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Abstract  

This paper concerns with active vibration control of 
non-uniform damped mass-spring systems by the wave 
control. Especially, this study considers clarifying a 
class of a damped mass-spring system that can be ana- 
lyzed by the wave-based analysis. Because the wave 
properties are determined by the propagation con- 
stants, three conditions for the propagation constants 
are considered. Necessary and sufficient condition for 
the physical parameters to hold the three conditions 
is obtained. Moreover, for this class of damped mass- 
spring systems, properties of the propagation constants 
and the characteristic impedances, which achieve the 
impedance matching, are studied. Numerical examples 
are shown to prove efficiency of the impedance match- 
ing controller. 

1 Introduct ion  

Recently active vibration control of flexible structures 
has been greatly developed [1]. Observing the con- 
cepts of vibration suppression of flexible structures, 
most techniques are based on the modal analysis [2, 3]. 
Control design based on the modal analysis is called 
the modal control. Modal control has shown efficien- 
cy for vibration control of flexible structures, however, 
if structures become more flexible, we need to control 
many modes, and must devote to hard control design. 
Moreover, in the modal control, control design usually 
aims to reduce vibration at the loop of the structure, 
however, especially for highly flexible structures, sup- 
pressing vibration at the loop sometimes results in poor 
performance at the other position. 

The wave control that is similar concept to the 
impedance matching in the electric circuit theory is 
expected to be applicable to the above problems [4]. 
However, because the wave control is based on the 
wave-based analysis, most papers considered simple u- 
niform structures such as uniform beams, wave guides, 
etc. [5, 6, 7, 8], and methodology of the wave control 
for general (non-uniform) structures is still not clear 
from theoretical point of view. 
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In this paper, aiming to establish the wave control 
of non-uniform structures, this study considers clari- 
fying a class of a damped mass-spring system that can 
be analyzed by the wave-based analysis. Three con- 
ditions for the propagation constants are considered, 
and necessary and sufficient condition for the physical 
parameters of the system to hold the three condition- 
s is obtained. For this class of damped mass-spring 
systems, properties of the characteristic impedances, 
which is an irrational function of the Laplace operator 
s, on the imaginary axis are also discussed to realize 
the impedance matching controller in finite dimension. 
Numerical examples are shown to prove efficiency of 
the obtained impedance matching controller. 

2 Main Results  

2.1 D a m p e d  Mass-Spring Sys tem to be Ana- 
lyzed by the Wave-Based  Analysis  
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F i g u r e  1" Non-uniform damped mass-spring system 

Consider a non-uniform damped mass-spring system 
shown in Fig. 1. t~ represents the position fl'om the 
leR end. ve(t)[m/s] is the velocity of the corresponding 
mass me[Kg] and fe(t)[N] is the reaction force from 
the right side of the mass. de[Ns/m] and ke[N/m] are 
the viscous damping coefficient and the spring constant 
respectively, u(t)[N] is a control force acting on the 
right end. The Laplace transform of ve(t)and fe(t)are 
denoted by ve(s) and f~(s)respectively. 

Defining 
8 

zeta) . -  de~ + ke' Ye(~)-  " ~  (1) 

then re(s) and fe(s) are represented by a recurrent for- 
m u l a  



where 

x e ( , )  . -  

&(~) .- 
fe(~) ' 

1 
[ -Y~(~) 

-z , (~)  ] 
1 + ze(~)Ye(~) 

Suppose there exists a transformation 

x~(~) - T~(,)X~(~), - [ 

which transforms equation (2) into 

A2,(~) 

(3) 

(4) 

If me, de, ke are independent of g (uniform damped- 
mass spring), Ale(s) and A2e(s) are defined by the roots 
of 

p(s) "-  A 2 - (2 + Z ( s ) Y ( s ) ) A  + 1. (5) 

From the relations between roots and coefficients for 
(5), following properties hold. 

(a) /~le(S)¢ ,'~2t(8) , 
(b) A ~ , ( , ) A u , ( , ) -  a C ~+,  
(c) /~lg(S)and A2e(s)are independent of e, 

where 7~+ is the set of positive real number. Owing 
to these properties, f+  (s) and fe - ( s ) in  (3) can be re- 
garded as traveling waves. Physical meaning of these 
conditions are as follows. (a) requires that the wave 
properties of f+(s )  and f~-(s) are different. (b) re- 
quires that fe+(s) and f [  (s) travel in the opposite di- 
rection at the same speed. (c) requires that the wave 
properties of f+(s) ,  f ~  (s) are independent of position 
c a, therefore they travel at the same speed at any po- 
sition. In the electric circuit theory, Axe(s) and A2,(s) 
are called the propagation constants. See [8, 10] for 
more details of the wave-based analysis of the uniform 
damped-mass spring. 

In the following, we characterize a class of the damped- 
mass spring system to be analyzed by the wave-based 
~n~lysis from the properties of a**(s) and Au,(s). Ob- 
serving the analysis of the uniform case, it is probable 
that only the conditions (a) and (b) are dominant to be 
analyzed by the wave-based analysis, however, depen- 
dency on g makes the problem much harder to solve. In 
this paper, as those in the uniform case, we also require 
independency of t~ in addition. Considering condition 
(c), we use As(s), A2 (s) instead of ,Xle(8), /~2t(8) here- 
after. For the conditions (a), (b) and (c), the following 
theorem holds. 

T h e o r e m  2 . 1  
shown in Fig. 

Consider damped mass-spring system 
1. There exists a transformation (3) 
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which transforms (2) into (~) and the conditions (a), 
(b), (c) are satisfied iff physical parameters of the sys- 
tem satisfy 

me de ke 
= = = a ,  g -  2 , 3 , . . . , n .  (6) 

me-1 de-1 ke-1 

Proof:) See Appendix A.1. 

2.2 Propert i e s  of  the  P r o p a g a t i o n  Cons tants  
and  the  C h a r a c t e r i s t i c  I m p e d a n c e s  
In the proof of Theorem 2.1 (Appendix A.1), im- 
portant variables that characterize wave properties of 
f+(s )  and f£- (s) appeared: the propagation constants 
As(s), A2(s) defined by (10) and the characteristic 
impedances Z [ ( s ) ,  Z+(s)  defined by (9). In this sub- 
section, we investigate properties of these variables on 
the imaginary axis s = jco for the system which satis- 
fies equation (6). Proofs are shown in Appendix A.2 
and A.3. 

P r o p e r t y  2 . 1  Consider ,,~1(8) and ,~2(8), the rOOtS of  

of the complex plane, and A2(jco0) locates in the low- 
er half-plane for some coo E T~+. Then, the following 
statements hold. 

(i) ~l(jco),~2(jco) are continuous with respect 1o 
co E T~+. Moreover, for all co C R+, A l(jco) lo- 
cates in the upper half-plane, and A2(jco) locates 
in the lower half-plane. 

(it) 0 < ]A2(jco)l < v/7 < ]A1 (jco)[ < oo for vco E R+. 

( i i i ) co - -  oo " ~ --+ i m A l ( J co ) - ( a + l m n k n n 2 + j oo 

lim A2(jco) - 0 
CO ----+ O O  

co --+ 0+ : 
(a<l)  
( a = l )  

(a > 1) 

lim A l ( j c o ) -  1 , hm A2( j co ) -a  
w-+0+ co --+o+ 

lim '~1 (jco) - 1 , lin~+ A2(jco) - 1 
w--+0+ w 

~im a l(J~) - a ,  ~i~+A~(j~) - 1 
w-+O+ w 

Figure 2 shows typical loci of/~l(jco) (solid line) and 
A2(jw) (dashed line). As indicated in Property 2 .1 ,  
both starting fl'om the real axis, A1 (jw) locates outside 
of the circle with radius x/-d in the upper half-plane, 
while A2(jco) locates inside of the circle in the lower 
half-plane. Using this property we can show the next 
property concerns about the characteristic impedances. 

P r o p e r t y  2 . 2  Consider Z~ (s) and Z + (s) defined by 
(9). Following statements hold. 

(i) z [  (j~),  z + (j~) a~ c o ~ t i ~ o ~  with ~ p ~ t  ~o 
co C T¢ + . 

(it) Re[Ze--(jco)], Re[Z+(jco)] > 0 for vco E T¢ +. 
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Im I , "'"°° ° .......... ....., ""• , • , , ,  

" 01=oo 

• a"__ R" F 

ooo 
/ 
: 

01=0 

Re 
dn 

a < l  

Im Im 

o° "•• 
,° •• 

i 
- 4 . -  

, " o)=C 
, ~ = o ~o~ =co , O' 

0 1 1-- Re 
dn 

a-1 

ooO°°°" - 4  
t ,• 
, • 

> 
z /  

o)=0 

a > l  

t t 03=oo 

a n-,~ 
d,~ 

Re 

F i g u r e  3" Loci of Z e- (ja~)(solid) and Z+(ja~) (dash) 
a n-e 
(iii) ~ ~ oe :lim~ Z + ( j ~ ) -  - d~ '~-~oolim Z[  (jw) - O. 

w - + 0 +  • 
(a < 1) lim Z + ( j w ) - - j o e ,  h m + Z ~ ( j w ) -  O, 

w---*0+ w 
/ 

( a -  1) lim Z +(j~)=l im Z e - ( j a~) -  \ /  
1 

w---~O+ w---~O+ __  rnn kn  ' 
(a > 1) lim Z + ( j ~ ) -  0 lim Z e ( j a ~ ) - - j o e .  

w---~0+ ' w--+0+ 

Figure 3 shows typical loci of Z e- (jw) (solid line) and 
Z + (ja~) (dashed line). From the figure, we can confirm 
that  Z~(s), Z+(s) has properties of the positive real 
function on the imaginary axis s - j~ .  Note, from 
Property 2.2 (iii), that  Z+(s) is  a function with rela- 
tive degree 0. 

3 N u m e r i c a l  E x a m p l e  

In this section, efficiency of the impedance matching 
controller for the system satisfying (6) is discussed. 
In numerical example, we consider 10-mass (n = 10) 
system shown in Fig. 4 with parameters  me = rn,, • 

= = 

and rn~ = l[Kg], d~ = 1/300INs/m], k~ = 1[N/m] and 
a = 2/3. In this case, rnl is 2/3 .9 ~_ 38.4 times bigger 
257
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F i g u r e  4: Damped mass-spring for numerical example 

than rot0. u is a control force acting on the right end 
and given by u ( s ) -  K(s)v,~(s). w is a disturbance at 
position 1. 

First, we derive the impedance matching controller 
for this system. Similar to the uniform case [8, 10], 
suppose Al(s) is the root whose imaginary part  is 
positive, then f + ( s ) a n d  f~- ( s ) in  (3) are traveling 
waves towards the positive direction and negative direc- 
tion respectively. Defining v +(s) "- Z +(s) f  +(s) and 
v-[ (s) "- Z ;  (s)f~ (s), v+(s) and v[  (s) are also trav- 
eling waves. The velocity re(s) is represented by the 
sum of these waves. The reflection coefficient of the 
velocity, the ratio of the reflected wave to the incident 
wave, is given by 

- _ a + Z~+ (s )K(s)  (7) ~,~ (~) zx-(~)  x 
6
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F i g u r e  5" Bode plots of E+ (s) (solid) and E + (s)(dash) 

From (7), the impedance matching controller which 
renders p~ (s) - 0 is given by 

a 

:< ( , ) -  z+ (----- 7 .  (8) 

Because Z + ( s )  defined by (9)includes A2(s), K + ( s ) i s  

an irrational function of s, therefore, we can not use 
the impedance matching controller directly in finite di- 
mension. In fact, 

1 
K+ 

s ~ 2 + 2 d ~ s + k , ~  

1 + a + 1  r n n s  2 - a  

Fortunately, from Proper ty  2 . 2 ,  - K + ( s )  is well ap- 
proximated by a proper rational positive real function 
through complex-curve fitting [9] as those in [8]. Closed 
loop stability is guaranteed by the positive real prop- 
erty of the controller. Figure 5 shows the BodeAplots 
of K + ( s ) ( d a s h e d  line) and an approximation K + ( s )  

(solid l ine)wi th  degree 14. K + ( s ) a n d  K +  ( s )  c o i n c i d e  

in this figure. 

Figure 6 shows impulse response of the system dis- 
turbed by w. Solid lines represent the response with 
control and dashed lines represent the response without 
control, vl, vs, vl0 are the velocity of the corresponding 
masses and u is the control force. From the response 
with control in Fig.6, reflection is suppressed at posi- 
tion 10 where controller exists, and vibration vanishes 
rapidly compare to the response without control. 

4 C o n c l u s i o n  

In this paper, aiming to establish the wave control of 
non-uniform structures,  this study considered clarify- 
ing a class of a damped mass-spring system that  can 
2577
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F i g u r e  6: Impulse response with control (solid) and with- 
out control (dash) 

be analyzed by the wave-based analysis. Three con- 
ditions for the propagation constants were considered, 
and necessary and sufficient condition for the physical 
parameters  to hold the three conditions was obtained. 
Properties of the characteristic impedances were also 
discussed, and numerical examples were shown to prove 
efficiency of the impedance matching controller. 

To loosen the conditions and formulation of the wave 
control as an impedance matching problem is our future 
w o r k .  

A A p p e n d i x  

A.I :  P roo f  of T h e o r e m  2. I 

In the proof, s is omitted for notational simplicity. 
Sufficiency) Suppose (6) holds, then, fl'om the definitions, 

1 Zn ] ae-~ 1 
A t -  1 - a ---777-~ , Ye - Y~ Zt - Z.  

- a e - ' Y , ~  1 + ZnY,~ ' a-777-~ " 

Define 

z ;  z + 
T t - 1  " -  - 1  1 

a Z t  a . a n - e  Z n  

Z e  " ),1 - a ),1 - a 
a Z g  a • a n - e Z , ~  

Z+ "= A~ - a - A2 - a 

where A1 and A2 are the roots of 

pe :-- )̀ 2 _ (a q- 1 q- Z n Y n ) ) ,  q - a ,  

which is independent of [. From (9)7 

= Qe, Q e ' -  0 1 ' 

(9) 

(10) 

z: ]}1 



therefore, from (4), 

- ~  _ -1QeAeT~_l~e_l  ' X g  - -  r_Fg 1 A ~ Y e - 1 X e - 1  - -  Tf -1  (11) 

Noting that  (10) is the characteristic polynomial of 

a - ae_------- ~ Z~  

Q e A g -  _ a e _ ~ y  ~ 1 + ZnY~ ' 

and [Z e - 1] T, [Z + 1] T are the eigenvectors of QeAe cor- 
responding to A1, A2 respectively, we can confirm that (11) 
is transformed into 

~ _ [  11 0 
0 12 X g _  1 . (12) 

Since ,)11 and A2 are the roots of (10), from the relations 
between roots and coefficients,  (a), (b), (c) are satisfied. 
This proves the sufficiency. 

Neces s i t y )  Suppose Te in (3) exists, then we can define 

~-[~ ~].-%_~%-~ 
7e 6, 

and equation (4) becomes 

- -  - 1 Q e A e T e _  X g - 1 .  Xe = Te-1 

Note that  A~, 12 are eigenvalues of 

QeAe - [ oze - Yefle -Zec~e + (1 + ZeYe)fle 
Ve - Ye& - Z e T e  + (1 + ZeYe)6e ' 

that  is, the roots of 

pe - A 2 - f c~e - Yefle - ZeTe + 
t. 

(1 + ZtYe )6e}A  

+ c~eSe - fle~/e. (13) 

In the following, we try to find a condition for me, de, ke 
such that  the eigenvalues of QeAe satisfy (a), (b), (c). 

From the condition (a), the transformation matrix Te-~ 
which diagonalize QeAe is described by using different 
eigenvalues A1, A2 as 

Te-~ ' -  - 1  

where 

zt 
1 ' 

a~ - {-z~w + (~ + z~Y~)&} 
z e :=  _ 

"/e - YeSe 
Z+ ._ a ~ - { - Z e w + ( l + Z e ~ ) S e } .  

(14) 

Using this Te-1,  and from the definition Q e "-  Te - lTe  -1 
we obtain 

Ogg fig 
7e 6~ 

zi- + z? - z ;  zt+~ + z? z;+~ ] 
- -  X ~  1 . J_  Xt+l  Z ;  1 _}_ Xt+l  . (15 )  

0 1 

Therefore, 
7 e - - O ,  6 e - - 1 .  (16) 
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Using (16), (14)is simplified as 

zF : ~ - (~ + z~Y~) z+ ~ ._ _~ - (~ + z~Y~) (~7) 
Ye ' Ye " 

Noting that  

Z ?  -}- Z ~ - - ) / 1  - ,'~2 
Ye ' 

1 ( ~ 1 -  a ~ ) ( z ~ Y ~ -  z~+~Y~+I), -- Z ? Z t+ l q- Z g l Z +£ -~ Ye Ye + a 

(1, 1)~nd (], 2)~l~ment~ in (15) b~com~ 

Ye+] (18) O/g -- }~ , 

fig = ZeYg -- Xg+l ~ + 1  : Zg - -  o~gXg+l. (19) 
Ye 

Moreover, from (16), since the characteristic polynomial 
(13) is simplified as 

p~ : a~ - ( ~  - ~ 9 ~  + ~ + z ~ ) ~  + ~ ,  (2o) 

therefore, from the relations between roots and coefficients 
of (20) and the condition (b), we get 

ae = a .  (21) 

Combining (18), (21) and }re := rnes, we get 

fng 
= a .  (22) 

Tt%g-- 1 

Finally, since the condition (c) requires pe+l - pg, from (20) 
with c~e - a and fie - Z e -  aZe+l,  

~ - (a + ] + aZ~+~Y~)~ + a  -- ~ - (a + ~ + aZ~+~Y~+~)~ + a, 

namely, 
~ +  1 Zeq- 1 ~ a. 

Ye Ze+2 
S 

Because Ze := des + ke' the above equation means, 

de ke 

de-] ke-] 

(22) and (23) prove the necessity. • 

(23) 

A.2:  P r o o f  of  P r o p e r t y  2. I 

(i) From the definition (1), Z~(ja;)  and Y~(jco) are contin- 
uous with respect to co E ~ + .  Therefore, according to con- 
tinuity of the roots with respect to the coefficients, A1 (fie), 
A2(jco) are continuous with respect to co 6 7~+. Moreover, 
from the relations between roots and coefficients for (10), 
we get 

,)tl (jCz)A2(ja;) -- a, (24) 

,~(jco) + A2(jco) -- a + 1 + Zn( jw)Y~( jco )  

2 C03 W mn]Cn m n d n  
= a + ] - + j .(25) 

co 2 d~ + k~ .~2 d~ + k~ 

From (24), if A1 (joe) moves from the upper half-plane to 
the lower half-plane, there must exist eve 6 ~ +  such that  
/~1 (j(.oc), /~2(jCOc) E J~q-. Howeve r ,  fi'om (25), since 

w a rnn dn 
Im{A~(j~) + A2(j~0)} - co2d ~ + k~ > 0, ~ ~ ~ + ,  (26) 
8



such c~ does not exist. This proves (i). 

(ii) From (24), arg [,k~(jco)] = - arg [)~2(jco)]. Combining 
this fact with (26), modulus of )~(jco) should be greater 
than ,~(jco). Moreover, since ,~(jco),k~(jco) - a, 

IA~(j~)I < v/~ < I~(J~)l .  (27) 

0 < IAz(j~o)l < oo, 0 < A~(j~o)[ < oo are obvious from (24) 
and the continuity. 

(iii) I~ ~ o~ I' From (25), 

lim {,~(jco) + )~2(j~)} - a + 1 d~ + joe. 
CO ---* O O  

Since )~(jco) locates in the upper half plane and ~ ( j w )  
locates in the lower half plane satisfying (24), 

lim ,~l(j~o)- ( a + l  rn~k~) 
~o-oo d, 2 + j o e ,  (28) 

lira ~2 (rio) - 0. 
O 2 " " + O O  

1~ -~ 0+ [. W'om (2~), j i m + { a ~ ( j ~ ) +  a~(J~)} - 

a + 1. Since ,~(j~o),~2(jco) - a, the roots of (10) are a and 
1. Because )~2(jw)l < ]Al(jw)l, we get the property. • 

A.3:  P r o o f  of P r o p e r t y  2 .2  

(i) From (9), continuity of Z~(jw) and ,~(ja~), ,~2(jco) 
7Z+, continuity of Z~-(jw), Z + (ja~) are obvious. 

(ii) Since ~ (jcz) and ,~2(jco) are the roots of (10), 

~ ( j~ )~-  ~ +  ~ + z~ ( j ~ ) ~ . ( j ~ ) ~ ( j ~ )  + ~ - 0 ( ~ -  
. %  

1, 2), 

therefore, 

Z~(jw) = ()ki(jw) - 1)( ,~i( jw)-  a) i - 1 2 (29) 
Y~(jco))~(jw) ' ' " 

From (9), by using (24) and (29) with i =  2, we get 

~ ( j ~ ) ~ ( j ~ ) .  a~-~ ( ~ ( j ~ )  - ~ ) (~( j~ )  - a) 
Z~+(j~) -- _ 

) ~ 2 ( j c o )  - a 

n--g. a 

~ ( j ~ )  ( ~ ( J ~ )  - a)' 

Y~ (jco))~2 (jco) 

(30) 

Because 0 < arg [)il (ja)) - -  a ]  < 7I" (Property 2.1 (i)) 
and ax'g[1/Y~(jco)]- arg[1/ jcomn]-  -7r/2, we get 

2 < arg Y n ( j w ) ( , ~ l ( j w ) -  a < -~, 

namely, Re[Z + (rio)] > 0. We can also prove Re[Z e(ri0)] > 
0 in similar way. 

(iii) Iw ---+ oe I' From (9) and Property 2.1 (iii), 

- - a  • a n - g  j~ _ a n - e  

lira z + u ~ ) -  lim a~(j~) a j ~ d ~ + k ~ -  d~ (3~) 
C~ ---+ O O  O2-----+OO 

From (9), by using (24) and (29) with i =  1, 

/~1 (jco),~2 (jOe)' a n-g (,kl (jco) -- 1)(,~1 (joe) -- a) 
lim Z~-(ja~) - lim h i  (jco) a Yn(jw)/~l (jco) 

CO ----+ 0 0  ~ ---+ O O  

a n - g  

= lim (a - ,k2(jco)) -- 0. (32) 
w - - , o o  j w m n  
257
[~ -~ 0+1'  From (9), (24) and (29), 

- - a  • a n - g  j w  a n - g  

Z + (jcz) - )~2-0~] :-a jwd-~ ---t- k~ = j~m----~ ( ~  (j~) - a) (33) 
a • a n - l  j w  a n - g  

Z[( jw)  - /~ l ( jw)  - a jwd~ + k~ = j~,m----~ (a - )~2(jw)).(34) 

In the case of a < 1 and a > 1, we can confirm the property 
by using the above equations with ~ --~ 0+. 

In the case of a - 1, noting from (33) that {Z +(rio)}2 _ 

1 1 jco / 1 
,~2(ja~) jcorn~ jwdn + kn we get lim ,7 +( j~)  - 

' ~ - - . 0 +  Vmn]~n 
owing to Re[Z + (ja~)] > 0. Moreover, fi'om (9) and (24), 

= _ ~,~ ( j ~ )  - 1 z ~ - ( j ~ )  ; ~ ( j ~ ) -  ~ = ~ ( j ~ )  = ~ ( j ~ ) .  

z + (jcz) ~1 ( jw) - 1 ~ ( jw)  - 1 

/ 1 
Since lim )~2(jw)-  a, we get lim Z / - ( j w ) -  ~/  

w --.o + w ~ o  + V mn kn 
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