Proactive Route Planning Based on Expected Rewards
for Transport Systems

Naoto Mukai and Toyohide Watanabe
Department of Systems and Social Informatics,
Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
{naoto,watanabe } @ watanabe.ss.is.nagoya-u.ac.jp

Jun Feng
Hohai University, Nanjing, Jiangsu 210098, China
fengjun-cn @vip.sina.com

1

Abstract

Route planning is one of the important tasks for trans-
port systems. Appropriate policies for route selections im-
prove not only profitability of transport companies but also
convenience of customers. Traditional ways for establish-
ing the policies depend on manual efforts based on statisti-
cal data of transports. Moreover, traditional route planning
technigues are reactive, ‘i.e., an optimization based on in-
Sformation provided in advance. 1t is difficult for the manual
policies and the reactive planniing techniques to adjust dy-
namic changes of transport trends for customers such as
amount and direction of transport demands, i.e., drivers of
transport vehicles must follow the policies provided in ad-
vance. Therefore, in this paper we show how the proac-
tive route planning based on expected rewards for transport
systems can be modeled as a reinforcement learning prob-

" lem. And, we show how agents as transport vehicles acquire

their policies for route selection autondomously and dynami-
cally. The learning ability of transport trends enables trans-
port vehicles to foresee the next destination which provides
high rewards. Finally, we report simulation results and
make the effectiveness of our proposal strategy clear:

1 Introduétion

In these years, many-efforts have focused on developing
novel intelligent transportation systems (ITS). Especially,
real-time position information based on global positioning
systems (GPS) contributes to various aspects of transport
systems. One of the aspects is route planning for trans-
port vehicles. - Statistical -data of transports (e.g., get-on/off
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positions) can help establishing policies for transport com-
panies. For example, bus companies can determine where
bus stops should be located in the city and which routes
should be selected among the bus stops. Such transport
policies have effects not only on profitability of transport
companies but also on convenience of customers. However,
traditional ways to acquire the policies strongly depend on
manual efforts. Moreover, traditional route planning tech-
niques are reactive, i.., an optimization based on informa-
tion provided in advance. Thus, it is difficult for the manual
policies and the reactive planning techniques to adjust dy-
namic changes of transport trends for customers. Generally,
it seems that transport trends such as amount and direction
of transport demands are not fixed. Consider visitors in a
theme park, we assume that there are some flows of them
(e.g., to attractions or to restaurants). Trends of these flows
would change, depending on its situations such as time and
weather of day. Therefore, a learning architecture for ad-
justing such transport trends autonomously and dynami-
cally is desired. We believe that driver-less cars equipped
with the learning architecture will greatly contribute to the
advancement of transport systems in the future. - '

In this paper, as the first step to the novel transport sys-
tems, we propose a strategy-of proactive route planning
based on expected rewards by Q-Learning which is a tra-
ditional adaptive reinforcement learning technique. The
proactive routes means that transport vehicles can foresee
the next destination which provides high rewards by the
learning architecture. The route planning problem can be
modeled as an agent paradigm with reinforcement learning.
Agents as transport vehicles travel on a.graph which con-
sists of nodes and edges. In this model, the graph represents
physical locations where customers get-on/off in a service




area. While, the graph also represents states and actions of
the Markov Decision Process (MDP) for Q-Learning. There
are three key factors to be considered to acquire appropri-
ate policies. The first key is to define states and actions.
The states are given by a sequence of nodes, and the ac-
tions are given by an edge (i.e., a link-node). The second
key is to define a reward function. The reward function in-
fluences transport behaviors of agents, i.e., they transport
a large number of customers at once like buses or one by
one like taxis. The third key is to define a penalty func-
tion. The penalty function influences curiosity behaviors of
agents, i.e., they search over a large area or a small area.
We developed a simulator to investigate an effectiveness of
our strategy for route planning problem. Our experiment
consists of two steps. First, we compare agents traveling
on fixed routes with agents traveling on learned routes by
using ten random patterns of customer flows. Second, we
investigate influences related to the reward function and the
penalty function. '

The remainder of this paper is structured as follows: Sec-
tion 2 overviews relevant studies. Section 3 formalizes the
route- planning problem for transport systems. Section 4
summarizes the concept of reinforcement learning. Section
5 presents our strategy based on Q-Learning for route plan-
ning. Section 6 reports simulation results and makes the
effectiveness of our proposal strategy clear. Finally, Section
7-concludes and offers our future works.

| 2 Relevant Studies

In this section, we overview relevant studies to our pa-
per. Finding the shortest cycle visiting all nodes of a graph
is well known as Traveling Salesman Problem (TSP). TSP
can be regarded as the simplest transport problem. In other
words, a single vehicle visits all nodes twice (i.e., get-
on/off) by the shortest route. But, TS.P,does' not consider
the convenience for customers at all. The problem in which
a fleet of vehicles is routed in order to visit distributed
customers on a graph is called Vehicle Routing Problem
(VRP) [2, 9]. Depending on the types of demands (i.e., pre-

reservation type or on-demand type), the following two cat-

egories exist: Static Vehicle Routing Problem (SVRP) and
Dynamic Vehicle Routing Problem (DVRP). These prob-
lems are known to be NP-complete. Thus, most approaches
for these problems are based on heuristic algorithms such as
a genetic algorithm (GA) [11, 7, 4] or an ant colony system
(ACS) [3, 6]. Our problem belongs to DVRP. We can say

" that such traditional approaches for route planning are reac-

tive, i.e., an optimization based on information provided in
advance. On the other hand, our approach to the problem is
proactive, i.e., transport vehicles can foresee the next des-
tination which provides high rewards by the reinforcement
technique. :
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In recent years, Hugo Santana et al. addressed a multi-
agent patrolling problem [1]. The purpose of the problem
is to minimize the time lag between two visits to' the same
node by multi-agent. The multi-agent patrolling task can
be regarded as an extended problem of TSP. At first, they
mainly focused on several multi-agent architectures such as
agent communications, coordination scheme, agent percep-
tion, etc [5]. Then, they proposed a strategy based on a
reinforcement learning technique for multi-agent patrolling
[8]. Although our problem is basically different from their
problem in the purposes, our paper has a strong relevance
to this strategy.

3 Formalization

In this section, we formalize our route planning problem.

for transport systems and make the differences between our
problem and other problems clear.

3.1 Graph

A space for this route planning problem is given by Aa.

graph G as Equation (1). The graph consists of nodes IV and
edges E. In this model, the graph represents physical loca-
tions where customers get-on/off in a service area. While,
the graph also represents states and actions of Markov De-
cision Process (MDP) for Q-Learning.

G = (N,E)

N = {nlanZ:"'7nl} H

E = {e(n,n')|n,n' € N} :
3.2 Agents

Let V be a set of k agents as Equation (2). The agents
travel on the graph at a fixed speed. Each agent acts as a
transport vehicle. However, in this paper we assume that the
riding capacities of all agents are infinite. Thus, we ignore
types of vehicles such as buses and taxis (i.e., agents can be
buses or taxis depending on their situations).

V = {v1,v2,---, v} 2)
3.3 Flows

Let C be a set of customers as Equation (3). The cus-
tomers are not given in advance of the start time of trans-
port service. Thus, we cannot schedule traveling routes of
agents in advance. The patterns of customer occurrence fol-
low a set of m flows F' as Equation (4). A flow f is defined
by a tuple: n. and n, are the nodes where customers get
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on/off, and 7 is occurrence rate of customers at a unit time
T.,. Generally, the customer occurrences are not uniform

‘distributions (i.e., transport trends such as amount and di-

rection are different). Therefore, the flows F' represent such
transport trends.

Cc = {61162)" } (3

{ F = {fl:f2:"':fm} 4

(nr: Tid, 77)

~p
!

‘3.4 Objective

The objective function is defined by Equation (5), where

) T (¢) and T-(c) are the waiting time and the traveling time

of customer ¢, respectlvely Generally, there is a trade-off

relation between T, and T;.. For example, if agents trans-
‘port large customers at once like buses, T}, decreases and T;-

increases. While, if agents transport one by one like taxis,
T, increases and T’ decreases. Therefore, it is desirable to

-adjust behaviors of agents to their situations. ‘'We introduce
. weighting factors which decide behaviors of agents into the
‘reward function.

~ min (Z Tw_@lfé‘qiqr(ﬂ) _ 5)

ceC

‘4 Reinforcement Learnin’g

In this section, we summarize the concept of reinforce- -

‘ment learning. The framework is deﬁned by the theory of

Markov Decision Process (MDP).

An agent senses his current state s; and takes any action
a;, and transits to thé next state s;;. The probability of
transition is given by conditional probability P as Equation
(6).

P = P{stﬂ]st, at} ' ’ (6)

When the agent transits to some state s;, the agent may
receive reward R, depending on the state. The probability
of an agent takes an action a at the state s is denoted by
policy 7(s,a). The purpose of agents is to establish opti-

‘mal policy 7*(s, a) which maximizes expected value of the

rewards V;™ as Equation (7), where 7y (0-< v < 1) is a dis-
count-rate. Thus, if -y is close to 0, the agents give greater

5 i'mpprtance to immediate reward. While, if «y is close to 1,
“the agents give greater importance to the sum of rewards in

the future. The estimated value for the expected rewards is
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denoted by (s, a). The agents have to update the value of
Q(s, a) through their experiences in an appropriate strategy.

V7 =Ri+7YRi1+ 7 Rega + -+ @)

Q-Learning [10], which we applied to this route plan-
ning problem, is one of the strategies to update the value of
Q(s,a). The update formula of Q-Learning is defined by
Equation (8), where « is a learning rate, and -y is a discount
rate. This strategy is guaranteed to converge to an optimal
(@ value in the limit when the learning rate « is set to appro-
priate value.

Qsvar) = (1-0)Q(si,a0) ®

+a [Rt + vy max Q(s¢41, at‘+1)]
atqa .

5 Route Planning with Reinforcement Learn-
ing ' -

In this section, we present our strategy based on Q-
Learning for transport systems. There are three key defini-
tions to be considered to acquire appropriate policies: state
and action, reward, and penalty. .

5.1 State and Action

An agent can transit to an adjacent node from the current
node at one trarisition time 7, which is defined by Equation
(9), where length(e) is a length of edge e, and speed(v)
is speed of agent v. For simplicity, in this paper lengths of
all edges and speeds of all agents are set to the same value,
respectively. Thus, the transition time T is a fixed value and
can be used as a unit time in the Markov Decision Process

(MDP).

length(e)

T.= speed(v) : ©)

A state is defined by a sequence of nodes which includes
the current node 7; and a history of § visited nodes in the
recent past ny_g, - - -, 1 as Equation (10).

st = (Me—gy =+, Nem1, M) . (10
Let L(n;) be a set of link-nodes of node n;. An action

@ is defined by a link-node as Equation (11).

a; =mngpy € L(ng) -~ - ' (11




Here, setting the length of histories & to 1, a pair of a
state and an action is given by a sequence of three nodes as
Equation (12).

(8ts0¢) = (g1, 70, Neg1) (12)

This definition means that expected rewards depend on
not only the current node but also nodés visited in the past.
For example, in Figure 1, two agents v; and vy are located
in the same node n.. While, nodes visited in the recent
past are different between v; and v;, i.e., the state of vy is
(na,ne), and the state of vy is (ﬁb,nc). In this case, ex-
pected rewards, which the agents receive when they arrive
at ng in the next time, are different between vy and vy. In
this problem model, there are trends of routes (i.e. from
where to where) although each customer may have differ-
ent get-on/off nodes so that the history of visited nodes is
useful to estimate expected rewards. However, it is obvious
that the long length of history causes the explosion of the
number of states. The maximum number of states is calcu-
lated by Equation (13) where || is the number of nodes,
and |L] is the maximum size of link-nodes. .

Figure 1. History of visited nodes

|N| x |L|® (13)

5.2 Reward

A reward function for agent v which arrives at a node
n is calculated by Equation (14). A reward value for rid-
ing customers is given by the left term where [C?(n)| is the
number of customers getting on, and w,. is its weighting fac-
tor. While, a reward value for dropping customers is given
by the right term where |C%(n)] is the number of customers
getting off, and wy is its weighting factor. Note that the
rewards which agents received may be different even if the
agents arrive at the same node. The balance between w,. and
wq represents preferences of transport behaviors for agents
(i.e., large customers at once or one by one).
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.independent learners.
_among agents is required. However, we have some prob-

R(n)=w,- IC”(n)! +wi-|CY

(n)l (14)

53 Penalty

If once an agent v arrives at a node n, the reward of node
n for agent v is absolutely 0, independently of its expected
reward although the reward increases with time after that.
However, agents always lean toward nodes with high ex-
pected rewards. Agents should avoid such nodes temporar-
ily. Therefore, we introduce a penalty function as Equations
(15) and (16), where idle(n) is the idle time (i.e., the time
lag between two visits), and ¢ is the number of penalties.
The value of penalty increases from 0 to 1 with increasing
idle time. If the idle time is more than p (the time period un-
der penalty), the value of penalty is always 1. The penalty
P*(a;) is used as a weighting factor of Q(s;,a:).

p=T.(C+1) - (15)

1 (if p<idle(ngt1)) 16
s (gD ) iy 09

P¥(a;) = {

5.4 Policy

The selection of an action a; is followed by e-roulette
method. In other words, an action is selected randomly in
probability (0 < e < 1). Otherwise (i.e., with probability
1 — €), an action is selected by Equation (17). The equa-
tion represents the probability that action a; is selected from
L{n;). Not that the expected value Q(s;, a;) is penalized by

" weighting factor P?(as).

Pr(as) - Q(s, at)
> PU(a})- Q(se,al)

a,€L(n:)

 Pro(si,an) = an

5.5 Cooperation

In the previous section, we presented the strategy for
In multi-agent case, a cooperation

lems to be solved for extending our strategy to cooperation
learners. The complexity mainly results from the fact that
the rewards, which agents received, may be different de-
pending on their assigned customers even if the agents ar-
rive at the same node. We have an idea to overcome the
complexity. It is to divide a service area into sub-areas and
each agent is assigned to one of the sub-areas. Each agent



as only to learn trends of flows in its responsible sub-area.
:The definition of boundaries among the sub-areas is a key
problem to be solved. However, this work is our fumre
work. Thus, we only consider a single-agent case in the
iiext section.

6 Experiments

In this section, we report our experimental results and
make the effectiveness of our proposal strategy clear.

6.1 Environment

" 'We developed a simulator to investigate an effectiveness
of our strategy. A graph in the simulator consists of 10
' _nodes and 15 edges. We used ten sets of flow patterns
(F1,---,F10). Each set includes five flows which is ran-
" domly generated. However, the sum of occurrence rates 7 is
set to 0.3 in all the sets (i.e., the total number of customers is
almost same). We simulated 10000 cycles for training and
* 20000 cycles after the training for evaluation. In the evalu-
ation cycles, the probability of random selection e is set to
- 0. The default parameter setting is summarized in Table 1.

. Table 1. Parameter setting

learning rate o 0.1
discount rate -y 0.5
history size § 1
transition time 7, 5T,
weighting factor of riding w. .1
weighting factor of dropping wy 1
number of penalties ¢ 9
probability of random selectione | 0.2

6.2 - Fixed route vs. Learned route

First, we compare two types of agent (fixed route vs.
learned route). The fixed route is the shortest possible route
visiting all nodes of the graph. The fixed route can be re-
garded as an optimal route under condition of the agent
without knowledge about flows. While, the learned route
corresponds to the policy of agent which acquired in the
training.

Figures 3 and 4 show the average of waiting and trav-
eling times of customers. Figure 5 shows the average of
total time (i.e., the sum of waiting and traveling times).
The flows (F3,---, Fio) are sorted in increasing order of
the total time. From the results, it can be seen that learned
route agents are superior or equivalent to fixed route agents.
The number of superior results related to total time is eight
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flows. Even if not so (i.e., Fg and Fyp), the differences of
them are not significant. Paying attention to the fixed route,
we can see that the variance of waiting time is small, while -
the variance of traveling time is large. The reason is that the
visit order of nodes strongly influence the traveling time.
For example, consider a moniliform graph, it is important
to decide whether the agent visit nodes in clockwise direc-
tion or not. In F'4, the average number of nodes between
get-on/off on the fixed route is about 7.0 so that the value of
traveling time is high. If the agent visits in the reverse order
of the fixed route, the average number is about 2.9. How-
ever, the traveling time of other flows (i.e. all flows except
for F'4) may increase. While, paying attention to the learned
route, we can see that the both variances are large. It means
that the agent changes its transport behavior (i.e., large cus-
tomers at once or one by one) depending on the flow. For
example, in F'1 there are two flows: f; = (n; — n3) and

= (ng — ng). And, the number of nodes between n,
and ng is 1 on the topology of graph. In such sitnation, the
agent visits nodes in the order n;, ng, and nz (or ng, n1,
and n3) in Figure 2. This behavior of the agent can sig-
nificantly decrease the waiting time of customers although
the traveling time may slightly increase. Consequently, we-
can say that this adaptability of the agent enables proactive
route selections for improving the profitability of transport
systems and the convenience of customers.

(n) B
@)

w

Figure 2. Transport behavior -

6.3' Reward and Penalty

Second, we investigate influences related to the reward
function and the penalty function. ‘

Figure 6 shows the results related to the rate of rewards.
The rate of rewards w;, :-wq is changed from 0.4 : 1.6 to
1.6 : 0.4. From the result, it can be seen that the rate of
rewards can emphasme the transport behaviors of the agent
(i-e., large customers at once or one by one). Here, let’s fo-
cus on a relativity between the rate of rewards and the total
time. In this case, the high rate of w, causes the increasing
of total time although the waiting time decreases. It means
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Figure 5. Total time
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that the rate of rewards should change depending on not

only the types of vehicles but also the patterns of flows.
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Figure 6. Results related fo rate of rewards

Figure 7 shows the results related to the number of penal-
ties. The number of penalties - is changed from 0 to
9. From the result, it can be seen that the large number
of penalties decreases the amount of times for customers.
However, too many number of penalties cause the dimin-
ishing of search effects followed by expected rewards (i.e.,
the agent selects next action randomly independently of ex-
pected rewards). Thus, an appropriate number of penalties
must be set on the basis of the environment (¢.g. the number
of nodes).
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Figure 7. Results related to number of penal-
ties '




Conclusions

. In this paper, we proposed a learning architecture for

" adjusting transport trends autonomously and dynamically.

“The route planning problem for transport systems is mod-

“eled as a reinforcement learning problem. In the model, -

agents acquire an optimal policy based on Q-Learning. The
'policies which agents acquired enable proactive route plan-

- qing, i.e., transport vehicles can foresee the next destination

- which provides high rewards. There are three key defini-
tions to acquire the policy: state and action, reward, and

‘ penalty. Finally, we reported our simulation results. The
result indicates that our strategy outperforms the strategy of
ﬁxed route when there are characteristic transport trends in
a service area.

In our future work, we have to consider the remforce—
ment learning in multi-agent cases. As discussed previ-
ously, the complexity of the multi-agent cases mainly re-
sults from the fact that the rewards which agents received

ay be different even if the agents arrive at same node. Our

“final target of this work is to achieve a future city in where

_there are driver-less cars equipped with a learning architec-
ture.
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