generic full row rank.
From Theorem 2.17 and Definition 2.23, the following result is
automatic.
Theorem 2. 26 Leta structured system § be standard. Then,

i) VchrC & o iff
5([”5‘4 §]>=n+l for almost all s € C;  (2.27)
i) (RchrC: X iff |
5([”5‘5 f])#nw forall s € c;' 2.28)
i) 85 5 £ {0} iff
5<[S’E“f §]>=n+m for almost all s € C;  (2.29)
iv) 9UE, & {0} iff |
5<[SIE“T g]>=n+m foralls € C.  (2.30)
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The facts that the above generic rank conditions are difficult to
test motivates a derivation of their graph-theoretic interpretation.
This we consider next.

" III. A GRAPH-THEORETIC CHARACTERIZATION

We first recall some basic definitions concerning the system
graph [19]. With a dynamic system S we associate a directed
graph (digraph) D = (V, E) where ¥ = U X X X Yisaset of
vertices and U = {uy, ty, ***, U}, X = {X1, %, ***, X}, and
Y = {y, ¥, *, Y} are the input, state, and output vertices. E
= {(u;, Xi)w-ij £0} U {(xj,xi)ldij # 0} U {(x, J’i)|5:'j # 0}
is a set of edges where d;;, by, and &j; are the elements of the
structured matrices A, B, and C. A set of vertices ¥, and edges E;
of a subgraph D, = (¥, E,) are denoted by V' (D;) and E (D),
respectively. A path from the vertex v to the vertex vy is a
subgraph P X with a set of vertices VPK = {vi, vp, "o, ue}
and a set of edges E(lef) = {(v1, va), (2, v3), "5 (Vg1 i)}
When the initial vertex v, or the terminal vertex vy, or both, are
not essential, we use the notation P%, P, , or P, depending on the
context. The length of a path P is the number of elements in
E(P). A subgraph is called a cycle Cif ¥ (C) = {v, v, ***, v}

and E(C) = {(v1, v2), (v2, v3), """, i1, ve), (Ws Ul)}- .

Subgraphs Dy, D,, *--, D, are mutually disjoint if V(D;) N
V(D;) = 0fori + j.

Of special interest in our consideration is the notion of a

matching in a digraph D = (¥, E). A subgraph is called a
matching from a set of vertices V;, = {v;;, vj,, * **, Vi, } toasetof
vertices V;, = {vj;, U, ***, Uy}, Which we denote by M(Vp,,
V), when it consists of & mutually disjoint paths from ¥} to V.
The length of a matching is the sum of the lengths of the
corresponding paths, and we have the shortest matching M*(V,,
V,,) when we choose the shortest path. Note that for given sets of
Vi and ¥V, the shortest matching and, thus, any matching need
not be unique.

The following result provides a graph-theoretic characterization
of the parts i) and iii) of Theorem 2.17. _

Theorem 3.1: Let a structured system § be standard. Then,

i) V., o £ X iff there exists a matching M Wy, Y)in D;

) 8y & {0} iff there exists a matching M (U, ¥,,) in D.

Remark 3.2: The statement i) implies that the number of inputs
should be greater than or equal to the number of outputs of S. For
ii) to take place, the number of inputs should be less than or equal
to the number of outputs.

To formulate graph-theoretic versions of parts ii) and iv) of
Theorem 2.17, we need to use a subgraph P, = Pu; U Pu, U

U Pu;, which is a union of mutually disjoint paths from

vertices in U to arbitrary vertices of X. Similarly, P, = P"1 U
P’2 U --- U P’z is defined with respect to X and Y. Finally,
we need a subgraph C, = C; U C, U - -+ U C, which is a union
of mutually disjoint cycles of D.

Theorem 3.3: Let a structured system § be standard. Then,

RS, o £ X iff the following two conditions hold. -

i;) There exists a subgraph D, = P, U C, U M(U,;,, Y) in D
such that ¥; D X and P,, C,, and M (U, Y) are mutually
disjoint.

i) For any vertex x € X — V (M), there exists a matching
MU, U {u}, Y U {x}) in D for some u € U, and M* =
MU, Y). ;

ii) 95, 5 £ {0} iff the following two conditions hold.

il;) There exists a subgraph D, = P, U C, U M(U, ¥, )in D
such that ¥; D X, and P,, C,, and M(U, Y, ) are mutually
disjoint.

ii;) For any vertex x € X — V(M*), there exists a matching
MU U {x}, ¥, U {y}) for some y € ¥, and M* = M*(U,

1) «

_ Remark 3.4: Condition i) of the above theorem has two parts
which correspond to the generic rank and input reachability
properties of structural controllability [2]. Similarly, condition ii)
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resembles the structural observability conditions. It is not surpris-
ing, however, that Theorem 3.3 is more complex because it deals
with both inputs and outputs simultaneously.
We illustrate Theorems 3.1 and 3.3 by several examples.
Example 3.5: Consider a structured system 8 with the matrices

00 0 0 0] % 0 |
£ 0 0 % 0 0 0
A=|0 = oof|,B=]0 0],
00 0 =+ 0 0
0 x 0 00 0 0

~_ 10 0 = 0 O
.C‘[oooo*] 3.6)

where as usual * represents independent real numbers and 0 ‘‘hard

-zeros.”” The corresponding digraph D is shown in Fig. 1. It is

easy to see that there exists no matching from U = {u,, 1,} to
Y = {y,, y,} and, therefore, we conclude from Theorem 3.1 that
Vv Z:,Kcr ¢ & X does not hold. An implication of this fact is that the
systemn § has no inverse no matter what are the.values of free
parameters.

Example 3.7: Let a system § be specified by

O OO OO
[ R "2 2 =]
S O O O O O
o O Ol
OO O O O ¥

IOOOO*OI

= 0 « 0 0 = O
C= [1 00 0 » 0] -G8
From digraph D of Fig. 2, we see that there is a matching M ({;,
U}, {y, 1)) = Pﬂ} U Pﬁ% with Pii = (uy, Xy, X, ¥1) and
P2 = (uz, X3, X4, X5, ¥2). By Theorem 3.1, V¥ . £ .
However, when we consider ® ., we find that condition i) of
Theorem 3.3 is not satisfied. Affﬁough i) is satisfied by M ({u,,
13}, {1, ¥2}) and a self-loop at x;, condition i,) fails to hold. In
faCt, M*(lguls u2a}s {yl, y2}) = P;‘:f U P;‘g with Pi? = (uls X1
o) and Py} = (ty, X3, X4, X5, Y1), and X — V(M*) = {x,, X6},
so that we have M{uy, uz, 13}, {1, ¥2, Xs}) for xg, but M({u,,
Uy, Uz}, {¥1, Y2, X2}) for x, does not exist.
If we modify the digraph D of Fig. 2 by moving the input u;
from state x4 to x,, as shown in Fi~g. 3, we can establish condition

ES . . . .
®Ryxer c £ X. The new matrix B, which is given as

o)
il

3.9

[=I R I ]

[T R S e M

#*

leaves the set of vertices X — V(M¥) = {x,, xs} unchanged, but
the two matchings mentioned above are not present. The reason is
that by moving u; to x,, we create the path Pﬁg = (u3, X;) which
provides for two required matchings in the modified graph D of
Fig. 3. : ’
Remark 3.10: Special properties of almost invariant spaces are
established by existence of shortest matchings in a digraph D.
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Fig. 1. Digraph D for Example 3.5,

Fig. 2.. Digraph D for Exémple 3.7.

Fig. 3.

Modified digraph D for Example 3.7.

This is computationally attractive because there are efficient

algorithms for maximum flow in transportation networks which
apply directly to this task (see, for example, [23]). In fact, first
add the source vertex s and the sink vertex f to D, then add edges
from s to every node in U and edges from every vertex in ¥ to £.
Finally, assign capacity 1. to every edge of the newly formed
digraph and apply any variant of the well-known Ford-Fulker-
son’s algorithm to get the desired result.

IV. DECENTRALIZED CONTROL

We now apply the obtained graph-theoretic conditions to
. determine when structured interconnected systems can be stabi-
lized by decentralized controllers. For simplicity in presentation,
" we consider an input and output decentralized system composed of
only two subsystems. An extension of the obtained results to the
general case is obvious, but may involve some combinatorial
representations.
Let us consider an interconnected system

S Xy=A1x1+ By +A12X2
Xo=AXe+ Batiy + Ay Xy
=C1x1

Y2=Caxy .1

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO, 10, OCTOBER 1988

where x,(f) € X;:= R", u() € U;:= R™, and yy(t) € Y;:=
R/, are the state, input, and output of the Jth subsystem

Sps Xi=A;x;+ Buy;
y=Cx;,  i=1,2. 4.2)
By using local controllers with dynamic output feedback
Cp: 3= Fz,+G;y,
u;=Hiz;+ Ky, i=1,2 4.3
we obtain the overall closed-loop system
X
Z
S|
X2
%
A, +BK,C;, B H; i Apn 0 X1
_ Gl Cl' F] _1: 0 0 21
Ay 0 g A, +B,K,Cy BH, X3
0 0 i G,C, F 2
@4

which is an interconnection of two closed-loop subsystems -

. X _ A;+BK;C; B;H; X; .

S [z‘:] _[ G.C, F ][z;] s i=1,2. (4.5

In the context of connective stability [19], we state the
following, :

Definition 4.6: An interconnected system § is said to be

decentrally connectively stabilizable if there exist controllers C|
and C, such that the closed-loop system § and subsystems §; and
S, are simultaneously asymptotxcally stable.
- The following lemma is a direct consequence of the result
obtained by Willems and Ikeda [14]. In the lemma, we compute
almost invariant subspaces relative to subsystems S; = (4;, B;,
C)). Then, by ®f, . , and 9,  ~ w.rt S we denote the
supremal £ ~almost controllablhty subspace contained in Ker H -
computed relatlve to (A;, B;) and the infimal £,-almost comple-
mentary observability subspace containing Im G computed
relative to (4 i C)), respectively. We also recall that a system § is
complete if it is controllable and observable.

Lemma 4.7: An interconnected system S is decentrally
connectlvely stabilizable if one of the following conditions hold.

i) 8 is complete and

‘ ; (Rz,KerAlz = mz, mz'ImAZI = {0} w.r.t. S,. (4.8)
ii) 5, is complete and
A(th,l(erAZI = sxly m?’ImAIZ = {0} w.r.t. Sl. (4.9)

With a system § of (4.1) we associate a structured system §
defined by the correspondmg structured matrices. We assume that
B, and B, have generic full column rank, and €, and C, have
generic full row rank.

Definition 4.10: A structured interconnected system $ is said
to be decentrally connectively stabilizable if there exists a proper
variety ¥ C R* such that for any (4;, B;, C;, Ay; i,/ = 1,2) €.
V¢, the system § is decentrally connectively stabilizable.

Before we state the main result of this section, we need to
clarify some facts regarding the interconnection matrices A;.
Note that in Lemma 4.7 the matrices 4;; do not necessarily have
full rank. Thus, the structured matrices 4;; need not have.generic
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full rank either. In order to provide a structured version of Lemma
4.7 we have to modify the matrices A;; to obtain corresponding
structured matrices having generic full rank. Let M beap X ¢
matrix such that 5(M) = g. Then, M"isag X q submatrix of M
with § M) = g which can be obtained by removing p — g rows
of M. Similarly, we use M° of dimension p X g and 5(M¢) = g
for columns of M. For example, if '

0 % 0 0]
_M: 0 * 0 = .11
00 0 =

then any of the submatrices

0 % 00 o «00] [o =« o0 '
[0*0*]’[000*]’ 000*] “.12)

is.a candidate for M". However,. M¢ is the unique submatrix

composed of the second and fourth column of M. We also use
- D(A, B, C) to identify the digraph D of a structured system §
having the triple (4, B; €). ‘ ‘

. Theorem 4.13: A structured interconnected systen § is
decentrally connectively stabilizable if one. of the following
conditions hold. R _ : .

- #) 8, is structurally complete, and the digraphs D (Ay; B;, A1)
and D (Az, A, C) satisfy conditions i) and i) of Theorem 3.3,
respectively. IR ) S :

ii) S, is structurally complete, and the digraphs D(4,, B, A1)
+and D(A,, A%,, C) satisfy conditions i) and ii) of Theorem 3.3,
respectively. N : }
Example 4.14: To illustrate the application of Theorem 4.13,
lgt)US consider a system § described by the following triple (A, B,
C): ‘ '

00 0!0 0 0
O I
: £ 0 # | 0 0
PO N ]
~ A VA 0 0 ! :
A= |Aude) 0000 0 00
a1 A 00 010 0 =
k0 *i# 00
00 0f0 « 0
% 050’7
: ' 0 00
PO | ‘
5o [Bio | o =iof
‘ 052 oogo
0 0:0
| 0 0}«

. i
_[éio 0 * 041000 .
C=|---d—-|=l 0 0 10 0 0 |. @15
016G | |o-am-ms oo eene

The corresponding digraph D (4, B, C) is given in Fig. 4.
It is easy to see that

A;l'=[* 0 =], A‘l‘2= *

®

(4.16)

Therefore, we get the digraphs D (A, B, A1) and D(4,, A%,
“C)) ds shown in Fig. 5. Since S, is structurally complete,. from
Fig. 5 and condition ii) of Theorem 4.13, we conclude that the
system S specified by (4.15) is decentrally connectively stabiliza-
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Fig. 4. Digraph D(4, B, €) for Example 4.14.

*11

(a)

°
' ] *12 °
Yi2
*13
(b}
Fig. 5. Digraphs for Example 4.14. (a) D(A,, By, A}); () DA, Az,
Cy).

ble. We note that the digraph D (4, B, C) of Fig. 4 does not
satisfy condition i) of Theorem 4.13.

V. CONCLUSION

By using certain relations between properties of almost invari-
ant subspaces and the rank of the system matrix, we have obtained
a set of graph-theoretic conditions for the supremal £,-almost
invariant (or controllability) subspace to be equal generically to
the whole state space. Similar conditions have also been derived
for the infimal £ ,-almost conditional invariant (or complementary
observability) - subspace to. be equal generically to the zero
subspace. By applying the conditions to interconnected systems,
we can establish a parameter independent stabilizability involving
decentralized feedback laws. The stabilizability test may appear
conservative, but it is easy to apply because only binary
computations are required.

APPENDIX

Proof of Theorem 2.17:
i) From (2.13), V.. o = X is equivalent to saying that 0(; =
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{0} holds in Lemma 2.8, i.e., n; = 0 in (2.11). Notice that the
submatrices [s/,, — A,B,] and

n4 A4 B4
Cy 0

in (2.11) have full row rank for all s € C because (A,, B,) is
controllable and (Cy, A4, B,) is prime. Therefore, a necessary and
sufficient condition for V¥ = X to hold is that a matrix on
the right-hand side of (2. lf)Khas full row rank for all's € C except
" at the eigenvalues of A,. From the above fact and also from the
nonsingularity of matrices

-1 -1y 7o
o H |™|Fr gl

the assertion i) is automatic

ii) From (2.14), ® 1; kerc = X I8 equrvalent to saying that &, =
%«; = {0} holds in Lemma 2.8, i.e., n; = n; = 0 in (2.11).
Therefore, the assertion ii) is easy to see by relymg on the full row
rank of [sI,, - AZBZ] and

. n4 A4 B4v
Cy 0}°

iii) From (2.15), 8 = {0} is equivalent to saying that X,
= {O} holds in Lemmaa 8, i.e., n, = 0in (2.11). Therefore, the
assertion iii) follows from the full column rank of .

" Sy, —As sly,—As By
[ C3 ] and [: C4 0

and also by using the same argument as used in i).
iv) From (2.16), 9L, = {0} is equivalent to saying that &,
= X, = {0} holds in Lemma 2.8, i.e., n; = n; = 0in (2.11).
Therefore, the assertion is trivial. Q.E.D.
Proof of Theorem 2.26: Theorem 2.26 is obvious from
Theorem 2.17, Definition 2.23, and the definition of generic
rank. Q.E.D.
Proof of Theorem 3.1: :

i) Sufficiency: Without loss of generality, we can assume that.

<, U}, Y)mD Let & be the
u,} 'Y) and
ll/} to

there exists a matching M ({u;, u,,
total length of the shortest matching M*({u;, u,, - -
denote a set of all the shortest matching from {uy, uy,

Y by M*. Then it is straightforward to verify [20] that

det [SI"C:A 1(;)1] =og(p)s"F+ou(p)s"= 4714+ - + ok (p),

A1)
where

Cwd)= Y * fD)

D€ M

(A2)

By is a submatrix of B which is composed of the first / columns of
B, p denotes the » dimensional vector in the associated parameter
space, and f(-) denotes the product of all nonfixed entries of A4,
B, C corresponding to all edges contained in the indicated
subgraph Notice that all f(D;)’s in (A.2) are monomials of p and
it holds that f(Dy,) # (Ds,) for Dy,, Dy, € M*, D # D;,. This
implies that ag( p) in (A.1) is not 1dentrca11y zero as a polynomral
of p because M* is not empty by the assumption. Therefore, a set
V = {p € R"|ap(p) = 0} is a proper variety in the parameter
space, and it follows from (A.1) that for any

—-A By
C 0

is not identically zero as a polynomial of s, i.e., for any (4, B, C)

(A, B, C) € V¢, det ["I"
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€ V¢, the rank of

sI-A B
c 0

is equal to'n + [ for almost all s € C. From this and Theorem -
2.17 1), we get Vo £ X.

Necessity: From Theorem 2.17 1), °\7" v ¢ = X implies that
there exrsts at least one (4,B,C) € R' "such that

SI,,-—A B |
c 0

has full row rank for almost all s € C. This fact implies that

-Sln -4 B
¢ 0
has at least one minor w1th order n + [ that is not identically zero
as a polynomial of s and p. Therefore, without loss of generality,
assume that the mmor that consists of the first n; columns of

sl,—A
¢

and the first #, columns of [B] m+nm=n+Lnsnn=
/) is not identically zero. In other words, det I # 0 where F is an
(n + m) X (n + m) matrix defined by ‘

-_5.{'1:‘_’.‘.1__4: _____ B ___.
- c | 0
I'= "'T’:""T'"}'"’"“ (A.3)
0 E In—m ! 0: 0
1 -
0 E 0 E Oi m-ny
'

Observe [20] that det T # 0 ifand only if the Coates graph G, (1),
which is associated with the matrix ', has a spanning subgraph H
= C U -+ U C where C/s are mutually disjoint cycles.
Notice that G, (T') is identical to a dlgraph that is obtained from D’
as follows. Add (m — [) nodes ., * -, y,,, and edges (x;, x;) for

i = L, n, (xnlﬂ, .y1+j) fOl’j =1 -1 (unz+l.s .Vn2+A)
fork =1, -+, m — nyto D, and then 1dent1fy u; with y; fori =
1,2, -, m. Therefore, it is easy to verify that the existence of
the subgraph H in G (I‘) 1mphes the existence of

a subgraph D, = Pu,l UP -+ U Pu,, in D where sz,j s are
mutually disjoint. Notice that the subgraph Dy is a matching
MU, Y).
i) We omit the proof because it is similar to that of i). Q.E.D.
Proof of Theorem 3.3: Only part i) will be proved because
part ii) can be derived by duality.
Before proving Theorem 3.3, we have to briefly review some
results [21], [22] on structured controllablhty for a linear system
in descriptor form

2 Ko(t)=Lo(t) + Mo(t)

where ¢(f) € R"and w(f) € R? are the descriptor state and input
of ¥, and X, L, and M are numerical matrlces of appropriate
drmenswns

Associated . with the system % and the triple (X, L, M),
consider a structured system % described by a triple of structural
matrices (K, L, M). Notice that the generic_rank of K is not
necessarily equal to r, but it is assumed that sSK — L is a regular
pencil generically. Let g be the degree of det (sK — L) with
respect to 5. Then it is easy to verify that there exist two
permutation matrices O and Q, such that

_ T o] [k, & N
K" 1= Qi1KQ,= [6’ oJ + [ﬁ‘,‘ 1312]" (A4)
21

4
22
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.. _ L r
omoimes 2] [ ]
r-aq Ly 2

MI . Q M [Mll
1 M 2, 3
where I is a ¢ X g structured diagonal matrix. With the system
%, we associate a digraph Dy = (V, Ez) where the set of vertices
Vgisdefinedas Vs = & 'U Qwith® = {p, ¢5; ***, ¢} and
= {wy, wy, ***, wy}. The set of edges E is defined as Ex = {(w;,
)|, % 0} and {(¢;, )|k}, # Oor I, # 0} where k}, I}, and
i, indicate the (i, ) entries of K’, L’, and M, respectively.
With these preliminaries the following result on structural
controllability for linear system in descriptor form has been
obtained in [21]. :
Lemma A.7: The following two conditions are equivalent.
DoUsK — LM]) =r foralls € C.
ii) The following two conditions hold.
i) A([LM]) = r. ‘
ii,) The nodes ¢, ***, ¢, among & = {¢;, **
@, } are reachable from Q-nodes in Dy.
Next we show two more lemmas.
Lemma A.8:

5 ([anch g]);n—}‘-l foralls € C, (A9)

5([”"5*’ g]>=n+1 foralls € C. (A.10)

Proof:
Sufficiency: Trivial. o
Necessity: Equation (A.10) implies that there exist a quadruple

(A.5)

(A.6)

" gp{]’ '."

iff

(Eo, Ag, Bo, Cp) and a positive number e such that for any (E, 4, -

B.C)& S = {(E, A, B,C) € R™*"||E - Ey|| + A — Ao]
+ |B = Bo|| + ||C — Gl < €},

sE-A B ‘ S
p([ c O]>—n+l foralls € C,

where R is the associated parameter space of (4, B, C) and E is
diagonal. Therefore, we can always find a quadruple (E\, Ay, By,
Ci) € § with E, being nonsingular.

This implies that

sl,—E;'A, E7'B N
0 ’ =n+l foralls € C.
C 0

Notice that (E'A4,, E['By, C) € R” because E!is diagonal.
Thus, (A.9) follows. Q.E.D.

Lemma A.11;
|4 B

iff condition i,) of Theorem 3.3 holds.
Proof: )
Necessity: By the same argument as we used in the proof of the
necessity part of Theorem 3.1i), (A.12) implies that graph G.(4)
has a spanning subgraph H =C; U :-+ U C, where (/s are
mutually disjoint cycles, and A is an (n + m) x (n + m) matrix
defined by

(A.12)

A B
_ ¢ | 0
A= |-t e e
0 ; In—n[ i 0 : 0
H 1 .
0!0 (0!
' I

937

Notice that G.(A) is identical to a digraph that is obtained from D
as follows: Add (m — [) nodes yr.1, ** "5 Y and edges (Xn, 4+
yl+j) forj = Ly «rr,m— l, (unz+k, yu+k) fork=104-",m-
ny, and identify w; with y; for i = 1,2, «+», m: Therefore, it is
easy to see that the existence of the subgraph H in G.(A) implies
condition i;) of Theorem 3.3. '

Sufficiency: Assume. that condition i;) of Theorem 3.3 is
satisfied. Without loss of generality, we can assume that D has a
subgraph D; = P, U C, U M({uy, -+, w}, Y) where P, =

w0 Pul_,.,,s C,=C U - UC,and M({uh cey i),
Y) = PJ! - P}}. Furthermore assume that the length of Py, ; is
ly,;jforj =1, -, p, the length of Cj is [} fork =1, --,r, and
the length of Pf,: islifori=1, ", Tﬁen, let A, B, and Cbe
matrices obtained from A, B, and C by substituting 1’s for all the
nonfixed entries corresponding to the edges contained in D; and
substituting 0’s for the other nonfixed entries. It is easy to verify
that there exists a permutation matrix Q such that

(&3] el 2]

Ay O 01 By 0 0
0 A 0! 0 Bp 0
“l o o AciL 0 0 0
Cw 0 0 0 0 0
]

where

AM—- . . BM— . '.‘ 3y
O Ny O ej
e O
Cu= . ,
O 4
M"” O ;:IH O
Ap= Bp= )

O
and NV, ef; e, and Nyarei X i,i X 1,1 X i,and i X i matrices -
defined as

0
1
10
O 0
N=| 1o e ]
O . )
1 0
el={0 0 1]
A _
1

It
-
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This 1mphes that we have found a trrple (4, B, C) € R"such that
o(I4 81) = n + I Thus, (A.12) is satrsﬁed Q.E.D.
Now we prove i) of Theorem 3. 3
-Necessity: Assume that ® * sierc = X. Then it follows from
Theorem 2.24ii) and Lemma A.8 that a structured system g, ie.,
a triple (K, L, M) satrsﬁes condition r) of Lemma A.7 where

- [, 0] - T4 587 . [&
K=[O 0],L [c o’] M_[O”] (A.13)

where B =[B,By]. Therefore, condition ii) of Lemma A.7
follows.

By Lemma A.11 it is easy to see that condrtron ii;) of Lemma
A.7 implies condition i;) of Theorem 3.3.

Next we will prove that condition ii;) of Lemma A.7 1mphes
condition i;) of Theorem 3.3 under condition ii;) of Lemma A.7.
To do this we need to investigate a relationship between two
digraphs Dy and D. Recall that condition ii;) of Lemma A.7
implies condition i;) of Théorem 3.3. Therefore, without loss of
generahty, we can assume that there exists a matching M ({ u,, Uy,

s}, ¥Y)inDanda shortest matchmg is M # o Pﬂ} u- U
P,,’ where the length of P,,‘ is l; fori =1, , I Letg =
\}i- Notice that g is the degree of det [sK L] with respect
to s. Furthermore, without loss of generality, it can be assunied
that A, B, and C have the following structures:

. i
Apo Agi A | ! Bo . .E _____
_ A A oo A .
A=| A0 An A'II . B= by 511; By,
. . . . i
. * i
—~ -~ -~ ‘ ) !
e . Al
Ap Ay A . bu - byl
|~ ~
: & N ¢y 4
é=1¢6 5 (A.14)
H ~
; Ciy Cu

where A, 5,,, and &;are l; X i, [; X 1 1 x [; structured matrices

fori=1,--,1 deﬁned as
X
X X ®
w -] .. 0
A= ) bi={ . |,
;] '.. :
O - ;
' o X_|
G=00 -+ 0 @]

where @ ’s represent the nonfixed entries, 0’s represent the fixed
(zero) entries, and X’s represent ‘either the nonfixed or the fixed
entries, Notlce that 0’s in A;;, by, and c,, are due to the fact that
M* is the shortest matching, and Aoo is a g X g structured
matrix. From (A.13) and (A.14) we can choose Q1 and @, in
(A.4)-(A.6) as follows:

. 1O+ 01 O
1
Oiuw O+ O
________ . U U S,
00100} :10:+0! 100
o g B jrmmmee :
i ! - i
________ =.-___.._.__._:.._.___.t_.___.....-.._s.._....--...._.._
i i
QL O i a O
00l 00} -i0:--0f0-01
! 1 i ]

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. 10, OCTOBER 1988
RPN
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L1 OO
i o | o
————— e I Intals b
of 1o
[ 1 H P
Ofit 140
i 0 i {0
1 i 1 [}
----- | intatey winiadeiudel piatetalnl Bttt Bl
O,= e e H R
_____ :.._....;_....__.:_...._._J‘._....-r_.._-_
jor 4o
ot ! o,
O:1Op it
10t i L0
..... ARSI I S
1 | i i ]
Py | ‘0
1 .
N R |
i i
[ i [
OO 110
i 0 i !
- I [ -
Therefore, by introducing the following notation about X-nodes
of D and X-nodes of Dy:

for i=0, 1=j=q |

for l<i<!, 1=j 51

x-
xe= 3"
4 Xgtlyt oo bliy+j

o) = {‘a"
k
Pa+ly+--

we get one-to-one correspondence between E:= EU {(x,, x|

fori=0, l=sk=gq

=Dk forl<1<1 1<k<1+1

i=1,+,n}and Ez as follows:
" E—-Es

} @P, el fori=0

(x(l), Xﬁ,')) - " " )
(ejrts 0k ) for 1<i</

0P, 0P for1s=ixl

(ll,, x(h)) e .
(w;_;,gak ) forl+1<i<=m

@ k)
@ (G", ’ ‘P1A+1)
(x yk)H ( 0] [13)

Qji1r P for 1=sisl

fori=0

From the above relation between D and Dy, it is easy to. verify "
that condition iiy) of Lemma A 7 1mphes condition i) of Theorem
33. i

Suffzczency Omitted because we can use the proof of necessity. ‘
part in the reverse order. ' Q E.D.

Proof of Lemma 4.7:

Recall [14] that an interconnected system S is decentrally
connectively stabilizable 1f S, is stabrllzable and detectable, Sz is
stabilizable and

Im Az; C V;,KerAlz’ Slj-,ImAm:{O} Wrt S2

where V. 4 is the supremal asymptotically stable invariant
subspace contamed in Ker A,,. Therefore, it is trivial that the
system S is decentrally connectrvely stabilizable if condition i) of:
Lemma 4.7 holds. Condition ii) is also derrved from erlems and
Ikeda [14]. - Q.E. D.
’ Proof of Theorem 4.13: From Lemma 4.7 and Définition
4.10, it is easy to see that the structured interconnected system ' is
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decentrally connectively stabilizable if one of the following two

conditions holds.
. 1) 8y is structurally complete and

RE or quéacz, N mag, 240} wrt. 8. (A15)
ii) 5, is structurally complete and
(A.16)

(R?,Kemglémb mi,lmA‘i‘zé{o} w.r.t. ).

Notice that (A.15) and (A.16) are characterized in terms of
associated system graphs in Theorem 3.3. Therefore, the asser-
tion is trivial. - Q.E.D.
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