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Abstract - For the insulation design of high voltage apparatus,
electric field optimization technique becomes indispensable
tool. We developed a highly efficient electric field optimization
technique based on Neural Network under the personal
computer. Once the Neural Network learns the relationship
between inputs and outputs, the system easily allows to get a
target solution. Principle of the developed optimization
technique are described with the calculation example.
Moreover, normalization of learning data is introduced and
the applicability is expanded.
I. INTRODUCTION

Recently, increase of electric power demand needs
to introduce more reliable high voltage power apparatus,
such as gas insulated switchgears (GIS) and transformers,
with reducing the size and enhancing the space factor. Thus,
the importance of insulation design is increasing more and
more. For their insulation design, the electric field
optimization technique is intensely required. The
optimization technique makes the electric field distribution
on the electrode surface not only as low as possible but
also as uniform as possible. Although a number of electric
field optimization techniques have been so far repor(ed“"m.
all of the techniques have merits and demerits as well. For
example, in that process, iterative calculation of electric
field analysis and contour modification are needed.

Under the above background, we have been
developing a new method for the electric field optimization
method based on Neural Network (NN). Once NN learns,
optimum solution satisfying desired specification can
be found without iterative calculation, resulting in
high speed method. Moreover, NN enables to be more
intelligent by learning various optimization subjects.

In this paper, firstly, principle and fundamental
processes of the electric field optimization method based
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on NN is described. Secondly, normalization method
of learning data of NN is described. Introduction of this
technique drastically expands the applicability and
effectiveness of optimized contour.

II. ELECTRIC FIELD OPTIMIZATION
BASED ON NEURAL NETWORK

A. Basic structure of neural network

When applying NN to electric field optimization
problem, we introduce the Back Propagation method
(BP)W”'O'. BP has been confirmed to be available in pattern
recognition, optimization problem and so on. As
shown in Figure 1, BP is the NN consisting of the multi
layered structure with one input layer, one or more hidden
layers and one output layer. Table 1 lists learning
parameters used in BP. Firstly, one has to prepare an
example of phenomenon to be learned as learning
pattern for BP. The input and output of individual
learning patterns are converted to input data and teach
data respectively. Here, the input and teach data «ure
called learning data. After the process of NN learning
with the learning data, the NN enables to obtain the
input-output rel ationship of the phenomenon.

Here, as an estimation of NN learning state
at each learning process, let the average error Ex be
defined as the difference between teach data and output
for all learning patterns as follows;
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Fig.1 Back Propagation structure of Neural Network.
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Table 1 Learning parameters

Mark Learning parameter

PN Total number of learning patterns

IN Total neuron number of input layer

HN Total neuron number of hidden layer

ON Total neuron number of output layer

HL Total layer number Hidden layer

P Learning pattern number

i,k Neuron number of input, hidden, output layer
Ip(i) Learning pattern p input data of neuron i
Tp(k) Learning pattern p teach data of neuron k
Op(k) Learning pattern p output signal of neuron k
Wii Weight between neuron i and neuron j

PN ON
3 3 | Tp(k) = Op(k)|

p=lk=1

Er =

X100 (%)

()

learning function. Then, a NN learns the relationship
between the electric field and a set of curvature, and gap
length. This NN is defined as NN1. However, our final
aim is to obtain an optimized electrode contour. Hence,
another NN should learn the relationship between a set
curvature, gap length and electrode contour. This NN is
defined as NN2. After these NN learning, inputting the
target electric field distribution into NN allows to output
curvature, gap length and electrode contour for the
optimized electrode configuration. Figure 2 illustrates th
outline of the developed optimization method if
conformity with the conception described above. p

Figure 3 depicts basic processes of the electrie
field optimization method based on NN. As seen in Fig.3,
this optimization method can be classified into three

main processes as follows.
Learning Optimization :

PN x ON

Ern (0<En<100%) is referred to as "learning error"”
hereafter.

B. Processes of optimization

The electric field strength on a high voltage
electrode surface has empirical relationship with the
curvature and the gap length. However, except for an
extremely simple electrode contour, it is difficult to determine
quantitatively this relationship. Accordingly, we considered
to introduce NN enabling to learn this relationship using a
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Fig.2 Outline for electric field optimization based on

Neural Network.
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Basic processes of electric field optimization technique based on Neural Network.




(1) Generation of learning data

In this process, learning data to be learned by NN
is generated. Firstly, learning patterns with simple geometry
such as an arc and straight line is arranged on the optimization
area. In this case, differential coefficient on learning pattern
has to be continuous, and learning patterns have to meet
the symmetric axis at right angle. For example, we can
suppose optimization region as shown in Figure 4, and then
one of learning patterns presented in Fig.4 is considered.

A number of learning patterns like this are arranged.
Next, equal number of contour points are arranged on
each learning pattern at regular interval. For each of all
contour points, field data E, curvature data C and A of
vertical and cross section, gap length data G along the electric
line of force, coordinates data (X,Y) are calculated and
inputted into learning data. Figure 4 also illustrates concept
of the arrangement of these data. Here, a set of data C,A
and G are called "curvature-gap data".

(2) Learning of NN

Firstly, we prepare two kinds of NN (NN1, NN2).
NNI1 learns relationship between the electric field data and
curvature-gap data, and NN2 learns the relationship between
curvature-gap data and coordinates data. Once the learning
process of NN progresses, the general relationship between
the electric field and curvature-gap can be obtained
effectively. Finally, it becomes unnecessary for NN1 to
learn again. Since one needs to let only NN2 be learned,
learning time can be decreased drastically.

(3) Finding of optimized contour

Inputting the target electric field distribution to
NN allows to obtain curvature-gap data of the optimized
contour. Next, inputting thus obtained curvature:gap data to
NN2, one can readily obtain coordinates of the optimized
contour points. Connecting all the obtained contour points
with curve-smoothing operation gives an electric-field-
optimized electrode contour.

Note that Charge Simulation Method
(CSM)""! is used in the field calculation process. A
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Fig.4 Learning pattern, contour points and learning data.
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32 bit personal computer (CPU:80386) is used from
user friendliness and economical view point.

C. Calculation example

Figure 5 illustrates one example of a typical
electrode contour for electric field optimization.
Electric field optimization calculation is performed for an
end profile of high voltage rod electrode in the grounded
cylinder, which given here simulates the end part of a
high voltage conductor in GIS. In this figure, d denotes the
distance between the side of the rod electrode and grounded
cylinder. Thick solid lines represent fixed part, and
the end of the high voltage electrode is the part to be
optimized. Let us place three learning patterns (U~(3) in
the optimization area as shown in Fig.5.

Figure 6 depicts calculated electric field
distribution for three different learning patterns when
d=20cm. As seen in this figure, the electric field
distribution on each learning patterns (U~(3) is far from
uni form one. In Fig.6, the region between the minimum
and the maximum of the electric field distribution (1)
~(3) is defined as a learning area. On the contrary, we can
also define a learning area of contour as shown in Fig. 5.
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Fig.5 Electrode contour for electric field optimization,
learning patterns and optimized contour.
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Fig.6 Electric field distribution on learning patterns
and optimized contour.
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It is noticed that five contour points are placed
when the learning data is calculated. As a result, the
NN produces 5 electric field data and 15 curvature-gap
dataand 10 coordinates data for a given learning pattern.
We determined learning parameters based on these
learning data. NN stops learning when the learning error
Exis less than 1.0% of the initial value. Table 2 shows
learning parameters and obtained results, It can be said
from this result that the NN method has enough ability
from practical application view point, like calculation
accuracy and speed.

It is obvious that the optimized electric field
distribution has uniform and the lowest electric field
distribution along the electrode surface. Thus, it is
possible to determine this uniform electric field value,
referred to as "optimum field Eo". However it is very
difficult to determine uniquely an optimum target field
Eo before hand, Eo is generally determined based on
trial and error. In this paper, we propose an algorithm
to find out the optimum field Eo automatically by
judging from electric field distributions of learning
patterns. We explain this algorithm by way of example
shown in Figure 7 as follows;

(1) The minimum value is determined to Eomax by tracing
the highest part of the learning area of the electric field
distribution

(2) On the contrary, the maximum value is determined to
Eomin by tracing the lowest part of the learning area of
the electric field distribuiion.

(3) The optimum target field Eo is selected between Eomin
and Eomax.

According to the process given above, we
determined the optimum target field Eo to be 7.80kV/cm

Table 2 Values of learning parameters and
learning results.

Learning parameters Learning results

PN | IN | HN | ON | HL | Iteration En Time
NNI1 3 5 40 15 1 460 times | 0.2022 | 44 sec.
NN2 3 15 | 40 10 1 560 times | 0.2231 48 sec.

I Optimum electric l‘ielﬂ

Eomax
.......... Eo
------- Eomin

Electric field E

Learning area

Distance along the electrode contour Lp
Fig.7 Determination of optimum target field Eo.

7.83kV/em, respectively. Thus, obtained optimized co
and its electric field distribution have already shoy
Fig.5 and Fig.6. The maximum deviation from the opti:
field Eo was estimated at 2.92%; sufficient accura
obtained.

in Fig.6, because Eomax and Eomin were 7.74kV/em

Next, in the processes of optimization calcula
calculation time taken for each process and total p
are shown in Table 3. It is obvious in the table that

i.e. the optimization is performed within a practi
reasonable time using 32 bit personal computer. It is

even shorter time to obtain the optimized contour. |
point is the advantage of NN application to electric |
optimization.

D. Application to practical apparatus

We applied this optimization method to pract
apparatus to confirm the applicability of the NN met

axis is the cross section of the optimization example
learning patterns. The right side of the axis is the resu!
optimization calculation. It is clear that uniform f

Table 3 Calculation time of optimization processe
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distribution is automatically obtained at the optimization
region. The calculation time of the optimization is about 20
minutes. From the above results, it can be said that this
optimization method has sufficient applicability.

III. EXPANSION OF SOLUTION AREA

A. Normalization method

A neuron constituting NN has multi inputs and
one output. The state inside the neuron is given as the sum
of weighted input signals from the other neurons. A sigmoid
function shown in Figure 9 is generally used for input-output
response function F(X) of the neuron. Sigmoid function is
continuous and non-linear. Sigmoid function also has
characteristics that the rate in change of F(X) is maximum
for input signal X at near 0, and the output signal F(X) is
limited from O to 1. In this optimization method, we used
the sigmoid function as a response function F(X).

Input and teach data of NN are the electric field
strength, electrode geometry and so on. Thus, these learning
data need to be normalized so as to correspond to input and
output characteristics of neuron.

Here, let us suppose the electrode contour and
learning patterns given in Fig.5, with d=12cm as an
optimization subject. Then, electric field distributions on
learning patterns are obtained as shown in Figure 10. It is
clear in this case that there exists learning patterns of electric
field distribution where Eomax<Eomin and thus no uniform
electric field distribution exists within the learning area by
the algorithm mentioned before. As a result, an optimized
contour possibly would exist outside of the learning area in
Fig.10. Hence, we propose a normalization method of
learning data so as to avoid this problem.
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Fig.9 Sigmoid function.
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Fig.10 Learning area and solution area.
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i Ip(i) — lav(i)
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p @ o) (
'rl[')”r(k)——' ”rP(k)_ lyff‘i“(k) x Nr + ] = Nr (3)
| max(k)— I min(k) 2
(]—Nr ST?»‘W < 1+Nr)
2 2

where, lav(i) is the average of input data, o(i) is the standard
deviation of input data, Tmax(k) is maximum teach data,
Tmin(k) is minimum teach data, and Nr is normalization
coefficient of teach data.

The range from the minimum to the maximum of
the normalized teach data is referred to as "learning range".
For example, when Nr=0.6, the learning range of each neuron
covers 0.2~0.8 as shown in Fig.9. This learning range
corresponds to the learning area given in Fig.10. This
normalization method can expand the area of a possible
optimized contour into the upper and lower sides of the
learning area. Thus, the optimum electric field distribution
can be determined, even when the optimized contour exists
beyond the learning area. This concept is shown in Fig.10.

B. Evaluation of normalization method

Using the electrode contour mentioned in the
preceding section as an optimization example, we performed
the calculation of the electric field optimization. Here, we
obtained Nr=0.1 and the optimum field Eo=10.3kV/cm
judging from the concept shown in Fig.10. As a result,
Figure 11 shows the surface electric field distribution on
the learning patterns and obtained optimized contour. In
this figure, maximum deviation from the optimum field Eo
is 2.78 %.

Moreover, this optimization was also performed
for Nr=0.5 and 1.0 in the same way as above. Thus, obtained
contour of electric field distribution is also included in Fig.11.
It is seen in the figure that as Nr approaches to 1.0, the
electric field distribution is moving toward the learning area,
that is, being apart from the optimum electric field
distribution. On the other hand, when one takes Nr less than
0.1, obtained contour points varies more widely but the
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error of the response of sigmoid function is enhanced. Then,
the optimum value of Nr is considered to be existed between
0.1 and 1.0.

IV. CONCLUSION

In order to realize highly efficient electric field
optimization calculation under personal computer, we
introduced Neural Network(NN), that is available for
optimization problem, with electric field analysis technique.
In this paper, firstly, an algorithm of electric field
optimization method using two kinds of NN is described.

Next, so as to evaluate availability of the method,
as for an example of high voltage GIS conductor end, we
calculated an optimum contour by electric field optimization
method based on NN in this paper. As a result, optimized
electrode contour with highly uniform electric field
distribution could be obtained. Consequently, availability
of this method is well proved. Moreover, it is confirmed
that once NN has learned, optimized contour can be found
with high speed on personal computer. From the above
point, electric field optimization method based on NN has
advantage in the calculation efficiency.

Next, normalization method of learning data used
in learning process of NN is investigated. This normalization
method allows us to expand the solution of optimized contour.
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