A FLEXIBLE CONTROL MECHANISM FOR
MANAGING INTERRELATED/INTERDEPENDENT
TASKS SUCCESSIVELY

Hiroyuki Watanabe
Toyohide Watanabe
Noboru Sugie

Reprinted from PROCEEDINGS OF THE EIGHTEENTH ANNUAL INTERNATIONAL
COMPUTER SOFTWARE & APPLICATIONS CONFERENCE (COMPSAC 94)
' Taipei, Taiwan, November 9-11, 1994

IEEE COMPUTER SOCIETY

PRESS REPRINT

IEEE Computer Society
10662 Los Vaqueros Circle
P.O. Box 3014

Los Alamitos, CA 90720-1264

Washington, DC ¢ Los Alamitos e Brussels e Tokyo

THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC. @ IEEE COMPUTER SOCIETY

IEEE

A Flexible Control Mechanism for Managing
Interrelated /Interdependent Tasks Successively

Hiroyuki WATANABE,

Toyohide WATANABE and Noboru SUGIE

Department of Information Engineering,

Faculty of Engineering, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-01, JAPAN

Abstract

In this paper, we propose a framework to manege interre-
lated tasks concurrently and successively, and address the is-
sue about event handling and task scheduling: the event han-
dler organizes interrelated tasks from a static point of view,
and the task scheduler controls them on the basis of the dy-
namic behavior properties. In order to design our flexible
control mechanism, we introduce the state transilion graph
and AND-OR graph in the event handler, whereas in the task
scheduler the timestamp ordering method is applied to. Ad-
ditionally, we describe the failure handling, concerning the
cooperation between the event handler and task scheduler.

Introduction

We address a concurrent control mechanism among in-
terrelated tasks on the basis of the concepts of cooper-
ativeness and successiveness. Our final research goal is
to construct a secretary model, which can manage many
different jobs effectively and flexibly like a well human
secretary, and in this paper the basic task control mecha-
nism is investigated as the first step. The skillful human
secretary can perform different kinds of jobs intelligently
in accordance with requests: if these jobs were interre-
lated, some related jobs are integrated smartly or syn-
chronized instantly. Thus, our control mechanism should:
support such an intelligent activity.

The cooperativeness for tasks is frequently argued as
the issue about interactive relationships among indepen-
dent agents [1-3]. These researches divide the control
mechanism into several autonomous agents. Such an ap-
proach is suitable to the distributed environment. How-
ever, it is insufficient to construct a secretary model be-
cause a well human secretary can act/react newly gener-
ated jobs or temporarily suspended jobs promptly in ac-
cordance with her processing situation and environment.
Since the distributed model based on multi-agents dele-
gates the control mechanism for problem solving strategy
to independent agents, a number of distributed agents
can not adapt to variant changes of situation and envi-
ronment smartly.

The successiveness for tasks may be looked upon as
the issue about connective relationships among interde-
pendent transactions [4]. In particular, the researches for
managing long-lived transactions focus on effective and
consistent control mechanisms. Such a view is very sim-
ilar to our motivation. However, many approaches con-

78

0730-3157/94 $304.00 © 1994 IEEE

trol long-lived transactions as the nested structure. The
superior transaction must wait for commitment messages
sent from all inferior actions(or transactions). At least,
such a control mechanism is not adaptable to our objec-
tive for making the total throughput shorter. SAGA was
roposed as one of the non-nested transaction models
4]. The concept of compensated transaction in SAGA is
valid to keep the integrity constraint of database system.
However, such a concept makes it difficult to construct
a secretary model because many compensated transac-
tions must be defined, corresponding to all transactions.
From viewpoints of cooperativeness and successiveness
among interrelated tasks, it is necessary to distinguish
individual tasks related to some demands and determine
the execution order among them. Additionally, the syn-
chronous control and commit/abort control mechanisms
among executed tasks must be implemented successfully
with a view to accomplishing the high throughput. With
respect to these requirements, our framework for con-
trolling interrelated tasks flexibly is based mainly on the
event handling and task scheduling: the event handler
must distinguish mutually related tasks derived from
some events and establish the interdependent relation-
ships among them. While, the task scheduler must select
executable tasks according to the current management
state and determine the execution order between the
scheduled tasks and newly generated tasks effectively.

Framework

First of all, we define some composite concepts for our
model: event, task, action and object, as follows:

e The event is a request to be performed practically
as some tasks. An event is not only corresponded to
a task but also may generate a collection of tasks;

o The action is derived from the event and generates
a collection of related tasks. Namely, the action is
an interpreter to translate an event into the corre-
sponding related tasks; ,

e The task is a self-contained command. In our
model, the tasks are defined as messages for objects;

o The object is a task executer. When objects receive
tasks, they evaluate the tasks concurrently.

For example, we consider a request of meeting prepa-
ration. We show the related tasks in Figure 1. In Figure
1, hexagons indicate events, hatched rectangles repre-
sent tasks and arrows control the execution order among

them. In Figure 1, the task ” Appoint a meeting room”
is directly generated from the event "Decide a meeting”
and may be executed if possible. The task "Add to
roll-book”, which associates with this request, must be
started after the event "Receive responses”. The tasks
in Figure 1 are managed by two actions. Also, we rep-
resent the correspondence between tasks and objects in
Figure 2. In Figure 2, circles indicate objects. The ob-
ject is either a receiver or argument of the task, and
the receiver evaluates the task as a message. These con-
cepts facilitate not only modelling secretarial jobs but
also tranforming the request into several related tasks.

In our framework, the event as a request is finally
managed by a group of corresponding objects, which are
atomic processing actors. In addition to the effectivity
of this transformation, task executers are controlled con-
currently and synchronously in order to perform the orig-
inal request correctly. However, in the execution process,
it is not always successful to keep the predefined evalu-
ation order of tasks, which were coordinated statically
by actions. In some cases, it is desirable that the tasks,
which are scheduled as the next ones of currently exe-
cuting tasks, should be started quickly even if any tasks
are not yet completely finished by the corresponding ob-
jects. As for this requirement, our framework comprises
two components: ‘

e Event Handler: The event handler selects firstly an
appropriate action according to the event and deter-
mine mutually related tasks through the action. In
this case, the execution order is assigned to these
related tasks. The tasks are finally entered into
the task queue according to the execution order.
Namely, the event handler generates tasks from the
event through the corresponding action, and also
schedules these generated tasks statically; ‘
Task Scheduler: The tasks should be controlled ef-
fectively according to the current state, but not ac-
cording to the statically planed sequence. There-
fore, the task scheduler analyzes the dynamic inter-
action among tasks and reschedules the interrelated
tasks on the basis of the predefined execution order.
In addition, the task scheduler manages all behav-
iors of task executers(i.e. objects). Namely, the
task scheduler controls the task execution according
to the current situation, and reschedules the execu-
tion order among tasks if necessary.

Task Ordering

The event handler selects appropriate actions according
to the event and generates the related tasks through the
action. In this case, it is important to represent the
relationship between events and tasks clearly.

1. State Transition Graph

In general, the evaluation order among events may be
predefined. For example, if a human secretary sends an
invitation letter, she expects that the event "Receive a
response of the invitation” should be occurred in the
future. Our state transition graph represents the evalu-
ation order among events and the relationship between
events and actions. We show an example of our state

79

transition graph in Figure 3. Figure 3 represents a job
for organizing a meeting. Here, Si(i = 1,...) is a state
and the arrow shows the correspondence between event
and action. Namely, the left(or upper) argument of ar-
row is an event and the right(or lower) argument is
the corresponding action. In Figure 3, when the event
"Decide a meeting” occurs, the state changes to S§1 and
the action ”Send invitation letters” is fired.

A state transition graph indicates a self-contained job
conceptually and represents the transition of activities.
For example, the state transition graph in Figure 3 rep-
resents a job for preparing a meeting and indicates which
actions are fired, corresponding to successively requested
events. The event handler has several state transition
graphs to represent currently executing activities. When
the event handler receives an event, it decides which
state transition graph can accept the event, and also
changes the state or creates a new state transition graph
if the event indicates a new activity.

2. AND-OR Graph

AND-OR graph represents the relationships between
fired actions and related tasks, and indicates the exe-
cution order among these tasks. We show an example
of AND-OR graph in Figure 4. Figure 4 represents the
relationships between the action "Prepare a meeting”
and related tasks. AND-OR graph is composed of four
primitives:

e AND node, which represents that all of its infe-
rior nodes should be selected. In Figure 4, AND
node ”Invitations” indicates that tasks "Make invi-
tations” and ”Send invitations” should be selected;
OR node, which represents that only one of its in-
ferior nodes should be selected appropriately. All
branches under OR node are associated with the
particular conditions. In Figure 4, OR node "Mate-
rials” indicates that the task ”Print materials” can
be selected when materials exist; - i
The task, which is always placed at the terminal
node. The tasks are shown as squares in Figure 4;
The directed branch between nodes, which repre-
sents the execution order among tasks. In Figure 4,
the task "Make invitations” should be executed be-
fore the task ”Send invitations”. When a directed
branch is linked between non-terminal nodes, it rep-
resents that all inferior nodes under the source node
must be executed before all inferior nodes under the
destination node.

AND-OR graphs can associate with several actions.
The inconvenience that an event generates only one ac-
tion is avoided easily, using AND node. In Figure 4, the
actions ”Send invitations” and "Make materials” are col-
lected together as AND node ”Prepare a meeting”.

3. Event Handler

We illustrate the structure of event handler in Figure 5.
Our event handler is composed of four components:

e The event buffer holds temporarily events which
have not been yet accepted. If some emergency
events enter into this event buffer, the event han-
dler accepts them preferentially;

e The knowledge is a database which accommodates
the state transition and AND-OR graphs. The
event handler extracts state transition and AND-
"OR graphs from the knowledge according to the
event; i
The variable memory is a set of variables which in-
dicate the current situation. The variables are used
to select OR nodes in AND-OR graph, and updated
by the event. If appropriate variables do not exist,
the event handler asks to users;

The working memory contains state transition
graphs to represent the currently executing activi-
ties. With respect to events that may be received in
the future, the event handler analyzes these events
beforehand. For example, tasks related to the event
"Receive responses of invitations” are generated be-
fore receiving the responses. The working memory
contains AND-OR graphs and analyzed tasks.

Object Control

The task scheduler controls mutually related tasks dy-
namically. Of course, the task scheduler should manage
the behaviors of objects(i.e. task executers).

1. Object and Task

Our objects are merely task executers which perform
their methods concurrently, corresponding to the receiv-
ing messages, but do not give any effects to the behaviors
of other objects. In the object-oriented paradigm [5,6,7],
the interaction among objects is dependent on only one-
to-one synchronous message passing. However, since in
our model all interactions among objects are analyzed by
the event handler from a static point-of view, our objects
evaluate merely tasks as messages, being independent of
other objects. To clarify the properties of objects, we
define two types of methods:

o Reference method: When a reference method is ex-
ecuted, it returns the value corresponded to the ob-
ject state. Since the reference method refers to the
object state, the state after execution is the same
as one before execution. This means that an ob-
ject returns the same value when the same reference
methods are executed successively.
Update method: When an update method is exe-
cuted, it returns the values "success” or "failure”.
If the update method is successful, the state before
execution is altered to one after execution. If the up-
date method fails, the state after execution is turned
back to one before execution. This means that er-
rors occurred in the update method are restored by
the object itself.

With the above two-mode methods, every method in
objects satisfies the following features:

1. The methods are defined as either reference or up-
date methods;

2. All methods can not call the update methods of
other objects;

3. The reference methods can not be called except that
other objects are assigned as arguments.

80

These features make it possible that the task scheduler
manages all properties of objects. For example, we con-
sider the case that objects are allowed to update other
objects. In this case, objects might change their states
one after another when they execute their methods. If
some methods fail, the task scheduler can not remove the
effects of failed methods because it does not manage the
successively changing object states. In the other word,
all interactions among objects must be managed only by
the event handler and task scheduler so that all objects
should satisfy the above features.

The task is defined as a message that calls the update
method and consists of the receiver, method name and
some arguments. The task execution indicates to call
the update method in the receiver, and at the same time
to call all reference methods of arguments. Namely, the
task execution changes only the-state of receiver, but
does not change the states of arguments.

2. Timestamp Ordering Method

‘We consider the case that it takes much time to execute
particular tasks because of resource constra.ints(e.g. no
allocation of memory). In this case, the task scheduler
should execute the other executable tasks without wait-
ing for the finishes of executing tasks. Namely, since the
event handler determines the execution order of tasks
only from a static point of view, this execution order
is not always suitable to the dynamically changing ex-
ecution situation. The task scheduler must reschedule
interrelated tasks. Therefore, we introduce the times-
tamp ordering method, in which interrelated tasks are
organized correctly by "timestamp”and the executable
tasks are selected according to the assigned timestamps.

Figure 6 indicates four cases of the task execution re-
lated to the object X: O(P) represents the execution
of task whose receiver is the objet O(ie. O is up-
dated) and whose argument is the object P (i.e. P
is referred), and O(X) — P(X) indicates that the
task O(X) is executed before the task P(X). In Fig-
ure 6, the execution order of two tasks in the reference-
reference relationship can be changed because these two
tasks never conflict: if the execution is performed in the
order of P(X) — O(X), the execution effect of O,
P and X is the same as that of the execution in the
order of O(X) — P(X). However, the task scheduler
should never change the execution order among two tasks
in the reference-update, update-reference and update-
update relationships because two methods in these rela-
tionships always conflict: in the case of reference-update
relationship, if the execution is performed in the order
of X(P) — O(X), the execution effect of O and X
is not the same as that of the execution in the order
of O(X) — X(P). From such a consideration, the
timestamps of newly generated tasks must satisfy the
following properties:

Definition: Properties of timestamp .

Assume that the task t,,.. is a task which has already
been assigned by its timestamp and not yet executed.
The timestamp of newly generated task tne, must al-
ways satisfy the following properties:

1. If the receiver of 1,., is either a receiver or argu-
ment of Zyre, then T'S(tnew) > TS (Epre);

2. If an argument of £,y is the receiver of .., then
Ts(tnew) > Ts(tpre);

3. TS(tnew) and T'S(t,..) are always held as
TS (tnew) = TS(tpre)- ‘

where T'S(tnew) (of T'S(tpre)) indicates the times-
tamp of tnew (OF tpre) and ”>”(or ”2>") represents
the order between two timestamps. O

The properties 1. and 2. are derived from the rela-
tionships of execution order in Figure 9 and the property
3. is needed to assign the timestamps to all tasks. Us-
ing the timestamp satisfied with the above properties,
our task scheduler always executes tasks which have the
minimum timestamp. '

3. Task Scheduler

We show the structure of task scheduler in Figure 7. Our
task scheduler contains three components:

e A ready set, which contains tasks which have the
minimum timestamp. These tasks are executed
when all related tasks are not active. The task
scheduler never sends messages to active objects.
This indicates that the executions of some methods
in the same object are controlled exclusively;

A waiting set, which contains tasks which were
taken out from the task queue. These tasks are as-
sociated with their own timestamps and ordered in
the waiting queue according to their timestamps. If
the ready set is empty, the task scheduler takes out
the tasks with the minimum timestamp and creates
a newly ready set; ‘

An object monitor, which always manages the ac-
tivation of objects. The task scheduler controls ob-
jects exclusively, according to the information of-
ferred by the object monitor.

Failure Handlihg

In general, the executing tasks do not always succeed:
they sometimes fail. Because of unexpected failures or
resource failures, the system may not accomplish the
events completely. For example, if the task ”"Make in-
vitations” fails, both the task ”Send invitations” and
the tasks related to the event "Receive responses of invi-
tations” can not be executed. In the case that tasks fail,
the alteration tasks must be prepared and the suspended
tasks must be executed instantly. This function should
be performed in the following steps:

e The fa).iled tasks generate failure events((1) in Fig-
ure 8);

The event handler determines both the .undo and
alteration tasks according to the failure events((2)
in Figure 8); ,

The task scheduler removes the effects of undo tasks
and executes alteration tasks according to the re-
quests of the event handler((3) in Figure 8).

1. Failure Event

The failure event indicates that the related task failed
the execution, and generates the corresponding actions
coped with the failure. In our prototype system, the

81

failure event generates the actions which select the undo
and alteration tasks by default. However, actions coped
with failure are not always the same. Of course, it is
useful for users to define different failure events in indi-
vidual tasks. In order to realize such a definition, our
task execution is performed as follows:

1. The task scheduler requests the execution to the
task(by "execute” in Figure 9);

The requested task sends a message to its receiver
object(by "perform:” in Figure 9 %;

The object received the message performs the cor-
responding update method and returns the value
"success” or “failure”(by "true/false” in Figure 9

2.
3.

In such an execution, the tasks.can generate failure
events without being dependent on other tasks or task
scheduler. When a receiver object returns the value "fail-
ure”, the related task generates the predefined event.

Smalltalk-80 can regard block statements as indepen-
dent processes. Therefore, in our prototype system the
task execution is controlled as described in Figure 10. In
Figure 10, ”[... | fork” represents that the block [...]"”
is evaluated independently.

2. Failure Event Handling

The failure event is accepted preferentially by the event
handler. The event handler accepted the failure event
asks the failure handling way to users. Our handling
way is classified into four classes:

1. Cancel only the failed task; '

2. Alter the condition of OR node in AND-OR graph;

3. Alter the action which generates the failure task and

then select a2 new AND-OR graph;

4. Cancel the state transition graph itself.

The undo tasks are determined when the user selects
the above failure handling way. In addition, the alter-
ation tasks are prepared when the above 2nd or 3rd way
is selected. For example, we consider the case that the
task "Send invitations as E-mails” fails because E-mail
system crashed and that the user should change the con-
dition of OR node. In Figure 11, when the condition of
OR node "Send invitations” is changed(i.e. selection
of demand = as.letters), the tasks "Format invi-
tations” and “Send invitations as E-mails” are deter-
mined as undo tasks, and the tasks "Print invitations”
and "Send invitations as letters” are prepared as alter-
ation tasks. These tasks are sent to the task scheduler
with the failure handling request.

3. Rollback of Tasks

When the task scheduler receives the failure handling
request, it must rollback undo tasks under the compen-
sated procedure because all object states are successively
changed whenever the related tasks are executed. Al-
though various kinds of rollback means were proposed
[4], we introduce a simple checkpoint mean as follows:
1. The task scheduler always preserves all consistent
states of objects at appropriate intervals;
. When the task scheduler receives the failure han-
dling request, it turns all objects back to appropri-
ate states according to the received request; ..

2

3. According to update and reference methods, the
task scheduler removes the effects of undo tasks and
then executes alteration tasks.

Figure 12 shows the algorithm for turning all objects
back to appropriate states. In Figure 12, all objects are
turned back to appropriate states and all tasks except
undo tasks are selected as redo tasks. These selected
redo tasks and alteration tasks are assigned with times-
tamps and ordered into the waiting queue. This way is
not suitable but sufficient for the failure handling.

Conclusion

The object-oriented paradigm is not sufficient to control
objects dynamically. In this paper, we regarded objects
as task executers and established a concurrent control
mechanism among interrelated tasks. In particular, we

described the event handler which organizes the interac-

tion among tasks from a static point of view, and the task
scheduler which controls tasks on the basis of dynamic
behaviors of them. These two components make it possi-
ble that our control mechanism can cope with the chang-
ing outside situations and resource constraints. Such
an approach is sufficient for the flexible management of
successive and interdependent tasks. In addition, we ad-
dressed the cooperation between the event handler -and
task scheduler in the case that the tasks fail. Although
our proposed system is a first step to construct a sec-
retary model, the state transition graph and AND-OR
graph used by the event handler can deal with complex
jobs, and also the timestamp ordering method performed
by the task scheduler and failure handling way are valid
to preserve the integrity constraint of objects.

Acknowledgements

We are very greatful to Prof.T.Fukumura of Chukyo Univer-
sity, and Prof.Y .Inagaki and Prof.J.Toriwaki of Nagoya Uni-
versity for their perspective remarks, and also wish to thank
Ms.K.Sugino and our research members for their many dis-
cussions and cooperations.

References

" [1] T.Ishida, L.Gasser and M.Yokoo:”Organization Self-
Design of Distributed Production Systems”, IEEE
Trans.on Knowledge and Data Engineering, Vol.4, No.2,
pp-123-133(1992).

Y. Nakauchi, E. Miyoshi, T. Okada and Y .Anzai:
? Computer-supported Cooperative Work Environments
Based on Multi-agent Model”, Trans.on IEICE of
Japan, Vol.J75-D-II, No.11, pp.1874-1883 (1992) [in
Japanese].
K.-C.Lee, W.H.Mansfield Jr. and A.P.Sheth:” A Frame-
owrk for Controlling Cooperative Agents”, JEEE Com-
puter, Vol.26, No.7, pp.8-16 (1993).
[4] A.K.Elmagarmid(Ed.):"Database Transaction Model
for Advanced Applications”, Morgan Kaufmann(1992).
[5] J.Rambaugh:”Object-oriented Modeling and Design”,
Prentice Hall(1991).

(3]

82

[6] A.Goldberg and D.Robson:”Smalltalk-80: The Lan-
guage and Its Implementation”, Addison- Wesley(1983).

[7] B.Meyer:”Object-oriented Software
Prentice Hall(1988).

Construction”,

O Event
Task

Figure 1: Tasks for meeting preparation

Figure 2: Correspondence between tasks and objects
Evext Action
{(lefthand] —=(rightband]

Decide a meeting -- Prepare a meeting 81.82: State

()

Come a day of meeting Cloze a maeting
+ +

s1

@

Create spare materials
Receive a response

Store minutes inta library
Send materials

Figure 3: An example of state transition graph

Directed branch
{to indicate execution order}

& & B

AND noda OF nods

Figure 4: An example of AND-OR graph

M }
4 1 I) Event Handler @
Event Handler) ; .
Task Ordering & & S Event Buffer mine bod of wnds sk znd on sk
Undo tasks Alteration tasks
]
Variabl = _El (
4 Memo ; / '
ry { i
Genarata Failurs Handilng Aequest
Failurs E
Knowledge = u'(al) v Task Scheduler (3)
‘ Saaia Tasmsiton Graph Remave effects of undo tasks,
AND-OR Gespt and executs altevation tisks
J
L AA

l H Task Queue

Figure 5: Structure of event handler

{r‘O bject

®

Figure 8: Failure handling

(2)

a(x) o(:c) o1B) < Tox
T oy
2(X) x(2) Oz receiver
P: argument
(3) reference-reference relatonship (b) reference-update r hip
x(0) x(0)
¥
P(X) x(2)

(6) updas~reference relazionship (d) update-apdate relationship

Figure 9: Task execution

Figure 6: Execution order of two tasks related to object “X”

l E Task Queue

r T
Task Scheduler 0bjec Control
Waiting Queue [
e 2
Ready Set Object Monitor
Having Manzger of all m
i Sroesanp of obpects
q _

Execution : Send a message w object

Figure 7: Structure of task scheduler

Figure 11 An example of task failure in AND-OR graph

Object subclass: #Task

instanceVariables: ‘receiver method arguments failure®Zvent...’
clagavariablea: *’ ’

poolDictionaries: ‘’

category: ‘Secretary-System’!

tTagk MethodsFor: ‘axecution’!

execute

"execute the task”

| value |
s
wvalue := receiver perform: method withArguments: arguments.
value = #failure
ifTrue:

[fallureBvent generate]
31

] fork!

Figare 10: Task execution on Smalltalk-80

procedure Turning all objects back to appropriate states.

input T i : a2 setof undone tasks.
Tu :anexecution history including checkpoints.
output T :asetof tasks that must be redone.
begin e

foreach ¢ in Log {in order of gecenty executed tasks) do
if ¢ is included inTuw then
Toie = Toie = {1},
else if ¢ is checkpoint and T wwis empty then
Turning all objects back to checkpoint t.
return
else
Toto = Trmio + (4] .
endif
endfareach
end

Figure 12: Algorithm for turning all objects back to appropriate states

83

