SRR

IEEE Region 10 Conference, Tencon 92
11th - 13th November, 1992
Melboume, Australia

Design and Implementation of a Programming Language
Based on Objects and Fields

Fumihiko NISHIO, Toyohide WATANABE and Noboru SUGIE

Department of Information Engineering,
Faculty of Engineering, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-01, JAPAN

Abstract

The object-oriented model is very successful to rep-
resent various phenomena in our real world from an
entity-category point of view. Many current topics
have reported that this paradigm is very appropriate to
design and implement information systems. However,
it is not sufficient to model the dynamic actions of au-
tonomous entities under this paradigm. This model is
in short of representing the relationships between enti-
ties and the environments. In this paper, we propose an
experimental object-oriented programming language to
manage the relationships together, and also report the
practical implementation. Our main idea is to intro-
duce the concept of fields, which control the mutual
interaction environments among objects.

1 Introduction

The object-oriented paradigm is effective to represent
the characteristic properties of distinct entities to be
observed in our real world [1]. Many current reports
about modeling techniques inform us that the object-
oriented model is very powerful and applicable to de-
sign and construct information systems [2]. The basic
modeling principle is to look upon various kinds/types
of phenomena in our real world as the mutual interac-
tions among entities, which are visible individuals in
our real world. Such a modeling method based on this
principle can specify well many activities and various
phenomena in our environments.

The framework of the object-oriented paradigm is
based on the ISA relationship defined in the class hi-
erarchy. Such a framework is too simple in compari-
son with various phenomena of our environments. Un-
der the circumstances that many different objects ex-
ist, it is important to manage the mutual relation-
ships among these objects effectively. The ISA rela-
tionship is one method for specifying objects from an
object-category point of view. However, the concept of
groups, which are composed of interrelated objects, is
more important to manipulate various objects dynaimi-
cally because mutually interrelated objects must share

their common objective. Namely, we need appropriate
constructors, more or less, with a view to modeling our
phenomena from an object-interaction point of view,
besides the ISA relationship.

Some research papers point out the importance of
object-interaction viewpoint. In [3], abstract objects,
which are organized from some existing objects, are
proposed. The abstract objects represent the behavior
among compositive objects as an virtually organized
entity, as a whole. Although this abstraction method
enables to represent the activity of a group, it is not
appropriate for controlling the communication among
individual objects in the group. On the other hand,
in [4] the concept of fields is introduced. The field is
defined as an entirely passive component, which man-
ages the communicable environment among different
objects. Contrary to the approach of [3], this field con-
cept is not sufficient to represent the external activities
of groups.

In this paper, we propose an experimental program-
ming language to represent successfully the relation-
ships among various entities in our phenomena on the
basis of the object-oriented paradigm. The design con-
cept in our programming language is mainly to intro-
duce the notion of fields, in addition to the concur-
rency control mechanism for objects. The field is an

. envifonment to define the operational range in which

individual objects with their common goal can interact
mutually, and also it represents a group of interrelated
objects.

2 Owutline of Modeling

The object-oriented paradigm provides a powerful and
effective method for modeling the activities and prop-
erties of entities in the real world. However, the frame-
work in the object-oriented paradigm is not always
adaptable to specify various phenomena to be observed
in our real world. Namely, the following restraints are
imposed:

1. The message passing mechanism is basically lim-
ited to 1-to-1 though our usual communication

623

0-7803-0849-2/92 $3.00 © 1992 IEEE

method is classified into 4 types of categories: 1-
to-1, 1-to-many, many-to-1 and many-to-many;

2. The relationship among objects is derived from
ISA though different kinds/types of entities in our
real world establish various relationships, corre-
sponding to their activities in the social structures;

3. The concept of environments is not available in
the traditional object-oriented paradigm, though
individual entities in our real world do not only
interact directly with one another but also are
controlled indirectly under their cornmon environ-
ments.

These constraints are dependent on the fact that
only objects are uniquely distinguished as operational
entities and the other existing components are not per-
mitted at all. Therefore, we need the other elements to
be able to resolve such constraints, in addition to ob-
jects. We introduce the concept of fields. The field is
an environment to define the operational range among
objects. At least, individual objects can interact effec-
tually with each other in sharing their common goal.
This modeling method may be provided on the basis of
the concepts in the Entity-Relationship paradigm [5]:
the objects correspond to entities and the fields do to
relationships.

Introducing the concept of field, our modeling
method is based on two distinct entities: a static and
passive field; and a dynamic and active object. How-
ever, the following problem arises:

4, We can not always resolve our previous discussion
by introducing even passive components, in case
of modeling various phenomena in our real world.
The distinction between objects and fields is very
ambiguous. We may not distinguish objects and
fields uniquely because the distinction is too de-
pendent on our modeling views.

This problem is observed in the following example.
We consider the relationship between a train and per-
sons. The persons in the train feel that the train is
an environment (a field) because all information ex-
changes or propagations are closed in the train. On
the other hand, the persons outside the train under-
stand that the train is an object in itself as their dis-
tinguished entity. Namely, the distinction between ob-
jects and fields depends on the different views for in-
teracted entities. Therefore, it is important to provide
a specification mechanism of modeling various views of
the phenomena flexibly. Such a specification mecha-
nism must always describe the nested structure among
fields in manipulating objects and fields. We illustrate
such a framework based on objects and fields in Fig.1.
In Fig.1, we observe that fields “A” and “B” construct
a nested structure: “A” is enclosed by “B”. In the pre-
vious example of a train and persons, “A” corresponds
to the train as the inside environment and “B” does

Figure 1: Structure between objects and fields

to the universe of discourse as the outside environment
of the train. Also, the train is an object “e” in the
outside environment. Objects “a”, “b”, “c” and “d”
are persons in such an example. In “B”, “e” as well
as “c” and “d” is distinguished clearly as an active en-
tity, and “e” is looked upon as a group of mutually
related objects “a” and “b”._ Here, “a” and “b” do
not accept the properties of the object “e”, but are
controlled passively by the characteristics of “A”. This
mechanism is very important because the traditional
class hierarchy can not support it at all. Therefore,
our framework supplies the concept “grouping” in ad-
dition to the concept “generalization/specialization” as
ISA relationship and “aggregation” as PARTOF rela-
tionship [6]. :

Next, we discuss the functionality of objects and
fields, concerning the communication mechanism. The
communication among objects is 1-to-1, like the object-
oriented paradigm. While, the communication between
a field and objects, which are accommmodated into the
field, is basically 1-to-many from an object to other ob-
jects through the field. This communication method is
a kind of broadcasting. Namely, the field supports a
broadcasting function available for accommodated ob-
jects. Here, we must pay an attention to the commu-
nication facility of fields for the external objects and
internal objects with respect to an field. For exam-
ple, we cousider the objects and fields shown in Fig.1,
again. In the field “A”™ the objects “a” and “b” are
internal ones, and the objects “c” and “d” are exter-
nal ones. It is important that “c” and “d” recognize
only “e”, as an actual entity, rather than “A”. In this
case, the message from “c” (or “d”) to “e” may be in-
terpreted either as a kind of broadcasting message to
“A”(message (1) in Fig.1), or as a direct message to
“e” (message (2) in Fig.1).

3 Object and Field

In this section, we address the functional structures of
objects and fields.

624

Pt ens ana ittt e RO A IAL)

gy o

3.1 Object

The objects in our model are autonomous entities, and
can execute their own tasks concurrently. The objects
consist of following components.

e State variables that represent the current state of
object. They are private for the object and are
effective to perform methods defined in the object;

e Methods that objects perform independently by
themselves;

o A message buffer that holds messages, sent from
other objects. Each object possesses his own mes-
sage buffer. Messages which were not accepted in-
stantly by the object are temporarily kept in this
buffer. This buffer stocks messages into the queue
structure according to the arrival order;

e A message selector that takes out the first exe-
cutable message from the message buffer accord-
ing to the object state.

Users must specify state variables and methods in
the definition of objects. The objects are defined in
Smalltalk-like syntax.

Tt is possible to define acceptable conditions for each
method. The syntax is as follows:

1 <ObjClass> guards: #<GuardName> !
<method-name>
= <condition> ! !

When <condition> is satisfied, the object can exe-
cute the corresponding method. Namely, <condition>
4akes a role of the guarded command in CSP [7]. The
object is created by a pair of class name and guard
name. This enables to create objects which have the
same method but different message scheduling policy.

3.2 Field

The field is an environment to make objects active.
Previously described, the entity characterized as a field
is different from ordinary objects. This differentiation
is one of the important aspects in introducing the field.
The field has following constructs.

o Siate variables that represent the state for the en-
vironment in which objects are exactly available;

e Procedures that are called by objects in order to
access to state variables in the field. Namely, the
objects in a field can change and refer to state
variables only through calling these procedures;

e A message buffer that holds messages, sent from
objects. This message is sent to every object in
the field through the broadcasting function;

o A message selector that takes out the first queued
message from the message buffer;

o A broadcasting function that enables to send mes-
sages to many unspecified objects within the field;

o An object list that records objects which are avail-
able in the field. Referring to this list the field
can broadcast messages successively. Whenever
objects enter into and leave from fields dynami-
cally, this list is updated appropriately.

Users must describe state variables and procedures
in the definition of fields. The field is also defined in
Smalltalk-like syntax.

Each field has particular procedures such as “enter”
and “exit” in advance. “enter” is used for partic-
ipating the specified object to the field, and “exit”
removes the object from the field.

3.3 Field as Object

As discussed in the section 2, we must look upon a field
as 2 kind of object when we observe the field from the

external view. Therefore, the mechanism for handling °

a field as an active entity, but not a passive one, is
needed. This characteristic is supported applicably by
overlaying an object definition onto the existing field
definition newly. The definition syntax is as follows:

Entity subclass: <ObjClass>
overlayOn:
<FieldClass>
instanceVariableNames:
<instance variables>
classVariableNames:
<class variables>
poolDictionaries:
<pool dictionaries>

In this definition, the object <ObjClass> is over-
layed onto the field <FieldClass>. The instances of
<0bjClass> have aspects of object and field.

This mechanism integrates two modeling views: an
internal view and an external one. An internal view
is defined as a field and an external one is as an ob-
ject. In the implementation phase, it is able to define
these distinct modeling views separately. This sepa-
ration supports a natural mapping method from our
modeling viewpoints to program constructs.

3.4 Communication Methods

Objects perform their own tasks through the mu-
tual communication method. In our communication
method, 2 types of communication mechanisms are
adaptable: the direct message passing among objects,
and the indirect broadcasting in 2 field. Here, we ad-
dress the communication method, concerning the syn-
chronization/asynchronization facility among concur-
rently executing objects. :

The direct message passing mechanism among ob-
jects is divided into 4 types of communication ways.

625

T I

oy I

1. Synchronous message transmission: A sender
stops its execution until an appropriate receiver
accepts the message. This command syntax is as
follows: a

<object-name> <- <message>.

2. Synchronous message communication: A sender
- stops its execution until it receives a reply mes-
sage from the receiver. This command syntax is
as follows: _ -
) <variable> :=
<object-name> <- <message>.

3. Asynchronous message transmission: A sender
continues its execution without depending on
whether the receiver accepts the message or not.
This command syntax is as follows:

<object-name> <- <message> &.

4. Asynchronous message communication: A sender
receives a reply meésa.ge from the receiver asyn-
chronously. This command syntax is as follows:

<variable> :=
<object-name> <- <message> &.

On the other hand, the indirect communication
mechanism among objects is supported by the broad-
casting function of field. The broadcasting function
makes it easy to control a group communication in the
meeting, the team, etc. The command syntax is as
follows:

<field-name> <<- <message>.

4 Implementation

Our experimental language is now implemented in Dig-
italk’s Smalltalk/V running on the Macintosh.

Our programming system is mainly composed of con-
structors and a parser, on the basis of the class struc-
ture in Smalltalk. Constructors are basic programming
elements to construct our objects and fields, and are de-
scribed definitely as the classes in Smalltalk/V. While,
the parser is a translator from our language syntax
into the Smalltalk description. The classes Entity and
Field are constructors to manage the functionalities
of object and field classes, respectively. The definition
forms for our objects and fields are specified explicitly
as the subclasses, using these constructors Entity and
Field. Furthermore, the classes MessageHandler and
Broadcast are attached to these definitions, as meth-
ods for controlling message communication. Actual
message communication is controlled by the instances
of these classes, but does neither those of Entity nor
Field. MessageHandler enables to use various types
of communication ways described in the section 3.4.
Broadcast supports the broadcasting function of fields.
These classes are common to all objects and fields, so
we need not redefine.

Fig.2 shows these constructors and the relationships
among them. The object is composed of two in-

Figure 2: Implementation of objects and fields

stances: an instance of Entity (anEntity) and that
of MessageHandler (aMessageHandler). The class
method create in Entity is invoked when an object
is created. These instances which are created simul-
taneously from Entity and MessageHandler are con-
nected mutually through their instance variables. Also,
MessageHandler has an instance variable that man-
ages the message buffer as a property of objects. When
aMessageHandler is created, its own process is gener-
ated to realize the concurrency of objects. This process
picks up an executable message from its message buffer
and performs it, if possible. When a message is sent to
aMessageHandler, it is queued into the message buffer
once. Then, the next message at the top of the message
buffer is picked up and then checked its acceptable con-
dition. If the condition is satisfied, aMessageHandler
invokes the appropriate method defined in anEntity
(and its subclass). If the accepted message is sent
synchronously, the reply message is sent to sender.
In this way, the message communication is controlled
by aMessageHandler. The synchronous /asynchronous
control mechanism is transparent for programmers.

Similarly, the field consists of instances of Field
(aField) and Broadcast (aBroadcast). aBroadcast
maintains the object list that records the member ob-
jects of the field. According to this list, messages can
be managed by aBroadcast.

On the other hand, the parser is prepared to manip-
ulate synchronous/asynchronous communication ways,
as addressed in the section 3.4. This is because the ex-
isting facility in Smalltalk can not be always applicable
to describe these communication ways directly.

Here, we show a simple example about the finite
buffer.

Entity subclass #Buffer
instanceVariableNames: ’buffer n

boundary’

classVariableNames: ?°

poolDictionaries: °2

! Buffer methods !

626

initialize
" injtialize a finite buffer.

buffer := OrderedCollection new.
n := 0.
boundary := 10 !

get

" answer a value in buffer. "
n:=n-1.
~ buffer removeFirst !

put: value

" put a value into buffer. *
buffer addlLast: value.
“n :=qp +1 !

! Buffer guards: #BufGuard !

get
" check whether buffer has effective
data. "
“n>0!
put: value)
* check whether buffer is full. "
“ n < boundary !!

The class Buffer is defined as a subclass of Entity,
and it has the methods get and put. The guard
BufGuard is defined in order to specify an acceptable
condition for the methods. For example, the guard get
associated to the method get means that the buffer
must have one or more value in order to execute the
method get.

Instances of Buffer are created and used by the fol-
lowing manners:

b := Buffer create: BufGuard.
b <- put: 1234 &.
x = b <~ get.

In the first example, a finite buffer object is created
with BufGuard as its guard. The reference to this ob-
ject is assigned to a variable b. The second example
indicates that a message put is sent to the buffer object
b asynchronously. The last example is the manipulat-
ing of a synchronous message get. The sender of this
message is blocked temporarily until the reply message
is sent from b and its value is assigned to x.

5 Conclusion

In this paper, we proposed our experimental program-
ming language based on the concepts of objects and
fields. The concepts of objects and fields are very ap-
plicable to various problems in the real world. This
framework provides a natural way to represent the
activities and properties among cooperatively interre-
lated objects. The group of cooperative objects has
two distinct properties. We may not distinguish these
properties as object and filed separately, because the
distinction is too dependent on our modeling views. So,
our framework provides a successful way to ise object

and field appropriately, corresponding to the modeling
views, by overlaying the object onto the field.

In our future work, we must develop an operational
interface/environment to support the programming ef-
ficiency with a view to making the application ranges
clear.

Acknowledgements

We are very grateful to Prof. T. FUKUMURA of
Chukyo University, and Prof. Y. INAGAKT and Prof.
J. TORIWAKI of Nagoya University for their perspec-
tive remarks, and also wish to thank Mr. H. SUZUKI
and our research members for their many discussions
and cooperations.

References

[1] B.J.Cox: “Object-oriented Programming”, Addi-
son Wesley (1986).

[2] B.Meyer: “Object-oriented Software Construc-
tion”, P.534, Prentice Hall (1988).

[3] R.Helm, I.M.Holland and D.Gangopadhyay:
“Contracts: Specifying Behavioral Composi-
tions in Object-Oriented Systems”, Proc. of
ECOOP/OOPSLA 90, pp.169-180 (1990).

[4] T.Maruichi, M.Ichikawa and M.Tokoro: “An Or-
ganization Model of Computation and Its Appli-
cation”, trans. on Information Processing Society
of Japan, Vol.31, No.12, pp.1768-1779 (1990) [in
Japanese]. :

[5] P.P.Chen: “The Entity-Relationship Model: To-
ward a Unified View of Data”, ACM trans. on
Database Systems, Vol.1, No.1 (1976).

[6] A.LFurtado and E.T.Neuhold: “Formal Tech-
niques for Database Design”, P.114, Springer-
Verlag (1986).

[7] C.A.R. Hoare: “Communicating Sequential Pro-
cesses”, Comm. ACM, Vol.21, No.8, pp.666-677
(1978).

627

