C Parallelizing Compiler on
Local-network-based Computer Environment

Kouichi ASAKURA,

Toyohide WATANABE and Noboru SUGIE

Department of Information Engineering
School of Engineering, Nagoya University
Furo-cho, Chikusa-ku, Nagoya, 464-01, JAPAN

Abstract

Recently, the local-network-based computer system, in
which some workstations are connected through the com-
munication medium, is coming into practical use. The
software development on this system 3, howewver, very diffi-
cult for end-users because this system has complicated prob-
lems such as load balancing means, communication method
among processes on different workstations and so on. In
this paper, we propose a C-specific parallelizing compiler on
this system in order to solve the above problems. Our com-
piler adopts the function call parallelization, and takes less
communication overhead than DO loop parallelization.

1 Introduction

The parallelizing compiler, which parallelizes a se-
quential program so as to be suitable to various types
of computer organizations, have been progressively
studied for the improvement of system performance
and processing efficiency [1, 2). Although many par-
allelizing compilers were developed, many of them are
related to FORTRAN programs. In FORTRAN paral-
lelizing compilers, the parallelization of DO loop struc-
ture is the main issue of interest [3]. Many program
restructuring methods such as node splitting, loop col-
lapsing and so on, were proposed with a view to mak-
ing the execution of DO loop structures efficient (4, 5].

These parallelizing compilers are mainly devel-
oped as the supercomputer-oriented paradigm. How-
ever, the current status in our computer environment
is shifting over from centralized processing systems
to distributed processing systems. Now that local-
network-based computer systems, on which several
workstations are loosely connected with a communi-
cation medium, are coming into practical use every-
where, the parallel/distributed processing mechanism
for controlling different tasks simultaneously is more
or less required.

In this paper, we address a parallelizing compiler
for local-network-based computer environments. In
particular, the program partitioning and restructuring
methods are mainly discussed. Our compiler divides a
sequential C program into several self-organized pro-

1063-7133/93 $3.00 © 1993 IEEE

849

cesses to be executed in parallel. The parallelizing
compilers for C have been never investigated so ac-
tively. Although R.Allen et al. reported on a C-
specific parallelizing compiler, they did not always in-
vestigate the compiling technique for C directly from
a parallelizing point of view [6].

The rest of this paper is organized as follows. Sec-
tion 2 shows the environment in which our paralleliz-
ing compiler is designed and overviews our compiler.
Section 3 describes the program analysis phase and
also defines sonte terms used in the following phases.
We discuss the program partitioning algorithm and
program restructuring algorithm with respect to the
process generation and process allocation problems in
Sections 4 and 5. Finally, the conclusion is reported
in Section 6.

2 Distributed Environment and Paral-
lelizing Strategy

Our C parallelizing compiler is designed and im-
plemented on a distributed computer environment, in
which several loosely coupled workstations are con-
nected through the local area network. This dis-
tributed environment is different from the computer
system on which the traditional parallelization re-
searches have tried. In the traditional system, the
communication costs such as data access times and
synchronization overheads are disregarded or may be
not problematic since processes in each processor are
the same, every processor is accessible instantly to req-
uisite data in the commonly shared Memory, or proces-
sors can synchronize mutually through the high-speed
communication channel.

However, the communication cost is one of the most
important factors in our local-network-based com-
puter environment because every processor can man-
age its own processes independently. Additionally, any
particular hardware supporting equipment is not as-
sumed. Therefore, our parallelizing compiler must de-
compose C programs in accordance with the network

Parallelizing Compiler
: program program
c ABIVEN [gy analysis | = | pattitioning | ~»
program, ase. hase

Figure 1: Configuration of our compiler

program
(process)
- program
(process)

program
restructuring
phase

architecture optimally under the trade-off of the com-
munication cost, the process granularity and the avail-
ability of processors.

The processing phases in our parallelizing compiler
are shown in Figure 1. The program analysis phase
analyzes firstly C programs, like the ordinary com-
piler. This phase aims mainly to check up the interde-
pendency relationship among individual statements in
order to examine the program fragments that can be
executed independently. Next, the program partition-
ing phase analyzes the behavior of C programs with
respect to the function calling relationship, and then
partitions them into independently executable pro-
gram units. Finally, the program restructuring phase
constructs individually partitioned program fragments
as completely self-organized subprograms.

3 Program Analysis

It is important to analyze the program structures
with respect to the dependency among variables, call-
ing sequences of functions, execution time of each
function and so on, when we adopt the function-based
program partition strategy. The analysis technique
is almost similar to those assessed by the traditional
compilation approaches or FORTRAN parallelization
approaches [7, 8]. Also, concerning the construction
of FORTRAN parallelizing compiler, the same view
about program parallelization is already reported in
[9]. However, we must pay attentions to the difference
between C and FORTRAN. In FORTRAN, the pa-
rameter passing method for calling subroutines is “call
by reference.” Whereas, C applies “call by value” to
the parameter passing for functions. As for our ob-
Jective for parallelizing compiler, this difference shows
that C is more manageable than FORTRAN. However,
C is more complicated in comparison with FORTRAN
because many syntactic characteristics are very flexi-
ble: that’s, the scopes of variables, pointer variables,
various data types, and so on.

Function call graph

This graph represents the calling structure among
functions from a static point of view. The node in-

850

funcB

O
funcC funeD funcE funeC funcD funcE funcE

(a) network-shaped form (b) trec-shaped form

Figure 2: An example of function call graph

dicates a function and the edge corresponds to the
invoking relationship among functions. Figure 2(a) is
an example of this graph. When we take notice of both
ends of an edge, the upper node is defined as a parent
and the lower node is a child. This graph does not
only represent the global structure of program, but
also is an analytic tool with respect to program par-
tition. This function call graph is usually composed
as a network-shaped form, as shown in Figure 2(a),
because the same function may be often invoked from
different other functions. The network-shaped form is
not appropriate as the resource for the program par-
titioning phase. Thus, this form will be transformed
into a tree-shaped form, as illustrated in Figure 2(b).

Estimated execution time of function

The execution time of each function takes an impor-
tant role in order to divide a program into the frag-
ments. However, it is difficult to estimate the exe-
cution time of function exactly even if the function
is evaluated practically. H. Honda et al. reported
an estimation method for the execution time of state-
ments by counting the machine instructions in OS-
CAR project [10]. While, in our estimation, the execu-
tion time of function is basically dependent on the an-
alytic evaluation for source codes of program. Namely,
the execution time of function is approximately esti-
mated as the number of tokens used in the function.
Of course, it is necessary to estimate the execution
times of individual functions in accordance with the
behavior of program in the case that more precise re-
sults are required.

Connectivity among statements

Each statement of program is not always independent
of other statements. Some statements must be exe-
cuted before other statements. The execution order of

statements is determined through the variable analy-
sis. Namely, two statements that refer to or update the
same variable must be controlled so as not to be exe-
cuted simultaneously and the execution order of these
statements cannot be absolutely changed. Also, the
relocatable program region is calculated from these
data. The relocatable program region is a segment
surrounded with the upper and lower statements that
have a connectivity relationship. A statement can be
relocated somewhere in the relocatable program re-
glon with the same result. For example, the following
program fragment has five statements.

l: a=D>b + ¢;
2: b =e + £;
3: g=a + h;
4: i =4 + 3;
S: k=g + i;

The execution order of this fragment is defined by the
variable analysis: 1 53— 5and 2 — 4 — 5. Also, the
relocatable program region of statement 3 is between
1 and 5: that is, the statement “g = a + h;” can be
located somewhere in this relocatable program region
without any change of the computation result.

Connectivity among functions

The dependency among mutually related functions is
one factor to judge the behavior of program. If a func-
tion depends on another function too strongly, they
are individable as independent processes. Namely, the
dependency represents the possibility of the parallel
execution of functions.

The dependency is defined as a numerical value,
and the range is 0 <z < 1 (2 is the degree of depen-
dency). The dependency value among two arbitrary
functions is specified by the following equation.

simultaneously intersected execution time between f and f
DV(f.p=1- — LA
execution time of f;

where f; is a parent and f; is a child function. The
numerator of the right side is calculated by the infor-
mation of estimated execution time and connectivity
among statements.

Number of function calls

This denotes how often a function is called by other
functions. We cannot acquire the exact number of
function calls at the compile step. Thus, this is es-
timated on the basis of the number of function call
statements appearing statically in a program : for ex-
ample, the number may be possibly approximated by
the repeating number for the function call statements
in the loop structure.

851

4 Program Partitioning

It is desirable that task loads assigned to individ-
ual processors are equally partitioned, corresponding
to the computer environment. In the program parti-
tioning phase, the parallelizing compiler must divide
a whole program into simultaneously executable pro-
gram fragments. The task granularity in our paral-
lelization subject is specified appropriately with re-
spect to the communication traffics among available
program fragments, in addition to the concurrency
among program fragments and number of available
processors in the network environment. At least, the
trade-off issue between communication traffic and pro-
cess concurrency is important, in spite of difficult es-
timation factors, in order to make our parallelizing
execution successful.

Our program partitioning strategy works as follows:
first, looking upon individual functions as the mini-
mum program fragments, and then merging the de-
pendent functions into one process on the basis of the
evaluation of function call graph and other analytic
information. This program partitioning algorithm is
shown in Figure 3. The input parameters of this al-
gorithm are as follows: ¢(¢) is the estimated execution
time of function f; described in the section 3. d(4,7)
is the connectivity relationship between functions fi
and f;, which is shown as DV (f;, f;) in the previous
section. ¢(i,) is the number of call statements of I
in f;, which is derived from the number of function
calls. These variables are assigned to individual nodes
and edges in our function call graph. T(i) represents
the totally estimated execution time of sub-tree whose
node ¢ is the root. finish(i) is a flag variable to in-
dicate whether the partitioning processing for f; did
finish or not.

This partitioning algorithm is effective from the
bottom nodes to the upper nodes according to the
function call graph. Namely, the mutually related
functions, which correspond to nodes, are merged as a
process, which is a sub-tree. The process composition
procedure compares the estimated execution time T(z)
of a sub-tree with T'(j) of another sub-tree, and then
judges whether the sub-tree with T(j) can be merged
into that of T(¢). This determination is performed in
the expression (1). This is because it is effectual to
merge two sub-trees if the shortened time is smaller
than the overhead time (which is represented as OH
in our algorithm). Figure 4 indicates the reducible ex-
ecution time among two concurrently executable func-
tions. In Figure 4(a), the reducible execution time is a
part of T'(5) (= ¢(¢) x (1~ d(s, j))). Whereas, in Figure
4(b), all of T'(j) are reduced when T(j) is shorter than

INPUT
¢ Function call graph.
® 1(i) :eslimated execution time of function i
® d(i, j): degree of connectivity between functions f; and Ji GF)).
® c(i, j) : number of function calls from function f; to i G#FED.
OUTPUT
simultaneously executable processes as sets of mutual functions derived
from function call graph.
ALGORITHM
for each function f; ; initialization
If function f; is leaf in function call graph then
(i) < o).
finish(i) < TRUE.
else
finish(i) <~ FALSE.
endif
endfor
CS ~ {}. ;C§ means Candidate Set.
for each function f;
if finish(i) = TRUE for all f; ischild of function f; then
add node j to CS.

endif

endfor

while CS # {} do ; main loop
choose and remove some node { in CS.
() < 1fi).

for each f; is child of function f;
shortened-time <~ min{T(j), 1(i) X(1-d(i,))) }. (1)
if shortened-time islonger than OH then
output "The edge between function f; and /; 1s cutoff.”

increasing-time <+ max{0, T(j) + OH - (i) X (1-d(i, j) }. @
cen)

T(i) ~ T(i) + increasing-time X c(i, j).
else
T) = T() + T() X (i, j).
endif
endfor
finish(i) <~ TRUE.
for each f; is parent of function f;
if finish(k) = TRUE for all f, ischild of function /; then
add node j to CS.
endif
endfor
enddo

Figure 3: Program partitioning algorithm

1) x (1-9(1, j)) 1) x (1-d(i.))

P70 I N\

. NS

i

(‘;i)x“'d(i' » shortened time
a

TG)
(b)

Figure 4: Evaluation in expression (1)

(i) x (1-d(,) (i) x (1-d(i. j))

/i fi
/) Z
OH + T(j) OH + T(j)
@ . overhead of communication ®)

Figure 5: Evaluation in expression (2)

the estimated reducible execution time.

After the merging procedure, the execution time
of sub-tree whose root node is f; is calculated by the
expression (2). The elapsed time for the execution of
fiisT(j)+OH —t(i) x (1 —d(,5)) since the shortened
time for parallel execution is ¢(¢) x (1-d(4, j)) as shown
in Figure 5(a). On the other hand, the execution of
f; does not cause the increase of time if T(j) is very
small, and this expression becomes negative as shown
in Figure 5(b).

5 Program Restructuring

The program fragments, which were separated in
the program partitioning phase, are not always well
organized as cooperative processes. Namely, they are
a set of independent functions, but have not control
mechanisms to synchronize with each other, transfer
common data in coordination and so on by themselves.
Therefore, in order to make up these program frag-
ments as autonomous processes, they must be struc-
turized sufficiently so as to generate together the same
result that the original serial program puts out.

In this program restructuring phase, the coopera-
tive processes to be executed independently on indi-
vidual processors are composed on the basis of the
function call graph and information about the con-
nectivity among statements. The following algorithm
is applied to this program restructuring: relocating
statements, creating another process and inserting
synchronous statements for function call statements.

i) Find out the program region in which a function
call statement can be relocated , using the con-
nectivity among statements.

ii) Move the function call statement to the upper
location. Next, rewrite the program fragment so
as to create a new process on another processor.

iii) Insert synchronous statements into the lower lo-
cation of the relocatable program region.

Here, we show a brief example of program restruc-
turing in Figure 6. In this example, we assume that

i: int funcA(x, y) 1: int funcA(x, vy}
2: int X, ¥: 2: int x, y;
3: 4 31 ¢
4: int a, b, ¢, d; 4 int a, b, c, d;
5 int i; 5 int i;

int eync = 0;
6 a = funcB(x, ¥);
7 o = tuncCix); 61 a - funcB(x, y);
8: ¢ = b+ X; remotefunc(&sync, &d, FUNCD, a);
9: for{i=C:iex;ive) 7 b = funcCix):
10 C = X; 8: ¢ = b+ x;
11: b = funcCl(y): 9: for{i=0;i<x;i++)
12: ¢ - C+ D ory: 10: C o+ X:
13: tor{i=0;i<y;i++) 11: b = funcCly);
14: C += Y 12: C=cC +«b+y;
15: 4 = funcD(a);: 13: for(i=0;icyii++)
16: c 4= a; 14 ¢ v y:

while (tsync)
17: return <; 3
i8: } 16: 4= dr

173 return <;

18:)

(a) original program (b) rewritten program

Figure 6: An example for program restructuring

functions funcB and funcC are executed as subrou-
tine calls, and that the function funcD creates a new
process. We firstly find out two upper and lower
statements for the relocatable program region with re-
spect to the function call statement “d = funcD(a);.”
Thus, we must look for the statements that refer to
or update the variable a or d because this function
call statement refers to the variable a and updates the
variable d. So, “a = funcB(x, y);” in line 6 and
“c += d;” in line 16 are found. This relocatable pro-
gram region is between lines 6 and 16. Next, this
call statement is moved to the upper location of this
region: after line 6 and before line 7, and then rewrit-
ten so as to create a new process. Here, remotefunc
is a function for creating the new process on another
processor. It is served as a library. Finally, the syn-
chronous statement is inserted into the lower position:
after line 15 and before line 16. The variable sync is a
synchronous variable. This variable is reset initially to
zero and changed by the software interruption when
the process for funcD is finished. The subroutine for
software interruption is also served as a library.

6 Conclusion

In this paper, we proposed a C-specific parallelizing
compiler for local-network-based computer systems.
Our compiler has the following features:

e The call statement parallelizing method is
adopted. This method makes it possible that
function call statements are executed simulta-
neously. This parallelizing method takes less
communication time than DO loop parallelizing
method;

853

o The program partitioning algorithm and program
restructuring algorithm for function call state-
ment parallelization are proposed. Especially, the
program partitioning algorithm enforces to exe-
cute the statements in parallel only when the par-
allel execution of these statements reduces the to-
tal run time.

Acknowledgements

We are very grateful to Prof. T. FUKUMURA of
Chukyo University, and Prof. Y. INAGAKI and Prof. J.
TORIWAKI of Nagoya University for their perspective re-
marks, and also wish to thank Ms. K. SUGINO and our
research members for their many discussions and cooper-
ations.

References

[1] D. J. Kuck, E. S. Davidson, D. H. Lawrie and A.
H. Sameh: “Parallel Supercomputing Today and
the Cedar Approach,” Trans. on IEICE of Japan,
VolJ71-D, No.8, pp.1361-1374 (1988).

C. D. Polychronopoulos, M. Girkar, M. R. Haghighat,
C. L. Lee, B. Leung and D. Schouten: “Parafrase-2:
An Environment for Parallelizing, Partitioning, Syn-
chronizing and Scheduling Programs on Multiproces-
sors,” Proc. of the 1989 Int’l Conf. on Parallel Pro-
cessing, Vol.2, pp.39-48 (1989).

R. Cytron: “Doacross: Beyond Vectorization for Mul-
tiprocessors (Extended Abstract),” Proc. of the 1986
Int’l Conf. on Parallel Processing, pp-836-844 (1986).
D. A. Pauda and M. J. Wolfe: “Advanced Compiler
Optimizations for Supercomputers,” Comm. of the
ACM, Vol.29, No.12, pp.1184-1201 (1986).

S. P. Midkiff and D. A. Pauda: “Compiler Generated
Synchronization for Do Loops,” Proc. of the 1986
Int’l Conf. on Parallel Processing, pp.544-551 (1986).
R. Allen and S. Johnson: “Compiling C for Vectoriza-
tion, Parallelization, and Inline Expansion,” Proc. of
the SIGPLAN ’88 Conf. on Programming Language
Design and Implementation, pp.241-249 (1988).

D. E. Maydan, J. L. Hennessy and M. S. Lam: “Effi-
cient and Exact Data Dependence Analysis,” Proc. of
the ACM SIGPLAN ’91 Conf. on Programming Lan-
guage Design and Implementation, pp. 1-14 (1991).
G. Goff, K. Kennedy and C.-W. Tseng: “Practical
Dependence Testing,” Proc. of the ACM SIGPLAN
’31 Conf. on Programming Language Design and Im-
plementation, pp.15-29 (1991).

R. Triolet: “Direct Parallelization of Call State-
ments,” Proc. of the SIGPLAN ’86 Symposium on
Compiler Construction, pp.176~185 (1986).

H. Honda, S. Mizuno, H. Kasahara and S. Narita:
“Parallel Processing Scheme of a Basic Block in a
Fortran Program on OSCAR,” Trans. on IEICE of
Japan, Vol. J73-D-I, No.9, pp.756-766 (1990) [in
Japanese].

(3}

(5]

(6]

7l

(8]

(9l

(10]

